Analysis of Algorithms I:

Introduction

Xi Chen

Columbia University

Introduction



e Computational Problem: A well-defined input/output
relationship. E.g., sorting, connected components,
greatest common divisor (GCD), matrix multiplication.

@ Algorithm: A well-defined procedure that takes something
(as input) and produces something (as output).

o Existed before computers: e.g., the Euclidean algorithm
for GCD. [Section 31.2 of the textbook if interested]

@ An algorithm correctly solves a problem if, for every input
instance, it halts with the correct output.

Introduction



@ Correctness: Provably correct in this course.

@ Performance: (mostly) time complexity, and space complexity
(or other computational resources).

@ How to measure the running time of an algorithm?

e the random-access machine (RAM) model
[Section 2.2 of the textbook for more details]
o cells storing integers and rational numbers
o basic operations: arithmetic/data movement/control

e count the number of basic operations

Introduction



InsertionSort(A), where A = (a1,...,an) is a sequence of integers:

@ Create an empty list B
@ Forifrom1ton

Enumerate the list B backwards to find the first integer in B
smaller than a;; insert a; right after that integer.

Introduction



We use T(A) to denote the number of basic operations it uses
when the input is A, and we are interested in its worst-case time
complexity: For n > 1, let

T(n) =

= max T(A).
all A of length n

Deriving exactly what T(n) is can be very tedious, e.g., it depends
on how we implement a list using a RAM.

Introduction



In a certain implementation, assume that line 1 and line 2 take ¢;
and ¢, steps each, where ¢; and ¢, are constants that are
independent of the input size n. Also assume the ith iteration of
the for-loop takes c3k; + ¢4 steps, where

@ c3: number of steps to enumerate backwards an integer in B,

@ c4: number of steps it takes for insertion;

@ and k; is the number of integers we need to enumerate

backwards to find an integer smaller than a;.

Again, c3 and ¢4 are constants in a reasonable implementation.

Introduction



From these assumptions, we have

n n
T(A):C1+C2~H+Z(C3k,'+C4):C1+C2'H+C4'H+C3Zk,'.
i=1 i=1

Different input instances yield different k;'s. If A= (1,2,...,n) is
already ordered nonincreasingly, then k; = 1 for all i. But when
A = (n,n—1,...,1), we have k; = i for all i. So

TA=a+c-n+c-n+c-n
n
T(A/):C1+Cg-n—|-C4~n+C3-Zi.
i=1

where Y 7 i = n(n2+1)_ [Will use Induction to prove it next class]

Introduction



We conclude that

1
T(n):T(A’):c1+c2-n+C4-n+C3~n(nz+),

because k; can be no more than the length of the list B, which is i
in the i-th iteration of the for-loop.

Introduction



Usually we make the following two simplifications in analysis:

e focus on the dominant term: keep c3n?/2 only

@ suppress the constant coefficient: keep n? only

More formally, we use the asymptotic notation: T(n) = ©(n?) (to
be defined next).

Introduction



Not worth the effort to keep the constant c3 because

@ An algorithm with T(n) = 100n may not always perform
better than an algorithm with T(n) = n in practice, because
the cost of the RAM basic operations vary among different
machines.

@ An algorithm with T(n) = c1n always performs better than an
algorithm with T(n) = con?, when the input is large enough,
no matter what the positive constants ¢y, ¢ are.

Introduction



We focus on the asymptotic performance to

@ avoid the tedious analysis of the constants;

@ understand the intrinsic (and machine-independent)
complexity of an algorithm;

@ concentrate on the dominant term when designing an
algorithm because this decides its performance when the
inputs are large.

Introduction



But what if the hidden constant is really really large: E.g., for an
algorithm with T(n) = 10'%n to perform better than an algorithm
with T(n) = n?, n needs to be 101%.

@ Fortunately the algorithms we cover in the course are well
polished and have low hidden constants.

Introduction



Let f(n) and g(n) are functions that map n=1,2,... to real
numbers, then we let

O(g(n)) = {f(n) : 3 constants ¢ > 0 and np > 0

s.t. 0 < f(n) <c-g(n)forall n> no}
Check Figure 3.1 (b) of the textbook. Usually we use

f(n) = O(g(n)) todenote f(n)e O(g(n))

Introduction



Let f(n) and g(n) are functions that map n=1,2,... to real
numbers, then we let

Q(g(n)) = {f(n) : 3 constants ¢ > 0 and np > 0

st. 0< g(n) <c-f(n)forall n> no}
Check Figure 3.1 (c) of the textbook. Usually we use

f(n) =Q(g(n)) todenote f(n)e Q(g(n)).

Introduction



Let f(n) and g(n) are functions that map n=1,2,... to real
numbers, then we let

©(g(n)) = {f(n) : 3 constants ¢i, 2 > 0 and ng > 0

st. 0<c1-g(n) <f(n) <co-g(n)forall n> no}
Check Figure 3.1 (a) of the textbook. Usually we use

f(n) =0©(g(n)) todenote f(n) < ©(g(n)).

Introduction



@ Read Section 3.1 of the textbook to get comfortable about
the asymptotic notation. Will be used in almost every lecture.

@ Back to the InsertionSort, we have T(n) = O(n?). To
formally prove this, use limit from calculus:

. T(n) ¢
lim > = 5
n—oco n 2
Let € > 0 be any constant. By the definition of limits, there
exists a large enough ng such that
T(n) c3

< —+4¢, forall n> ng.
n? 2 7 =0

Introduction



Similarly T(n) = Q(n?) and thus, by Theorem 3.1 (Page 48, also
an exercise in the first homework), T(n) = ©(n?). This finishes
the asymptotic worst-case analysis of InsertionSort.

Introduction



