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Computational Problem: A well-defined input/output

relationship. E.g., sorting, connected components,

greatest common divisor (GCD), matrix multiplication.

Algorithm: A well-defined procedure that takes something
(as input) and produces something (as output).

Existed before computers: e.g., the Euclidean algorithm

for GCD. [ Section 31.2 of the textbook if interested]

An algorithm correctly solves a problem if, for every input

instance, it halts with the correct output.
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Correctness: Provably correct in this course.

Performance: (mostly) time complexity, and space complexity

(or other computational resources).

How to measure the running time of an algorithm?

the random-access machine (RAM) model

[ Section 2.2 of the textbook for more details ]

cells storing integers and rational numbers

basic operations: arithmetic/data movement/control

count the number of basic operations
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InsertionSort(A), where A = 〈a1, . . . , an〉 is a sequence of integers:

1 Create an empty list B

2 For i from 1 to n

Enumerate the list B backwards to find the first integer in B

smaller than ai ; insert ai right after that integer.
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We use T (A) to denote the number of basic operations it uses

when the input is A, and we are interested in its worst-case time

complexity: For n ≥ 1, let

T (n) = max
all A of length n

T (A).

Deriving exactly what T (n) is can be very tedious, e.g., it depends

on how we implement a list using a RAM.
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In a certain implementation, assume that line 1 and line 2 take c1
and c2 steps each, where c1 and c2 are constants that are

independent of the input size n. Also assume the ith iteration of

the for-loop takes c3ki + c4 steps, where

c3: number of steps to enumerate backwards an integer in B;

c4: number of steps it takes for insertion;

and ki is the number of integers we need to enumerate

backwards to find an integer smaller than ai .

Again, c3 and c4 are constants in a reasonable implementation.
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From these assumptions, we have

T (A) = c1 + c2 · n+
n∑

i=1

(c3ki + c4) = c1 + c2 · n+ c4 · n+ c3

n∑
i=1

ki .

Different input instances yield different ki ’s. If A = 〈1, 2, . . . , n〉 is

already ordered nonincreasingly, then ki = 1 for all i . But when

A′ = 〈n, n − 1, . . . , 1〉, we have ki = i for all i . So

T (A) = c1 + c2 · n + c4 · n + c3 · n

T (A′) = c1 + c2 · n + c4 · n + c3 ·
n∑

i=1

i .

where
∑n

i=1 i = n(n+1)
2 . [ Will use Induction to prove it next class ]
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We conclude that

T (n) = T (A′) = c1 + c2 · n + c4 · n + c3 ·
n(n + 1)

2
,

because ki can be no more than the length of the list B, which is i

in the i-th iteration of the for-loop.
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Usually we make the following two simplifications in analysis:

focus on the dominant term: keep c3n
2/2 only

suppress the constant coefficient: keep n2 only

More formally, we use the asymptotic notation: T (n) = Θ(n2) (to

be defined next).

Introduction



Not worth the effort to keep the constant c3 because

An algorithm with T (n) = 100n may not always perform

better than an algorithm with T (n) = n in practice, because

the cost of the RAM basic operations vary among different

machines.

An algorithm with T (n) = c1n always performs better than an

algorithm with T (n) = c2n
2, when the input is large enough,

no matter what the positive constants c1, c2 are.
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We focus on the asymptotic performance to

avoid the tedious analysis of the constants;

understand the intrinsic (and machine-independent)

complexity of an algorithm;

concentrate on the dominant term when designing an

algorithm because this decides its performance when the

inputs are large.
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But what if the hidden constant is really really large: E.g., for an

algorithm with T (n) = 10100n to perform better than an algorithm

with T (n) = n2, n needs to be 10100.

Fortunately the algorithms we cover in the course are well

polished and have low hidden constants.
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Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

O(g(n)) =
{
f (n) : ∃ constants c > 0 and n0 > 0

s.t. 0 ≤ f (n) ≤ c · g(n) for all n ≥ n0
}

Check Figure 3.1 (b) of the textbook. Usually we use

f (n) = O(g(n)) to denote f (n) ∈ O(g(n))
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Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

Ω(g(n)) =
{
f (n) : ∃ constants c > 0 and n0 > 0

s.t. 0 ≤ g(n) ≤ c · f (n) for all n ≥ n0
}

Check Figure 3.1 (c) of the textbook. Usually we use

f (n) = Ω(g(n)) to denote f (n) ∈ Ω(g(n)).
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Let f (n) and g(n) are functions that map n = 1, 2, . . . to real

numbers, then we let

Θ(g(n)) =
{
f (n) : ∃ constants c1, c2 > 0 and n0 > 0

s.t. 0 ≤ c1 · g(n) ≤ f (n) ≤ c2 · g(n) for all n ≥ n0
}

Check Figure 3.1 (a) of the textbook. Usually we use

f (n) = Θ(g(n)) to denote f (n) ∈ Θ(g(n)).
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Read Section 3.1 of the textbook to get comfortable about

the asymptotic notation. Will be used in almost every lecture.

Back to the InsertionSort, we have T (n) = O(n2). To

formally prove this, use limit from calculus:

lim
n→∞

T (n)

n2
=

c3
2

Let ε > 0 be any constant. By the definition of limits, there

exists a large enough n0 such that

T (n)

n2
<

c3
2

+ ε, for all n ≥ n0.
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Similarly T (n) = Ω(n2) and thus, by Theorem 3.1 (Page 48, also

an exercise in the first homework), T (n) = Θ(n2). This finishes

the asymptotic worst-case analysis of InsertionSort.
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