
Analysis of Algorithms I:

Basic Hashing

Xi Chen

Columbia University

Introduction

Hashing is a great practical but sometimes mysterious technique.

The goal here is to build a data structure to support the dictionary

operations: Insert, Delete, and Search.

Introduction

Let U = {0, 1, . . . ,D − 1} denote a universe set. We call the

integers k ∈ U keys. In most situations, D = |U| is very large. The

goal is to design a data structure (a hash table T here) to

maintain a subset S ⊂ U of keys. Starting with S = ∅, we need to

handle any sequence of n operations each of the form:

Insert (T , k) : S ← S ∪ {k}
Delete (T , k) : S ← S − {k}
Search (T , k) : return 1 if k ∈ S and 0 otherwise

for some key k ∈ U.

Introduction

An application of a dictionary data structure: Counting the

number of distinct keys in a sequence A of n keys from U.

1 Set t = 0 and initialize T , a dictionary data structure

2 For i from 1 to n

3 If Search(T ,A[i]) = 0

4 t = t + 1 and Insert(T ,A[i])

Introduction

Given any input sequence A of n keys, the execution of this

algorithm makes a sequence of O(n) calls to the dictionary

operations. An observation that will be useful in the next class

when we discuss Universal Hashing is that, given any input A, this

sequence of O(n) calls, including both the type of each call and

the key used in each call, is fixed and is independent of our

implementation of the dictionary data structure (and in particular,

independent of the hash function).

Introduction

Ideally, it would be great to have a dictionary data structure that,

for any sequence of n operations, takes O(n) time in total. Is this

achievable? (We will see later that search trees have worst-case

running time O(lg n) for each operation and O(n lg n) in total,

though they support more than just the dictionary operations.)

Introduction

The simplest implementation of a dictionary is the direct-address

table discussed in Section 11.1. However, it uses a table / array of

size |U| and is impractical if the size of the universe set is huge.

For example, consider the problem of counting distinct numbers in

a sequence of length n, where the range is {0, 1, . . . , 2n}.

Introduction

Now what is a hash table? A hash table T [0, 1, . . . ,m − 1] is

simply an array of length m. For now consider m to be of order

similar to n and is much smaller than |U|. We will see how to

choose m later (depending on what we want to get from T).

Introduction

A hash function is then a map h from U to {0, 1, . . . ,m − 1}. It

maps a key k ∈ U to a slot h(k) of the hash table T . Ideally, a

hash table supports the three operations as follows:

1 Search (T , k): If k is stored in slot h(k), return 1; otherwise 0

2 Insert (T , k): Store k in slot h(k) of T

3 Remove (T , k): If k is stored in slot h(k), remove it

Introduction

Of course there is a serious problem with this implementation.

What if h maps multiple keys to the same slot? If we insert two

keys and they are mapped to the same slot, we cannot just replace

the first key stored in that slot by the second one. We call this

situation a collision with respect to a hash function h: two keys k

and k ′ ∈ U that satisfy h(k) = h(k ′).

Introduction

The hope is that we pick a “good” hash function that spreads the

keys evenly over the slots so that when, e.g., m is a little larger

than n, no collision happens during any sequence of n operations.

This means whenever we insert a key into the table, it is mapped

by h to a slot not used yet. But is this possible?

Introduction

A typical hash function is the division method:

h(k) = k mod m ∈ {0, . . . ,m − 1}, for any k ∈ {0, . . . ,D − 1}

where h maps k to the reminder of k divided by m. If we use this

function and insert two keys k and k ′ ∈ U with the same reminder,

collision happens. What if we use a “better” hash function?

Introduction

Impossible, as long as |U| > m (recall that usually |U| � m). For

any function h : U → {0, 1, . . . ,m − 1}, there must exist two keys

k 6= k ′ in U such that h(k) = h(k ′). The so-called Pigeonhole

Principle: No matter how we put D balls in m bins, as long as

D > m, there must be a bin ends up with more than one ball.

Introduction

Now we see that collision is unavoidable, how to deal with it?

Chaining. For each slot j of T , we create a linked list L[j] to store

all the keys mapped to this slot so that we do not lose any keys.

Using this strategy, we change the three operations accordingly:

1 Search (T , k): Search for k in the linked list L[h(k)]

2 Insert (T , k): Search (T , k) first. If it returns 0, we insert k at

the head of the linked list L[h(k)]

3 Remove (T , k): Remove k if it is in the list L[h(k)]

Introduction

The worst-case running time of any operation on k ∈ U clearly is

linear in the number of collisions between k and the keys currently

in the hash table: Let S denote the current set of keys in the hash

table. Then the worst case running time of Search (T , k), Insert

(T , k) or Remove (T , k) is linear in

length of L[h(k)] = number of k ′ ∈ S with h(k ′) = h(k)

It is not surprising that the number of collisions is crucial to the

performance of a hash table.

Introduction

However, we show below that whenever |U| ≥ nm, no matter which

hash function h is used, one can easily construct a sequence of

O(n) operations such that the hash table with h takes time Ω(n2).

To see this, we use the Pigeonhole Principle again and for any h,

there are n keys k1, . . . , kn from U that collide with each other:

h(k1) = h(k2) = · · · = h(kn)

Then a nightmare for the hash table with h is the following

sequence: First insert k1, . . . , kn−1 into the hash table; then search

kn for n times. Check that the hash table with h takes Ω(n2) time

to handle this sequence of 2n − 1 operations.

Introduction

The situation is somewhat similar with Quicksort. We have two

great techniques with very good reputation. However, it is very

easy to beat them with simple worst-case examples. One way to

justify their success is to use average-case analysis, instead of

worst-case analysis.

Introduction

In Quicksort, it is shown that if the input sequence is a random

permutation, then the expected running time of Quicksort is

O(n lg n). Also in Section 11.2, it is shown that if the keys in a

sequence of n operations are equally likely to hash into any of the

m slots (the assumption of simple uniform hashing), then by

setting m = n the expected running time of a hash table is O(n).

Introduction

Instead, we will make no assumption on the keys to hash but use

randomization. Roughly speaking, we will “randomly” construct a

hash function every time we are asked to build a hash table and to

handle a sequence of dictionary operations. A clear advantage is

that an adversary cannot predict the hash function we actually use

and it becomes almost impossible to slow down a hash table with

collisions. This is kind of similar to the idea behind Randomized

Quicksort. Instead of making an assumption on the input, we use

randomization to show that a hash table of size m = n can handle

any sequence of n dictionary operations with running time O(n) in

expectation, when a hash function is “randomly” picked.

Introduction

