
Analysis of Algorithms I:

Introduction

Xi Chen

Columbia University

Introduction

Computational Problem: A well-defined input/output

relationship. E.g., sorting, connected components,

greatest common divisor (GCD), matrix multiplication.

Algorithm: A well-defined procedure that takes something
(as input) and produces something (as output).

Existed before computers: e.g., the Euclidean algorithm

for GCD. [Section 31.2 of the textbook if interested]

An algorithm correctly solves a problem if, for every input

instance, it halts with the correct output.

Introduction

Correctness: Provably correct in this course.

Performance: (mostly) time complexity, and space complexity

(or other computational resources).

How to measure the running time of an algorithm?

the random-access machine (RAM) model

[Section 2.2 of the textbook for more details]

cells storing integers and rational numbers

basic operations: arithmetic/data movement/control

count the number of basic operations

Introduction

InsertionSort(A), where A = 〈a1, . . . , an〉 is a sequence of integers:

1 Create an empty list B

2 For i from 1 to n

Enumerate the list B backwards to find the first integer in B

smaller than ai ; insert ai right after that integer.

Introduction

We use T (A) to denote the number of basic operations it uses

when the input is A, and we are interested in its worst-case time

complexity: For n ≥ 1, let

T (n) = max
all A of length n

T (A).

Deriving exactly what T (n) is can be very tedious, e.g., it depends

on how we implement a list using a RAM.

Introduction

In a certain implementation, assume that line 1 and line 2 take c1
and c2 steps each, where c1 and c2 are constants that are

independent of the input size n. Also assume the ith iteration of

the for-loop takes c3ki + c4 steps, where

c3: number of steps to enumerate backwards an integer in B;

c4: number of steps it takes for insertion;

and ki is the number of integers we need to enumerate

backwards to find an integer smaller than ai .

Again, c3 and c4 are constants in a reasonable implementation.

Introduction

From these assumptions, we have

T (A) = c1 + c2 · n+
n∑

i=1

(c3ki + c4) = c1 + c2 · n+ c4 · n+ c3

n∑
i=1

ki .

Different input instances yield different ki ’s. If A = 〈1, 2, . . . , n〉 is

already ordered nonincreasingly, then ki = 1 for all i . But when

A′ = 〈n, n − 1, . . . , 1〉, we have ki = i for all i . So

T (A) = c1 + c2 · n + c4 · n + c3 · n

T (A′) = c1 + c2 · n + c4 · n + c3 ·
n∑

i=1

i .

where
∑n

i=1 i = n(n+1)
2 . [Will use Induction to prove it next class]

Introduction

We conclude that

T (n) = T (A′) = c1 + c2 · n + c4 · n + c3 ·
n(n + 1)

2
,

because ki can be no more than the length of the list B, which is i

in the i-th iteration of the for-loop.

Introduction

Usually we make the following two simplifications in analysis:

focus on the dominant term: keep c3n
2/2 only

suppress the constant coefficient: keep n2 only

More formally, we use the asymptotic notation: T (n) = Θ(n2) (to

be defined next).

Introduction

Not worth the effort to keep the constant c3 because

An algorithm with T (n) = 100n may not always perform

better than an algorithm with T (n) = n in practice, because

the cost of the RAM basic operations vary among different

machines.

An algorithm with T (n) = c1n always performs better than an

algorithm with T (n) = c2n
2, when the input is large enough,

no matter what the positive constants c1, c2 are.

Introduction

We focus on the asymptotic performance to

avoid the tedious analysis of the constants;

understand the intrinsic (and machine-independent)

complexity of an algorithm;

concentrate on the dominant term when designing an

algorithm because this decides its performance when the

inputs are large.

Introduction

But what if the hidden constant is really really large: E.g., for an

algorithm with T (n) = 10100n to perform better than an algorithm

with T (n) = n2, n needs to be 10100.

Fortunately the algorithms we cover in the course are well

polished and have low hidden constants.

Introduction

Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

O(g(n)) =
{
f (n) : ∃ constants c > 0 and n0 > 0

s.t. 0 ≤ f (n) ≤ c · g(n) for all n ≥ n0
}

Check Figure 3.1 (b) of the textbook. Usually we use

f (n) = O(g(n)) to denote f (n) ∈ O(g(n))

Introduction

Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

Ω(g(n)) =
{
f (n) : ∃ constants c > 0 and n0 > 0

s.t. 0 ≤ g(n) ≤ c · f (n) for all n ≥ n0
}

Check Figure 3.1 (c) of the textbook. Usually we use

f (n) = Ω(g(n)) to denote f (n) ∈ Ω(g(n)).

Introduction

Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

Θ(g(n)) =
{
f (n) : ∃ constants c1, c2 > 0 and n0 > 0

s.t. 0 ≤ c1 · g(n) ≤ f (n) ≤ c2 · g(n) for all n ≥ n0
}

Check Figure 3.1 (a) of the textbook. Usually we use

f (n) = Θ(g(n)) to denote f (n) ∈ Θ(g(n)).

Introduction

Read Section 3.1 of the textbook to get comfortable about

the asymptotic notation. Will be used in almost every lecture.

Back to the InsertionSort, we have T (n) = O(n2). To

formally prove this, use limit from calculus:

lim
n→∞

T (n)

n2
=

c3
2

Let ε > 0 be any constant. By the definition of limits, there

exists a large enough n0 such that

T (n)

n2
<

c3
2

+ ε, for all n ≥ n0.

Introduction

Similarly T (n) = Ω(n2) and thus, by Theorem 3.1 (Page 48, also

an exercise in the first homework), T (n) = Θ(n2). This finishes

the asymptotic worst-case analysis of InsertionSort.

Introduction

