
Analysis of Algorithms I:

Minimum Spanning Tree

Xi Chen

Columbia University

Introduction

We discuss the Minimum Spanning Tree problem. The input of

the problem is an undirected and connected weighted graph

G = (V ,E) with weight function w : E → R

For convenience, assume all the weights are nonnegative (though

this assumption is not necessary). The goal is to find a spanning

tree T of G (i.e., a tree T with n − 1 edges from E such that all

n = |V | vertices are connected) with minimum total weight:∑
(u,v)∈T

w(u, v)

Introduction

So MST is an optimization problem. We start with a “generic”

method that grows a spanning tree from scratch by adding one

edge at a time. We then present two algorithms that implement

the generic method: Kruskal’s algorithm and Prim’s algorithm.

Introduction

Let A ⊆ E denote a set of edges. Then we say A is safe if there

exists a minimum spanning tree T of G such that A is a subset

of T . This gives us the following generic MST method:

1 set A = ∅ (A is clearly safe at the beginning)

2 while |A| < n − 1 and thus, does not form a spanning tree

3 find (u, v) ∈ E − A s.t. A ∪
{

(u, v)
}

remains safe

4 set A = A ∪
{

(u, v)
}

This method is clearly correct by the definition of “safe” :), but is

meaningless if we don’t know how to find such a (u, v) efficiently.

Introduction

So here comes the Cut Theorem that tells us how to find such an

edge (u, v) efficiently. We need the following notation: A cut

(S ,V − S) of an undirected graph G = (V ,E) is a partition of V ,

where S denotes a nonempty subset of V . We say an edge

(u, v) ∈ E crosses (S ,V − S) if one of its endpoints is in R and

the other is in V − R. We say an edge (u, v) ∈ E is a light edge

crossing a cut (S ,V − S) if its weight is the minimum among all

edges that cross (S ,V − S). (Note that given a cut (S ,V − S),

there might be multiple light edges.)

Introduction

Theorem

Let A ⊆ E be a safe set of edges. Let (S ,V − S) be any cut such

that no edge of A crosses it. Then for any light edge (u, v)

crossing (S ,V − S), we have A ∪
{

(u, v)
}
must be safe as well.

Introduction

We prove the Cut theorem using the exchange argument. Before

the proof, we need the following simple lemma:

Lemma

Let T be a spanning tree of G and (u, v) ∈ E − T. Then adding

(u, v) to T forms a unique cycle:

(u, v) + the unique path between u and v in T

Removing any edge (u′, v ′) ∈ T on the cycle gives us a new

spanning tree T ′ of G. The total weight of T ′ is

total weight of T + w(u, v)− w(u′, v ′)

Introduction

Now we prove the Cut theorem. As A is safe, by definition there is

an MST T of G that includes A. If (u, v) is an edge in T , then we

are done. Otherwise, the plan is to exchange (u, v) with an edge in

T so that the new tree T ′ remains an MST of G .

Introduction

To see this, using the previous lemma, we know there is a unique

cycle in T ∪
{

(u, v)
}

consists of (u, v) and the unique path

between u and v in T . Also notice that (u, v) crosses (S ,V − S)

so that u, v are on opposite sides of the cut (S ,V − S). There

must be at least one edge on the path between u and v in T ,

which also crosses (S ,V − S) (why?). Let (x , y) be any such edge.

Then we must have (x , y) /∈ A because A does not cross the cut.

Introduction

To finish the proof, we exchange (x , y) with (u, v) to get a new

spanning tree T ′ from T . The total weight of T ′ is

total weight of T + w(u, v)− w(x , y) ≤ total weight of T

because (u, v) is a light edge of (S ,V − S) and thus,

w(u, v) ≤ w(x , y)

It follows that T ′ must be a minimum spanning tree as well. The

theorem follows because A ∪
{

(u, v)
}
⊂ T ′ (why?).

Introduction

Now we present two algorithms based on the “generic” method.

Both algorithms grow an MST from A = ∅ by adding edges to A

one by one, while maintaining the property that A is safe. As we

will see, both algorithms have a flavor of greedy algorithms.

Introduction

Kruskal’s algorithm. Let A be a safe set of edges. Because it is

safe, there can be no cycles and thus, edges in A must form a

forest (“multiple” trees) whose vertices are all those of the given

graph. For example, A = ∅ at the beginning, which can be viewed

as a forest of n trees, each consists of a vertex v ∈ V only. For

each round, Kruskal’s algorithm finds an edge (u, v), of least

weight, that connects two trees of the forest:

1 set A = ∅
2 while |A| < n − 1 do

3 find an edge (u, v), of minimum weight, that connects

two trees of the forest formed by edges in A

4 set A = A ∪
{

(u, v)
}

Introduction

The correctness of Kruskal follows from the cut theorem (how?).

An efficient implementation of Kruskal’s algorithm is the following.

Start by setting A = ∅ and sorting the m = |E | edges e1, . . . , em
in nondecreasing order of weight:

w(e1) ≤ w(e2) ≤ · · · ≤ w(em)

We process the edges in order of weight: e1, e2, . . . , em. For the

ith round, letting ei = (u, v), we check if u and v are in different

trees in the current forest formed by A:

1 same tree, cannot add (u, v) to A (why?)

2 different trees, add (u, v) to A

Introduction

It is easy to show that if ei = (u, v) and u, v lie in different trees

(and thus, we add (u, v) to A), it must be the case that (u, v) is

an edge, of least weight, that connects two trees in the current

forest. This is because for every ej with j < i and w(ej) ≤ w(ei):

either ej ∈ A already; or the two endpoints of ej belong to the

same tree (why?). As a result, we know that after each round, A

remains safe and it is a safe set of edges upon termination. But is

it possible that, after going through all edges in the nondecreasing

order, A is still not a spanning tree? i.e., |A| < n − 1? Prove that

this cannot happen and A must be a spanning tree upon

termination and thus, a minimum spanning tree.

Introduction

The implementation of Kruskal’s algorithm uses a disjoint-set data

structure. It maintains a collection of disjoint sets of vertices: each

set contains the vertices in one tree of the current forest. So at the

beginning, the data structure consists of n sets: {v} for each

v ∈ V . A disjoint-set data structure supports the following two

operations: Find-Set (u) returns a representative element from the

set that contains u (so we can determine whether two vertices u

and v belong to the same tree by comparing Find-Set (u) and

Find-Set (v)). Union (u, v) unites the two sets that contain u and

v . After adding (u, v) to A (when u, v lie in different trees of the

current forest), we can call Union (u, v) to combine the two sets of

vertices: the set of vertices of u’s tree and that of v ’s tree.

Introduction

Kruskal (G ,w):

1 set A = ∅
2 for each vertex v ∈ G do

3 Make-Set (v) (at the beginning there are n singleton sets)

4 sort the edges into nondecreasing order by their weights

5 for each edge (u, v) ∈ G in the nondecreasing order

6 if Find-Set (u) 6= Find-Set (v)

7 A = A ∪
{

(u, v)
}

8 Union (u, v)

Introduction

The running time of Kruskal depends on the implementation of the

disjoint-set data structure: n Make-Set, m Find-Set and n Union

operations. If we use the linked-list representation discussed in

Section 21.2, together with the weighted-union heuristic, each

Make-Set costs O(1), each Find-Set costs O(1) and all the Union

operations take O(n lg n) in total. So the total running time is

Θ(m lgm) for sorting plus O(m + n lg n), which is Θ(m lgm) =

Θ(m lg n) (why?). The total running time is clearly dominated by

the sorting step. If the edges are already sorted, then using the

forest representation discussed in Section 21.3 and 21.4 would give

us an almost linear-time algorithm.

Introduction

Prim’s algorithm: Another example of Greedy Algorithms. Also

you may find its structure similar to BFS, DFS and Dijkstra’s

algorithm (for single-source shortest path to be discussed next).

Let r ∈ V be an arbitrary vertex in the graph and set A = ∅ and

S = {r} at the beginning, where A is a set of edges and S is a set

of vertices. Prim’s algorithm maintains the following invariant:

Prior to each iteration, A is a safe set and its edges form a tree

that has vertices S and is rooted at r . For example, A = ∅ is

clearly safe and it can be viewed as an empty tree rooted at r .

Introduction

For each round, Prim’s algorithm uses the cut theorem to grow A,

a safe set of edges that form a tree rooted at r , as follows. It finds

a light edge (u, v) crossing (S ,V − S), with u ∈ S and v ∈ V − S ,

and adds (u, v) to A. By the cut theorem, it is easy to show that

A ∪
{

(u, v)
}

remains safe (why)

Moreover, we have

edges in A ∪
{

(u, v)
}

still form a tree rooted at r

but the new tree has vertices S ∪ {v}. So the invariant holds.

Introduction

To summarize, here is Prim’s algorithm:

1 let r be a vertex of G ; set A = ∅ and S = ∅
2 while |A| < n − 1 do

3 find a light edge (u, v) crossing (S ,V − S), v ∈ V − S

4 set A = A ∪
{

(u, v)
}

and S = S ∪ {v}

Introduction

Correctness of Prim’s algorithm can be proved using the Cut

theorem and induction. A naive implementation is then for each

round, enumerate all edges that cross (S ,V − S) to find a light

edge, which takes time Θ(nm). A more efficient implementation

is the following:

Introduction

1 Each vertex v ∈ V − S has two additional attributes v .key

and v .π. (We do not care the two attributes of those vertices

already in S .) For each v ∈ V − S , let u = v .π, then

w(v .π, v) = v .key = min
u∈S

w(u, v)

2 We maintain a priority queue Q that contains all vertices in

V − S , sorted based on the attribute v .key of the vertices.

Introduction

Suppose this is what we have at the moment, and A is a safe set

that forms a tree rooted at r and connects S . Then it is easy to

find a light edge crossing (S ,V − S): Simply call Extract-Min (Q)

to get a vertex in Q with the minimum key, say v ∈ Q (note that

Extract-Min also removes v from Q); then (u, v) must be a light

edge, where u = v .π. Now can we continue, after adding (u, v) to

A and v to S? No! since the new S now contains v , we need to

update the keys of those vertices in Q: recall that we need

w(v .π, v) = v .key = min
u∈S

w(u, v), for each v ∈ V − S

We now present details of Prim’s algorithm:

Introduction

MST-Prim (G ,w , r), where r is a vertex in G

1 set A = ∅ and S = {r}
2 for each v ∈ V − {r} do

3 set u.key = w(r , v) and u.π = r

4 Priority-Queue-Init (Q,V − {r})
5 while Q is nonempty do

6 u = Extract-Min (Q)

7 for each v ∈ adj[u] do

8 if v ∈ Q and v .key > w(u, v) then

9 set v .π = u and Decrease-Key (v ,w(u, v))

Introduction

To see its correctness, check that by the end of each while-loop,

the two attributes of every vertex v in Q still satisfy:

w(v .π, v) = v .key = min
u∈S

w(u, v)

The time complexity of the algorithm depends on the data

structure we use for Q: its total running time is O(n + m) plus the

time needed for the initialization of Q plus the time needed for n

Extract-Min and m Decrease-Key. If we use Heap (or Red-Black

tree), total running time is O(n + m + (n + m) lg n) = O(m lg n).

If we use Fibonacci Heap (which we did not cover, Chapter 19),

then each Extract-Min takes O(lg n) but each Decrease-Key takes

O(1) amortized time, so the total running time is O(m + n lg n).

Introduction

