
Analysis of Algorithms I:

Perfect Hashing

Xi Chen

Columbia University

Introduction

Goal: Let U = {0, 1, . . . , p − 1} be a huge universe set. Given a

static subset V ⊂ U of n keys (here “static” means we will never

change the set V by inserting or deleting keys, e.g., consider

the 100, 000 most popular google keywords in 2011

And we want to store it in a data structure (and maybe burn the

data structure onto a CD). Is there such a data structure so that

search can be done in O(1) time in the worst case?

Search(x), where x ∈ U

returns 1 if x ∈ V and 0 otherwise.

Introduction

First try: Use a hash table T [0, 1, . . . ,m − 1] of size m; randomly

pick a hash function h from a universal collection H; and then

insert the keys of V into the table T using h?

Wishful thinking: If we are lucky and there is no collision at all

between keys in V , then search takes O(1) time in the worst case.

Question: How large does the table need to be? so that with high

probability, say > 1/2, the hash function we get has no collision.

Introduction

Recall the definition of a universal collection H:

Definition

Let H be a collection of hash functions from U to {0, . . . ,m − 1}.
We say it is universal if for any two distinct keys x and y from U:

[the number of functions h ∈ H such that h(x) = h(y)] ≤ |H|/m.

Here is an equivalent definition: If we pick a hash function h from

H uniformly at random (each with probability 1/|H|), then

Pr
[
h(x) = h(y)

]
≤ 1/m, for all x 6= y ∈ U

That is, for any two keys x and y , the probability that there is

collision between them (with respect to h) is bounded by 1/m.

Introduction

Theorem

Set the table size m = n2. Assume H is a universal collection of

hash functions from U to {0, 1, . . . ,m − 1}. If we pick a hash

function h from H uniformly at random, then

Pr
[
no collision between keys in V w.r.t. h

]
> 1/2

Introduction

We use k1, . . . , kn to denote the keys in V and use Xi ,j , where

i , j : 1 ≤ i < j ≤ n, to denote the following indicator variable:

Xi ,j = 1 if there is a collision between ki and kj ; and Xi ,j = 0

otherwise. We also use X to denote the total number of pairs of

keys ki and kj , i , j : 1 ≤ i < j ≤ n, that collide.

Introduction

Then we have X =
∑

i ,j Xi ,j and thus,

E
[
X
]

=
∑
i ,j

E
[
Xi ,j

]
=

(
n

2

)
· (1/m)

where the first equation uses the linearity of expectations and the

second equation uses the assumption that H is universal. Because

we set m = n2, it is clear that the expectation of X is < 1/2.

From this, we use Markov’s inequality (next slide) to claim that

Pr
[
no collision at all

]
= Pr

[
X = 0

]
> 1/2

Introduction

Theorem (Markov’s inequality)

Let X be a nonnegative random variable. Then we have

Pr
[
X ≥ t

]
≤ E

[
X
]/
t, for all t > 0

For example, in the last slide, by setting t = 1 we get

Pr
[
X ≥ 1

]
≤ E

[
X
]/

1 < 1/2

And thus, Pr
[
X = 0

]
= 1− Pr

[
X ≥ 1

]
> 1/2 because X here is a

integer random variable.

Introduction

Proof of Markov’s inequality.

We use S to denote all possible values of X . Because X is

nonnegative, we may assume that every x ∈ S is nonnegative.

E
[
X
]

=
∑
x∈S

x · Pr
[
X = x

]
=
∑
x<t

x · Pr
[
X = x

]
+
∑
x≥t

x · Pr
[
X = x

]
≥
∑
x≥t

t · Pr
[
X = x

]
= t · Pr

[
X ≥ t

]

Introduction

To summarize, if we set the table size to be m = n2, we can

randomly pick a universal hash function h and map the keys of V

to the table and with probability > 1/2, there is no collision at all.

(Intuitively this is because the table is much larger than V .) So if

the use of quadratic space is fine, we are done because

1 We can find a hash function with no collision very efficiently.

If the first hash function we pick from H has collision, pick

another uniformly at random. Unless we are extremely

unlucky, a hash function with no collision can be found after

picking a few randomly.

2 Once we get a hash function with no collision and map keys

of V to the table, Search takes O(1) time in the worst case.

Introduction

Perfect Hashing: A data structure that only uses O(n) space and

can handle Search in O(1) time in the worst case.

The key idea here: Use two levels of Universal Hashing; and make

sure there is no collision at the second level.

Introduction

1 Set up a hash table T of size m = n, called the level-1 hash

table. Pick a hash function h from a universal collection

uniformly at random. As we showed earlier, there will be a lot

of collisions when we map the keys in V to the n slots using

h. We use Vi , i ∈ {0, 1, . . . , n − 1}, to denote the set of keys

mapped to slot i of T , and let ti = |Vi |.

2 Next for each slot i , (key difference) instead of creating a list

at slot i to link the ti keys in Vi , we create a new hash table

Ti of size t2i , called the level-2 hash table at slot i . “Find” a

hash function hi : U → {0, 1, . . . , t2i − 1} to map the ti keys

of Vi to table Ti “with no collision in Ti at all”.

Introduction

First, this two-level hashing data structure can be constructed

efficiently. This is because in Step 2, finding a hash function hi
that has no collision between keys in Vi is “easy”. Just pick a hash

function from a universal collection H from U to {0, 1, . . . , n2i − 1}
and by the theorem on slide 5, with > 1/2 probability there will be

no collision in Ti . So just randomly pick a few and we can find

such a hash function hi efficiently.

Introduction

Second, because there is no collision in level 2, Search takes O(1)

time. Given a key k ∈ U, first use h to map it to a slot in T , say

slot i = h(k). Now we know that k may only appear in the level-2

hash table Ti at slot i of T . Next we use hi to map k to a slot in

Ti , say slot j = hi (k). The only thing left is to check whether Ti [j]

is the key we look for (because there is no collision in Ti so we

don’t need to use chaining in Ti). This clearly takes only constant

many steps, assuming the hash functions can be evaluated in

constant steps.

Introduction

Finally, space wise is this data structure good? It is indeed perfect!

To see this, the total space used by the n + 1 hash tables is

n + t21 + t22 + · · ·+ t2n

Note that t1, . . . , tn are all random variables that depend on the

very first hash function h we picked. Let X = t21 + t22 + · · ·+ t2n
and we show that E

[
X
]
< 2n. Using Markov’s inequality, we get

Pr
[
X ≥ 4n

]
≤ E

[
X
]/

4n < 1/2

So with probability > 1/2, the total space used by all the n + 1

hash tables are no more than 5n. WoW . . .

Introduction

To prove that E
[
X
]
< 2n, we have

X =
n∑

i=1

t2i =
n∑

i=1

(
ti + 2

(
ti
2

))
= n + 2

n∑
i=1

(
ti
2

)
But what is the sum

n∑
i=1

(
ti
2

)
This is exactly the number of pairs of keys ki and kj from V ,

i , j : 1 ≤ i < j ≤ n, that collide, because there are exactly
(t1
2

)
pairs that collide at slot 1, . . .,

(tn
2

)
pairs that collide at slot n.

Introduction

But at the beginning (check the proof of the first theorem), we

have already showed that the expectation of this number is(
n

2

)
· (1/m)

when the hash table has m slots. Here we have m = n because the

size of T is set to be n. As a result, we have

E

[∑
i

t2i

]
= n + 2 ·

(
n

2

)
· (1/n) < 2n

Introduction

