
Analysis of Algorithms I:

Optimal Binary Search Trees

Xi Chen

Columbia University

Introduction



Given a set of n keys K = {k1, . . . , kn} in sorted order:

k1 < k2 < · · · < kn

we wish to build an optimal binary search tree with keys from K to

minimize the expected number of comparisons needed for each

search operation. We consider the following setting slightly simpler

than the one discussed in Section 15.5 of the textbook. Assume we

know in advance that for each search operation in the future, the

key k to search for always comes from K and satisfies

k = ki with probability pi , for each i = 1, 2, . . . , n;

Introduction



This implies that
n∑

i=1

pi = 1

Let T be a binary search tree with keys k1, . . . , kn. So T has n

nodes and each node is labelled with a key ki . We use depthT (ki )

to denote the depth of the node labelled with ki plus one (so if

kr is the key at the root, then we set depthT (kr ) = 1 instead of 0).

It is clear that if the key we search for is k = ki , then the number

of comparisons needed is exactly depthT (ki ).

Introduction



Thus, the expected number of comparisons is

n∑
i=1

pi · depthT (ki )

and we will refer to it as cost(T ), the cost of tree T . The goal is

then to find an optimal binary search tree T for K = {k1, . . . , kn}
with the minimum cost. As usual, we start by describing a dynamic

programming algorithm that computes the minimum cost. It can

be then used to construct an optimal BST.

Introduction



Note the difference between this problem and Huffman trees. In

the latter we only need to build a tree (instead of a binary search

tree) in which each leaf is labelled with a character. Also in

Huffman trees, the cost of a tree is the expected depth of leaves.

Here the cost is the expected depth over all nodes.

Introduction



Again, we use dynamic programming. To this end, we first need to

figure out the optimal substructure of the problem, which will then

lead us to a recursive formula that reduces the problem to smaller

subproblems. Here the first choice to make, when constructing a

binary search tree for K , is which key to put at the root of the tree.

Introduction



Assume the key at the root is kr . Denote the tree by T , its left

subtree by TL, and its right subtree by TR . We know TL has keys

k1, . . . , kr−1 and TR has keys kr+1, . . . , kn. Then for any ki , i < r :

depthT (ki ) = depthTL
(ki ) + 1

For any kj , j > r , we have:

depthT (kj) = depthTR
(kj) + 1

Introduction



As a result, we have

cost(T )

=
n∑

i=1

pi · depthT (ki )

= 1 · pr +
∑
i<r

pi ·
(
depthTL

(ki ) + 1
)

+
∑
j>r

pj ·
(
depthTR

(kj) + 1
)

= cost(TL) + cost(TR) +
n∑

i=1

pi = 1 + cost(TL) + cost(TR)

Introduction



This equation implies the following: Denote by cr−1 the cost of an

optimal BST with keys k1, . . . , kr−1, and by c ′r+1 the cost of an

optimal BST with keys kr+1, . . . , kn. Then the minimum cost of a

binary search tree for K , that has kr as its root, is exactly

1 + cr−1 + c ′r+1

This gives us the following recursive algorithm.

Introduction



Naive Optimal Binary Search Tree:

1 For r = 1 to n do

2 make a recursive call to compute the cost of an

optimal BST for {k1, . . . , kr−1}; store it in C [r − 1]

Note when r = 1, the cost of an empty BST is 0

3 make a recursive call to compute the cost of an

optimal BST for {kr+1, . . . , kn}; store it in C ′[r + 1]

Note when r = n, the cost of an empty BST is 0

4 output

1 + min
r=1,...,n

[
C [r − 1] + C ′[r + 1]

]

Introduction



However, the worst-case running time of this naive recursive

algorithm is exponential. Note that there are only about Θ(n2)

subproblems we make recursive calls to solve in its recursion tree.

The reason why its recursion tree is huge is because we solve the

same subproblem over and over.

Introduction



Again, we use dynamic programming to give a more efficient

algorithm: maintain a table to store solutions to subproblems

already solved; and solve all the subproblems one by one, using

the recursive formula we found earlier, in an appropriate order.

Introduction



For this purpose, we introduce the following notation. We let

pi ,j =
∑

i≤k≤j
pk , for any 1 ≤ i ≤ j ≤ n

Given p1, . . . , pn, we can compute all pi ,j ’s in Θ(n2) time (how?).

Introduction



Given i , j : 1 ≤ i ≤ j ≤ n, we use ci ,j to denote the minimum cost

of an optimal binary search tree with keys ki , ki−1, . . . , kj . For any

i ∈ [n], we also set ci ,i−1 = 0 for convenience (meaning that an

empty binary search tree has cost 0). Then to obtain ci ,j , we have:

Introduction



1 If the root is ki , then the minimum cost is

0 + pi + (ci+1,j + pi+1,j) = ci ,i−1 + ci+1,j + pi ,j as ci ,i−1 = 0

2 If the root is kj , then the minimum cost is

(ci ,j−1 + pi ,j−1) + pj + 0 = ci ,j−1 + cj+1,j + pi ,j as cj+1,j = 0

3 If the root is kr , where r : i < r < j , the minimum cost is

(ci ,r−1 + pi ,r−1) + pr + (cr+1,j + pr+1,j) = ci ,r−1 + cr+1,j + pi ,j

To summarize, we get the following recursive formula:

ci ,j = pi ,j + min
i≤r≤j

[
ci ,r−1 + cr+1,j

]

Introduction



This gives us the following algorithm:

1 compute p[i , j ] for all i , j : 1 ≤ i ≤ j ≤ n

2 create a table c[i , j ], where i , j : 1 ≤ i ≤ j + 1 ≤ n

3 set c[i , i − 1] = 0 and c[i , i ] = pi for all i ∈ [n]

4 for k from 1 to n − 1 do

5 for i from 1 to n − k do

6 set j = i + k and set

c[i , j ] = p[i , j ] + min
i≤r≤j

[
c[i , r − 1] + c[r + 1, j ]

]
7 output c[1, n]

Introduction



Here we fill up the table in the following order. At the beginning,

all entries with j − i = −1 (empty tree) and j − i = 0 (tree with

one single node) are ready. Then we work on entries with

j − i = 1, j − i = 2, . . . , j − i = n − 1.

Every time we work on an entry c[i , j ] with j − i = k , we know

that all the entries c[i ′, j ′] with j ′ − i ′ < k have already been

computed. Note that the recursive formula we use to compute

c[i , j ] only involves entries c[i ′, j ′] with j ′ − i ′ < k . So they are all

ready, and we can compute c[i , j ] in time O(j − i). It is easy to

check that the total running time is Θ(n3).

Introduction


