
Analysis of Algorithms I:

Strassen’s Algorithm and the Master Theorem

Xi Chen

Columbia University

Strassen’s Algorithm and the Master Theorem



BinarySearch: Find a number in a sorted sequence

BinarySearch (A, x), where A = (a1, a2, . . . , an) is nondecreasing

1 If n = 1 then output 1 if a1 = x ; and output nil otherwise

2 Compare x with an/2

3 Case x = an/2: output n/2

4 Case x > an/2: output BinarySearch ((an/2+1, . . . , an), x)

5 Case x < an/2: output BinarySearch ((a1, . . . , an/2−1), x)

Strassen’s Algorithm and the Master Theorem



The running time T (n) of BinarySearch is characterized by:

T (1) = Θ(1)

T (n) = T (n/2) + Θ(1) for n ≥ 2

A little sloppy here: Should be T (n) = T (bn/2c) + Θ(1). But this

will not affect the order of T (n) (as we saw from the last class),

and will be further justified by the Master theorem later.

Strassen’s Algorithm and the Master Theorem



We now use the substitution method (Section 4.3 of the textbook)

to solve the recurrence. First, spell out the constants:

T (1) = c1

T (n) = T (n/2) + c2 for n ≥ 2

Then make a good guess: Here we show that for some positive

constants a and b to be specified later,

T (n) ≤ a lg n + b (1)

for all n being powers of 2. The proof uses induction.

Strassen’s Algorithm and the Master Theorem



Proof.

1 Basis: We know T (1) = c1. On the other hand, when n = 1,

a lg n + b = b. So if we set b to be any positive constant ≥ c1
(e.g., set b = c1), (1) holds for n = 1.

2 Induction Step: Assume (1) holds for 20, 21, . . . , 2k−1, for

some k ≥ 1. We show (1) also holds for n = 2k . To this end,

T (n) = T (2k−1) + c2 ≤ a(k − 1) + b + c2 = ak + b + (c2 − a)

As a result, T (n) ≤ ak + b if we set a to be any positive

constant ≤ c2 (e.g., set a = c2).

3 By setting a = c2 and b = c1, we conclude from induction

that T (n) ≤ a lg n + b for all n = 1, 2, 4, . . .

Strassen’s Algorithm and the Master Theorem



As a result, we have T (n) ≤ a lg n + b = O(lg n). One weakness of

the substitution method is that it is important to make a good

guess. For example, if we guess that T (n) ≤ an for some positive

constant a, then the whole proof would still go through for some

appropriate a (because this claim IS CORRECT), even though the

bound O(n) is very loose indeed. So always try to apply the

Master theorem first. Use the substitution method only when the

Master theorem does not apply.

Strassen’s Algorithm and the Master Theorem



Powering a number: Given a and n, compute an.

Power (a, n)

1 If n = 1, output a

2 If n is even, b = Power (a, n/2) and output b2

3 If n is odd, b = Power (a, (n − 1)/2) and output a · b2

Strassen’s Algorithm and the Master Theorem



The running time T (n) is described by the same recurrence:

T (1) = Θ(1)

T (n) = T (n/2) + Θ(1) for n ≥ 2

So we conclude that T (n) = O(lg n), while the brute force

algorithm takes (n − 1) multiplications.

Strassen’s Algorithm and the Master Theorem



Matrix multiplication: Given two n × n matrices A = (ai ,j) and

B = (bi ,j), 1 ≤ i , j ≤ n, compute C = A · B, where C = (ci ,j) and

ci ,j =
n∑

k=1

ai ,k · bk,j , for all i , j : 1 ≤ i , j ≤ n

To compute each ci ,j using the equation above, it takes n

multiplications and (n − 1) additions. So the running time is

n2 ·Θ(n) = Θ(n3)

Can we use Divide-and-Conquer to speed up?

Strassen’s Algorithm and the Master Theorem



Denote A and B by

A =

(
A1,1 A1,2

A2,1 A2,2

)
and B =

(
B1,1 B1,2

B2,1 B2,2

)

where all Ai ,j and Bi ,j are n/2× n/2 matrices. If we denote

A · B = C =

(
C1,1 C1,2

C2,1 C2,2

)

where all Ci ,j are n/2× n/2 matrices, then we have

Strassen’s Algorithm and the Master Theorem



C1,1 = A1,1 · B1,1 + A1,2 · B2,1

C1,2 = A1,1 · B1,2 + A1,2 · B2,2

C2,1 = A2,1 · B1,1 + A2,2 · B2,1

C2,2 = A2,1 · B1,2 + A2,2 · B2,2

This suggests the following Divide-and-Conquer algorithm:

Strassen’s Algorithm and the Master Theorem



MM (A,B), where A and B are both n × n matrices

1 If n = 1, output a1,1 · b1,1

2 Compute MM (A1,1,B1,1) + MM (A1,2,B2,1)

3 Compute MM (A1,1,B1,2) + MM (A1,2,B2,2)

4 Compute MM (A2,1,B1,1) + MM (A2,2,B2,1)

5 Compute MM (A2,1,B1,2) + MM (A2,2,B2,2)

Strassen’s Algorithm and the Master Theorem



The running time T (n) of MM (for multiplying two n × n

matrices) is then described by the following recurrence:

T (1) = Θ(1)

T (n) = 8 · T (n/2) + Θ(n2) for n ≥ 2

because we make 8 recursive calls (for multiplying n/2× n/2

matrices), and a constant many (4 indeed) matrix additions when

combining the solutions. Unfortunately, solving the recurrence

using the Master theorem gives us T (n) = Θ(n3), where 3 comes

from log2 8. Can we use less multiplications and do better than n3?

Strassen’s Algorithm and the Master Theorem



In Strassen’s algorithm, the following 7 n/2× n/2 matrices

P1, . . . ,P7 are computed first using 7 recursive calls:

P1 = A1,1 · (B1,2 − B2,2)

P2 = (A1,1 + A1,2) · B2,2

P3 = (A2,1 + A2,2) · B1,1

P4 = A2,2 · (B2,1 − B1,1)

P5 = (A1,1 + A2,2) · (B1,1 + B2,2)

P6 = (A1,2 − A2,2) · (B2,1 + B2,2)

P7 = (A1,1 − A2,1) · (B1,1 + B1,2)

Strassen’s Algorithm and the Master Theorem



Then it uses additions and subtractions to get Ci ,j :

C1,1 = P5 + P4 − P2 + P6

C1,2 = P1 + P2

C2,1 = P3 + P4

C2,2 = P5 + P1 − P3 − P7

It can be verified that the magic cancelations result in exactly the

same Ci ,j ’s in C = A · B.

Strassen’s Algorithm and the Master Theorem



The running time T (n) is now described by

T (1) = Θ(1)

T (n) = 7 · T (n/2) + Θ(n2) for n ≥ 2

because we only make 7 recursive calls instead of 8, and use 18

(still a constant though) matrix additions, 10 before the recursive

calls and 8 after. Solving this recurrence using the Master

theorem, we get T (n) = Θ(nlg 7) = Θ(n2.81...).

Strassen’s Algorithm and the Master Theorem



Finally, we describe the Master theorem. Let a ≥ 1 and b > 1 be

constants. We are interested in T (n) described by:

T (1) = Θ(1)

T (n) = a · T (n/b) + f (n) for n ≥ 2

A little sloppy here: n/b should be interpreted as either dn/be or

bn/bc, though this will not change the conclusions of the three

cases to be discussed. (For the proof dealing with floors and

ceilings, check Section 4.6.2 of the textbook.) In what follows, we

consider T (·) over powers of b: n = 1, b, b2, . . .

Strassen’s Algorithm and the Master Theorem



A key constant in solving the recurrence is t = logb a with

bt = a

Let n = bk , where k = logb n. First, from the recursion tree

generated using T (n) = a · T (n/b) + f (n) in Fig 4.7 (Page 99)

of the textbook, we have

T (n) = ak · T (1) +
k−1∑
i=0

ai · f (n/bi )

where ak · T (1) is the contribution from the leaves, and

ai · f (n/bi ) is the contribution from nodes on level i ,

i = 0, 1, . . . , k − 1. Since T (1) = Θ(1), the contribution of the

leaves is Θ(ak) = Θ((bt)logb n) = Θ(nt).

Strassen’s Algorithm and the Master Theorem



Theorem

Case 1 of the Master theorem: If f (n) = O(nt−ε) for some

constant ε > 0, then T (n) = Θ(nt).

This case basically says that if f (n) is smaller than nt , then

T (n) = Θ(nt). In the next slide, we show that in this case, the

total contribution from levels 0, 1, . . . , k − 1 is no more than the

contribution from the leaves. As a result, T (n) = Θ(nt), where the

contribution from the leaves is the dominating term.

Strassen’s Algorithm and the Master Theorem



To see this, we plug in f (n) = O(nt−ε) and the total contribution

from levels 0, 1, . . . , k − 1 is the following sum

k−1∑
i=0

ai · f (n/bi ) = Θ

(
k−1∑
i=0

ai · (n/bi )t−ε

)

Focusing on the sum inside the Θ, it becomes

nt−ε
k−1∑
i=0

(abε/bt)i = nt−ε
k−1∑
i=0

(bε)i = nt−ε bεk − 1

bε − 1
= nt−ε nε − 1

bε − 1
= O(nt)

where the first equation uses a = bt and the second uses the

geometric series. As a result, T (n) = Θ(nt) + O(nt) = Θ(nt).

Strassen’s Algorithm and the Master Theorem



Example of Case 1: In the recurrence of Strassen’s algorithm:

a = 7 b = 2 and f (n) = Θ(n2)

Therefore, t = log2 7 = 2.81 and it is clear that f (n) = O(nt−ε) if

we set ε to be 0.1. As a result, Case 1 of the Master theorem

applies, and we conclude that T (n) = Θ(nt) = Θ(nlg 7).

Strassen’s Algorithm and the Master Theorem



Theorem

Case 2 of the Master theorem: If f (n) = Θ(nt), T (n) = Θ(nt lg n).

This case basically says that if f (n) is of the same order as nt ,

then T (n) = Θ(nt lg n). In the next slide, we show that in this

case, the contribution from each level i , i = 0, 1, . . . , k − 1 is

Θ(nt). As a result, we have

T (n) = (k + 1) ·Θ(nt) = Θ(nt logb n) = Θ(nt lg n)

where the last equation follows from lg n = Θ(logb n).

Strassen’s Algorithm and the Master Theorem



To see this, the contribution from level i is

ai · f (n/bi ) = ai ·Θ((n/bi )t) = Θ(ai · nt/bti ) = Θ(nt)

because bt = a. Case 2 then follows.

Strassen’s Algorithm and the Master Theorem



Example of Case 2: In the recurrence of Merge Sort:

a = b = 2 and f (n) = Θ(n)

Thus, t = logb a = 1 and f (n) = Θ(nt). So Case 2 applies and we

conclude that T (n) = Θ(nt lg n) = Θ(n lg n).

Also in the recurrence of Binary Search:

a = 1 b = 2 and f (n) = Θ(1)

Thus, t = logb a = 0 and f (n) = Θ(nt) = Θ(1). So Case 2 applies

and we conclude that T (n) = Θ(nt lg n) = Θ(lg n).

Strassen’s Algorithm and the Master Theorem



Theorem

Case 3 of the Master theorem: If f (n) = Ω(nt+ε) for some

constant ε > 0, and if af (n/b) ≤ cf (n) for some constant c < 1

and all sufficiently large n, then T (n) = Θ(f (n)).

This case basically says that if f (n) is larger than nt and satisfies a

regularity condition, then T (n) = Θ(f (n)). The proof can be

found in the textbook. In this case, the contribution from level 0,

f (n), dominates the total contribution from levels 1, 2, . . . , k − 1

as well as the leaves.

Strassen’s Algorithm and the Master Theorem



Example of Case 3: T (n) = 3 · T (n/2) + n2, where

a = 3 b = 2 and f (n) = Θ(n2)

Therefore, t = log2 3 = 1.58 . . . and f (n) = Ω(nt + ε) if we set

ε = 0.1. Also f (n) satisfies the regularity condition:

af (n/b) = 3(n/2)2 = (3/4)n2 = (3/4)f (n)

So Case 3 applies and T (n) = Θ(f (n)) = Θ(n2).

Strassen’s Algorithm and the Master Theorem



To conclude, the Master theorem compares the order of f (n) with

nt where t = logb a, and solves the recurrence depending on which

one is larger.

Strassen’s Algorithm and the Master Theorem


