
Analysis of Algorithms I:

Asymptotic Notation, Induction, and MergeSort

Xi Chen

Columbia University

Induction and MergeSort



We continue with two more asymptotic notation: o(·) and ω(·).

Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

o(g(n)) =
{

f (n) : for any constant c > 0, there exists an n0 > 0

s.t. 0 ≤ f (n) < c · g(n) for all n ≥ n0

}
Usually we use

f (n) = o(g(n)) to denote f (n) ∈ o(g(n)).

It means asymptotically f (n) is dominated by g(n), or the order of

f (n) is strictly less than that of g(n).

Induction and MergeSort



Note the crucial difference between O(g(n)) and o(g(n)): “there

exists a constant c > 0” versus “for any constant c > 0”. Usually

f (n) = o(g(n)) can be proved using

lim
n→∞

f (n)

g(n)

when the limit exists.

Induction and MergeSort



For example,

lim
n→∞

n1.9

n2
= 0

By the definition of limits, this implies that for any constant c > 0,

there exists an n0 > 0 such that

n1.9

n2
< c , for all n ≥ n0.

It follows from the definition of o(n2) that n1.9 = o(n2), and in

general, na = o(nb) for all constants a, b : 0 < a < b.

Induction and MergeSort



Similarly, we have for any positive constants a > 1 and b, c > 0,

lim
n→∞

nb

an
= 0 ⇒ nb = o(an) (1)

lim
n→∞

lgc n

nb
= 0 ⇒ lgc n = o(nb) (2)

Here the limit in (2) follows from the one in (1), while (1) can be

proved using the l’Hopital’s rule.

Induction and MergeSort



As a result, we have

lg n < lg2 n < · · · < n < n lg n < n2 < n3 < · · · < 2n < 3n < n!

where < means little-o or “is asymptotically dominated by”. Also

read Section 3.2 if you are not familiar with common functions like

the floors b·c, ceilings d·e, polynomials, exponentials or logarithms.

Induction and MergeSort



Finally, let f (n) and g(n) are functions that map n = 1, 2, . . . to

real numbers, then

ω(g(n)) =
{

f (n) : for any constant c > 0, there exists an n0 > 0

s.t. 0 ≤ c · g(n) < f (n) for all n ≥ n0

}
Usually we use

f (n) = ω(g(n)) to denote f (n) ∈ ω(g(n)).

Check that f (n) = ω(g(n)) if and only if g(n) = o(f (n)). It means

that f (n) dominates g(n) asymptotically.

Induction and MergeSort



In the last class, we described InsertionSort and showed that its

worst-case running time is Θ(n2). However, we did not prove its

correctness. Check Figure 2.2 for the intuition why it is correct. To

give a formal proof, we use (mathematical) induction.

Induction and MergeSort



Induction is usually used to prove that a mathematical statement,

involving a parameter n, holds for all n = 1, 2, . . . It has 3 steps:

1 Basis: Check that the statement holds for n = 1.

2 Induction Step: Prove that for any k ≥ 2, if the statement

holds for 1, 2, . . . , k − 1, then it also holds for k .

3 Conclude that, by induction, the statement holds for 1, 2, . . .

Here is how to get the conclusion from the Basis and Induction

Step: Let n ≥ 1 be any positive integer. Then from the Basis, the

statement holds for 1. Next by applying the Induction Step for

k = 2, we know that the statement holds for 1 and 2. Keep

applying the Induction Step for n − 1 times, we know that the

statement holds for 1, 2, . . . , n, and this finishes the proof.

Induction and MergeSort



In the Induction Step, we assume that the statement holds for

1, 2, . . . , k − 1. This assumption is usually referred to as the

Inductive Hypothesis. The goal of the Induction Step is then to

use the Inductive Hypothesis to prove the statement for k . Here is

an example:

Induction and MergeSort



Theorem

For any n ≥ 1, we have 12 + 22 + · · ·+ n2 = n(n + 1)(2n + 1)
/

6.

Proof.

1 Basis: Easy to check that the equation holds for n = 1.

2 Induction Step: Let k ≥ 2 be any integer, and assume the

equation holds for 1, 2, . . . , k − 1 (the Inductive Hypothesis).

In particular, this implies that it holds for k − 1. Thus,

12 + · · ·+ k2 = (12 + · · ·+ (k − 1)2) + k2

= (k − 1)k(2k − 1)/6 + k2

= k(k + 1)(2k + 1)/6

3 Conclude that the equation holds for any n = 1, 2, . . .

Induction and MergeSort



Now back to InsertionSort, we prove the following theorem:

Theorem

Let n ≥ 1 be a positive integer. If A = (a1, . . . , an) is the input

sequence of InsertionSort, then after the ith loop, where

i = 1, 2, . . . , n, the list B is of length i and is a nondecreasing

permutation of the first i integers of A.

The intuition of this statement comes from the example of Figure

2.2 in the textbook. The correctness of InsertionSort clearly follows

from this theorem.

Induction and MergeSort



Proof.

1 Basis: The statement holds for i = 1 because in the first loop,

we simply insert the first integer a1 into the empty list B.

2 Induction Step: Assume the statement holds for all

i : 1 ≤ i ≤ k − 1, for some k : 2 ≤ k ≤ n. In particular, after

round k − 1, B is of length k − 1 and is a nondecreasing

permutation of a1, . . . , ak−1. Now in loop k, InsertionSort

finds the first integer in B smaller than ak and inserts ak after

that integer. As a result, the list B after round k is of length

k − 1 + 1 = k and is a nondecreasing permutation of

a1, . . . , ak−1, ak .

3 Conclude that the statement holds for 1, 2, . . . , n.

Induction and MergeSort



Note that the induction step in the last proof only works for

k : 2 ≤ k ≤ n because the algorithm only has n rounds. As a

result, we conclude that the statement holds for 1, 2, . . . , n

(exactly what we need), instead of 1, 2, . . .

Induction and MergeSort



Next we describe MergeSort, a sorting algorithm that is

asymptotically faster than InsertionSort. It is an example of the

Divide-and-Conquer technique:

1 Divide the problem into smaller subproblems

2 Conquer (or solve) each of the subproblems recursively

3 Combine the solutions to the subproblems to get a solution to

the original problem

Induction and MergeSort



MergeSort (A), where A = (a1, . . . , an) is a sequence of n integers

1 If n = 1, return

2 MergeSort (a1, a2, . . . , adn/2e)

3 MergeSort (adn/2e+1, . . . , an−1, an)

4 Merge the two sequences obtained to produce a sorted

permutation of the n integers in A

Induction and MergeSort



An implementation of line 4 can be found on page 31 of the

textbook. It takes time Θ(n) (or in other words, cn steps for some

positive constant c). And one can use induction (page 32 and 33)

to show that, if the two sequences we obtain from the two

recursive calls are sorted sequences of a1, . . . , adn/2e and

adn/2e+1, . . . , an, respectively, then the Merge subroutine outputs a

sorted permutation of a1, . . . , an.

Induction and MergeSort



Practice the use of induction to show that

Theorem

MergeSort outputs correctly for sequences of length n = 1, 2, . . .

Induction and MergeSort



To understand the performance of MergeSort, we use T (n) to

denote the number of steps it takes over sequences of length n.

We get the following recurrence:

T (1) = Θ(1) usually let Θ(1) denote a positive constant

T (n) = Θ(1) + T (dn/2e) + T (bn/2c) + Θ(n) for all n ≥ 2

Induction and MergeSort



For now, we focus the analysis on powers of 2: n = 2k for some

integer k ≥ 0. We will see later that this suffices to understand the

asymptotic complexity of T (n). For powers of 2, we have

T (1) = Θ(1)

T (n) = 2T (n/2) + Θ(n)

Induction and MergeSort



Putting the constants back gives us

T (1) = c1 (3)

T (n) = 2T (n/2) + c2n (4)

for some positive constants c1 and c2.

Induction and MergeSort



Let n = 2k . Then start with T (n) and substitute it using (4):

T (n) = 2T (n/2) + c2n

Next, expand it further by substituting T (n/2) using (4):

T (n/2) = 2T (n/4) + c2n/2. We get

T (n) = 2(2T (n/4) + c2n/2) + c2n = 4T (n/4) + c2n + c2n

Repeat it for k rounds, and we get the so-called recursion tree in

Fig 2.5 on page 38. T (n) is the sum of all numbers on the nodes:

T (n) = c2nk + c1n = c2n lg n + c1n

Induction and MergeSort



To see why this gives us T (n) = Θ(n lg n), we use the fact that

T (n) is monotonically nondecreasing over n = 1, 2, . . . (Try to

prove it using induction). Given any integer n ≥ 1, we let n′

denote the largest power of 2 that is smaller than n. This implies

that n′ < n ≤ 2n′ and by the monotonicity of T , we have

T (n′) ≤ T (n) ≤ T (2n′)

Because both n′ and 2n′ are powers of 2, from the last slide,

T (n) ≤ T (2n′) = 2c2n′ lg(2n′) + 2c1n′ < 2c2n lg(2n) + 2c1n

T (n) ≥ T (n′) = c2n′ lg n′ + c1n′ ≥ c2(n/2) lg(n/2) + c1(n/2)

From these two inequalities, it is easy to show T (n) = Θ(n lg n).

Induction and MergeSort



From the analysis, we see that c1 and c2 do not affect the

asymptotic complexity of T (n). This is why we can suppress them

and denote the running time of line 1 and 4 by Θ(1) and Θ(n),

respectively, and we do not care what they are exactly in the

analysis.

Induction and MergeSort



However, the coefficient 2 of T (n/2) cannot be suppressed.

Changing it would change the order of T (n). In particular, if we

change it to 3, then the recursion tree would look different: every

internal node would have 3 children instead of 2. This would

change the order of T (n) significantly. We will use an example:

Strassen’s algorithm for matrix multiplication, to demonstrate the

importance of this constant in the next class.

Induction and MergeSort


