
Analysis of Algorithms I:

Edmonds-Karp and Maximum Bipartite Matching

Xi Chen

Columbia University

Introduction

Last week we discussed the Ford-Fulkerson method:

1 set f to be the zero flow

2 while there exists a simple path p from s to t in Gf do

3 use p to modify f and increase its value by cf (p)

We proved the max-flow min-cut Theorem and it implies that

when Ford-Fulkerson stops (meaning there is no path p from s to

t or t is not reachable from s in Gf , the residual graph with

respect to the current flow f), we have found a max flow f .

Introduction

However, the Ford-Fulkerson method has very bad worst-case

running time. In this class we show that if the path from s to t

we pick in each while-loop is not just an arbitrary path from s to

t, but one that minimizes the number of edges (or hops), then

the number of while-loops is bounded from above by O(nm).

Introduction

Edmonds-Karp:

1 set f to be the zero flow

2 while t is reachable from s in the residual graph Gf do

3 find a shortest path (number of edges!) p from s to t

4 use p to modify f and increase its value by cf (p)

Clearly we can find a shortest path from s to t using BFS in

time O(n + m) = O(m). Here the equation follows from the

assumption that every vertex v ∈ V is reachable from s in G so

m ≥ n − 1. If we can show that the number of while-loops is

bounded by O(nm), then the total running time is O(nm2).

Introduction

Before the proof, we start with some notation. Given a flow f in

G , we use Gf to denote its residual graph and cf (u, v) > 0 to

denote the residual capacity of an edge (u, v) in Gf . Also recall

that (u, v) in Gf implies that either (u, v) ∈ E or (v , u) ∈ E .

Given two vertices u and v , we let δf (u, v) denote the shortest

path distance from u to v in Gf : the minimum length (or number

of hops) of a path from u to v . (Again, it only depends on edges

in Gf and has nothing to do with their residual capacities.)

Introduction

Basic observation: Let p be an augmenting path from s to t

in Gf . Recall that capacity of p is

cf (p) = min
{

cf (u, v) : (u, v) is on p
}
> 0

We say that an edge (u, v) on p is critical if cf (u, v) = cf (p). It

is easy to show that after augmenting f using p, (u, v) disappears

from Gf . To see this, we let f ′ denote the new flow in G after

augmenting f using p. Consider the following two cases:

Introduction

1 If (u, v) is a forward edge, meaning that (u, v) ∈ G and

cf (u, v) = c(u, v)− f (u, v) > 0, then we have

f ′(u, v) = f (u, v) + cf (p) = f (u, v) + cf (u, v) = c(u, v)

2 If (u, v) is a reverse edge, meaning that (v , u) ∈ G and

cf (u, v) = f (v , u) > 0, then we have

f ′(v , u) = f (v , u)− cf (p) = f (v , u)− cf (u, v) = 0

In both cases, it is clear that (u, v) is no longer an edge in Gf ′ .

Also prove by yourself the following claim: If (u, v) is not an edge

in Gf but reappears in Gf ′ , then (v , u) must be on the path p.

Introduction

We start the proof with the following crucial lemma:

Lemma

If we run Edmonds-Karp on G = (V ,E), then for every vertex

v ∈ V , the shortest-path distance δf (s, v) in the residual graph

Gf increases monotonically with each flow augmentation.

Let f be a flow and p be a shortest path from s to t in the residual

graph. Let f ′ denote the new flow after augmenting f using p. Let

v be a vertex in V , and we assume for contradiction that

δf ′(s, v) < δf (s, v) (1)

Without loss of generality, we let v be a vertex with the minimum

δf ′(s, v) among all vertices that satisfy (1).

Introduction

Let p = s u → v denote a shortest path from s to v in Gf ′ .

So (u, v) is an edge in Gf ′ . We have

δf ′(s, u) = δf ′(s, v)− 1

The way we chose v implies that the distance from s to u did not

decrease: δf ′(s, u) ≥ δf (s, u). We claim that (u, v) cannot be an

edge in Gf : Otherwise, if (u, v) is in Gf , then

δf ′(s, v) = δf ′(s, u) + 1 ≥ δf (s, u) + 1 ≥ δf (s, v)

contradicting with our assumption (1).

Introduction

Now how come (u, v) /∈ Gf but (u, v) ∈ Gf ′? By an earlier lemma,

this can only happen if (v , u) is on p, a shortest path from s to t

in Gf . Note that u is the successor of v on p. This implies (why?)

δf (s, u) = δf (s, v) + 1

To summarize, we have

δf (s, v) = δf (s, u)− 1 ≤ δf ′(s, u)− 1 = δf ′(s, v)− 2

contradicting with our assumption (1).

Introduction

We prove that the total number of while-loops in Edmonds-Karp

is O(nm). First note that there are at most 2m pairs (u, v) of

vertices that can appear as an edge in a residual graph during the

execution of Edmonds-Karp: either (u, v) ∈ E or (v , u) ∈ E .

Second, note that in each while-loop, at least one edge on the

augmenting path p must be critical, by definition. Finally we will

show that for each of the 2m pairs (u, v) that may appear as an

edge in a residual graph, it can serve as a critical edge for at most

n/2 times, during the execution of Edmonds-Karp. It follows that

the number of while-loops is no more than

2m · (n/2) = O(nm)

Introduction

To prove the last claim, we note that whenever (u, v) is a critical

edge, it disappears from the residual graph after augmenting the

flow. So before (u, v) becomes critical again, it has to first

reappear in the residual graph. We show that from the time when

(u, v) is critical (and disappears) to the time when it reappears in

the residual graph, the distance from s to u in the residual graph

must increase by at least 2. It then follows that (u, v) can serve as

a critical edge for at most n/2 times because at any time, δf (s, u)

is either ≤ n − 1 or +∞. Once δf (s, u) becomes +∞, it remains

+∞ ever after and (u, v) can never be a critical edge again.

Introduction

Now assume (u, v) is a critical edge in the ith while-loop and

reappears again in the residual graph after the jth while-loop,

where i < j . Let f denote the flow at the beginning of the ith

while-loop and let f ′ denote the flow at the beginning of the jth

while-loop. Since (u, v) is critical in the ith while-loop, we know

(u, v) is on the augmenting path, a shortest path from s to t in

Gf . This implies that δf (s, v) = δf (s, u) + 1. On the other hand,

because (u, v) reappears after the jth while-loop, (v , u) must be

on the augmenting path used in the jth while-loop, a shortest path

from s to t in Gf ′ . This implies δf ′(s, u) = δf ′(s, v) + 1 and thus,

δf ′(s, u) = δf ′(s, v) + 1 ≥ δf (s, v) + 1 = δf (s, u) + 2

Introduction

So far we have been working on a seemingly very basic version

of the maximum flow problem: only the edges have capacities

and no antiparallel edges are allowed (i.e., (u, v) ∈ E implies

(v , u) /∈ E). It turns out that many variants and extensions of

maximum flow, some of which may seem much more difficult to

solve, can all be easily reduced to this basic setting:

1 Antiparallel edges

2 Vertex capacities (Exercise in HW 7)

3 Multiple sources and sinks (Exercise in HW 7)

Introduction

First, any algorithm for finding a maximum flow in the basic

setting can be used to deal with graphs with antiparallel edges.

To see this, we modify G to get G ′ as follows: For every two

antiparallel edges (u, v) and (v , u) ∈ E , add a new vertex w and

replace (u, v) with (u,w) and (w , v). Also set c(u,w) = c(w , v)

to be the capacity c(u, v) of the original edge (u, v). It is clear

that the new graph G ′ has no antiparallel edges and thus, is

reduced. It can be shown that G ′ is essentially equivalent to G : a

maximum flow in G ′ has the same value as a maximum flow in G .

Moreover, there is clearly a one-to-one correspondence between

flows in G ′ and flows in G . Given any maximum flow in G ′, we

can use to construct efficiently a maximum flow in G .

Introduction

Second, to work with multiple sources s1, . . . , sk and multiple sinks

t1, . . . , t`, we only need to add a new supersource vertex s and a

new supersink vertex t, an edge from s to each si and an edge from

each ti to t, all with capacity c(s, si) = c(ti , t) = +∞. Denote the

new graph by G ′. One of the exercises asks you to show that a

maximum flow in G ′ has the same value as a maximum flow in G .

Also given any maximum flow in G ′, one can construct a maximum

flow in G efficiently. So again, any algorithm for the basic setting

can be used to deal with multiple sources and sinks. An exercise in

HW 7 asks you to work on the extension with vertex capacities.

Introduction

Moreover, many combinatorial problems can be cast as (or reduced

to) maximum-flow problems, and we can use a maximum flow

algorithm to solve them. The correctness of many such reductions

crucially uses the following integrality theorem: Given a flow f in

G = (V ,E), we say f is integer-valued if f (u, v) is a nonnegative

integer for all edges (u, v) in G .

Theorem

If the capacity function c is integer-valued, then there exists at

least one maximum flow that is integer-valued. Moreover, the

Ford-Fulkerson method (or any of its implementations, e.g.,

Edmonds-Karp) outputs a maximum and integer-valued flow.

Introduction

It is clear that not every maximum flow is integer-valued, even if

all the capacities are integers. The theorem only says that, if the

capacities are integers, then there is at least one integer-valued

maximum flow and Ford-Fulkerson finds one such flow. The proof

uses induction, by showing that at the beginning of every while

loop of Ford-Fulkerson, f is integer-valued. It is easy to see that

if f is integer-valued at the beginning of a while-loop, then the

residual capacities of edges in Gf are integers as well. Thus, the

capacity of any augmenting path in Gf is an integer and the

augmentation results in a new integer-valued flow.

Introduction

We present an application of maximum flow: Maximum Bipartite

Matching. Some notation: An undirected graph G = (V ,E) is

bipartite if V can be partitioned into L ∪ R such that L and R

are disjoint and every edge has one vertex from L and one from

R. Given a bipartite undirected graph G = (V ,E), a matching is

a subset of edges M ⊆ E such that every vertex v ∈ V is incident

to at most one edge in M. A maximum matching is a matching

of maximum cardinality. In the Maximum Bipartite Matching

problem, we are given a bipartite undirected graph G = (V ,E),

and are asked to find a maximum matching in G .

Introduction

We give a reduction from Maximum Bipartite Matching to the

maximum flow problem as follows: Given any bipartite graph

G = (V ,E), we construct a directed graph G ′ = (V ′,E ′) as

follows: Add two new vertices source s and sink t so that

V ′ = V ∪ {s, t}

Let V = L ∪ R be the vertex partition of G , then replace each

undirected edge by a directed edge from L to R; For each u ∈ L

add a directed edge (s, u) and for each v ∈ R add (v , t).

Introduction

To summarize, E ′ is the following union:

{
(s, u) : u ∈ L

}
∪
{

(u, v) : (u, v) ∈ E , u ∈ L
}
∪
{

(v , t) : v ∈ R
}

So |E ′| = |E |+ 2|V | = Θ(|E |). The latter follows from the

assumption that every vertex in G has deg ≥ 1 so 2|E | ≥ |V |.
To complete the construction of a maximum flow instance, we

also set the capacity of each edge in E ′ to be 1.

Introduction

It is easy to show that

Lemma (Flow-Matching)

If M is a matching in G , then there is an integer-valued flow f in

G ′ with value |f | = |M|. Conversely, if f is an integer-valued flow

in G ′, then there is a matching M in G with |M| = |f |.

The first part is trivial. We prove the second part.

Introduction

Given an integer-valued flow f in G ′, we let

M =
{

(u, v) : (u, v) ∈ E , u ∈ L, v ∈ R and f (u, v) > 0
}

(2)

First we show that M is a matching. To see this, because f is

integer-valued, we have f (u, v) = 1 if (u, v) ∈ M. Now if there is

a vertex incident to more than one edge in M:

1 If this is a vertex u ∈ L, then the in-flow of u must be

≥ 2 and thus, f (s, u) ≥ 2 > 1 = c(s, u), contradiction.

2 If this is a vertex v ∈ L, then the out-flow of v must be

≥ 2 and thus, f (v , t) ≥ 2 > 1 = c(v , t), contradiction.

Prove by yourself that |M| = |f |.

Introduction

Theorem

The cardinality of a maximum matching M in a bipartite graph

G equals the value of a maximum flow f in G ′. Moreover, let f

denote the maximum flow found by Ford-Fulkerson, then M

constructed from f in (2) is a maximum matching in G .

By the integrality theorem, we know there is a maximum and

integer-valued flow f in G ′. Let M be a maximum matching in G .

If |M| < |f |, then by the Flow-Matching lemma, there is a

matching M ′ in G such that |M ′| = |f | > |M|, contradicting with

the assumption that M is maximum. If |M| > |f |, then by the

Flow-Matching lemma, there is an integer-valued flow f ′ such that

|f ′| = |M| > |f |, contradicting with the assumption that f is

maximum. So |f | = |M| and Ford-Fulkerson outputs such a flow.

Introduction

This gives us the following algorithm for Max Bipartite Matching:

1 construct G ′ = (V ′,E ′) from G = (V ,E)

2 use Ford-Fulkerson to get an integer-valued max flow f in G ′

3 use (2) to construct from f a max matching M in G

What is the running time of Ford-Fulkerson on G ′? An upper

bound we used earlier is O(|E ′| · |f |), where f is a maximum

flow in G ′. It is clear that |f | is the cardinality of a maximum

matching in G , which is bounded from above by n. So the

running time is O(nm), since O(|E ′|) = O(|E |) = O(m).

Introduction

