
Analysis of Algorithms I:

Greedy Algorithms

Xi Chen

Columbia University

Introduction

Optimization problems: Given an instance, there is a (usually very

large, e.g., exponential in the input size) set of “feasible” solutions.

Each solution is associated with a number, called its cost or value.

We wish to find an optimal solution, among all feasible solutions,

to either minimize the cost or maximize the value:

In the Traveling Salesman Problem, we are given a list of

cities and their pairwise distances. A salesman needs to make

a tour: visiting each city exactly once and finishing at the city

he/she starts from. Here a feasible solution is a tour that

visits each city exactly once (starts and finishes at the same

city). Each tour has a cost: total travel distance, and we wish

to find an optimal tour that minimizes the cost.

Introduction

Note that in an optimization problem, we need to find “an”

optimal solution instead of “the” optimal solution, because there

may be several solutions that achieve the same optimal value (and

we only need to find one of them).

Introduction

Given an optimization problem, a greedy algorithm “tries” to find

an optimal solution by making a sequence of “greedy” choices. In

each step, it makes the choice that looks best at the moment,

according to some local criterion. For example,

A greedy algorithm for the traveling salesman problem: Pick

an arbitrary city and call it city 1. Find a city with the smallest

distance from city 1, and call it city 2. Find a city in the rest

of the n − 2 cities with the smallest distance from city 2 . . .

Output the tour: City 1→ City 2→ · · · → City n→ City 1.

Introduction

Unfortunately, for many difficult optimization problems, greedy

algorithms fail to find an optimal solution, because the greedy

choices are made according to some local criterion (and thus, are

somewhat short sighted). Remember the goal here is to find a

“globally” optimal solution. In many optimization problems

(especially in those difficult ones) the choices made in a “globally”

optimal solution may not be “locally” optimal. When this is the

case, greedy algorithms will fail. For example, the greedy algorithm

from the last slide usually outputs a tour worse than the optimal.

Introduction

In this class, we look at two problems where the greedy strategy

works perfectly. We will also learn how to prove the correctness of

a greedy algorithm when it works. In the next class, we introduce a

more sophisticated scheme, dynamic programming, for solving

optimization problems.

Introduction

Activity Selection Problem:

1 Input: A set of n activities A to share a resource. Each

activity a = [s, f) has a start time s and a finish time f , where

f > s > 0. We say two activities a = [s, f) and a′ = [s ′, f ′)

are compsatible if they do not overlap: either s ≥ f ′ or s ′ ≥ f .

2 Feasible solutions: A (feasible) solution here is a sequence of

activities a1 = [s1, f1), . . . , ak = [sk , fk) that satisfy

f1 ≤ s2, f2 ≤ s3, . . . , fk−1 ≤ sk

3 Optimal solution: We wish to find a feasible solution that

maximizes the number of activities in it.

Introduction

Greedy choice: Which activity in A to pick as the first activity we

schedule in the solution? The one with the earliest start time? or

the one with the earliest finish time? The latter! Intuition: It

leaves the resource available for as many other activities as

possible. For example, compare a = [3, 6) and a′ = [1, 7). Even

though a′ starts earlier than a, if we pick a′ as the first activity

then the resource will not be available until 7, while a leaves the

resource available from 6. So if there is another activity, e.g.

b = [6, 8), we can schedule b right after a while it overlaps with a′.

Introduction

Greedy algorithm for the Activity selection problem (A):

1 If |A| = 0, return nil; If |A| = 1, return the activity in A

2 Find an activity a with the earliest finish time

3 Remove a and all activities that overlap with a from A

4 Denote the new set of activities A′. Recursively find an

optimal solution S ′ (i.e., a sequence of activities) for A′

5 Return S = (a,S ′), the concatenation of a and S ′

Easy to show that the running time is Θ(n) in the worst case. (A

greedy algorithm, when it works, is usually very efficient.) But how

can we prove that it always returns an optimal solution?

Introduction

We use the following three steps to prove the correctness

(commonly used in proving the correctness of a greedy algorithm):

1 Step 1: The first greedy choice is “safe” or “correct”: Show

that there is always an optimal solution S∗ for A, in which a

(the activity with the earliest finish time) is its first activity.

2 Step 2: Optimal substructure: Show that if S ′ is an optimal

solution for A′ (obtained by removing a and those overlap

with a from A), then S = (a, S ′) is a feasible solution as good

as S∗ and thus, S is optimal as well. (The proof uses Step 1.)

3 Step 3: Use induction and Step 2 to conclude (we usually skip

this step but you should understand how it is done).

Introduction

Lemma

Let a = [s, f) be an activity with the earliest finish time in A.

Then there is an optimal solution S∗ for A, which starts with a.

We prove it using the following “exchange argument”. Let T be

an optimal sequence for A. If the first activity in T is a, then we

are done. Otherwise, let a′ = [s ′, f ′) denote the first activity in T ,

then f ′ ≥ f (why?). From this, we can exchange the a′ in T with

a, and the result must still be a feasible solution (why?). Denote

the new sequence by S∗. Then S∗ is feasible and has the same

number of activities as T . As a result, S∗ is an optimal sequence

as well. The lemma follows because a is the first activity of S∗.

Introduction

Lemma

Let a = [s, f) be an activity with the earliest finish time in A. Let

S ′ denote an optimal sequence for

A′ = A−
{

a and all activities that overlap with a
}
.

Then S = (a, S ′) must be an optimal solution for A.

Introduction

First, all activities in A′ are compatible with a, so S is feasible.

Second, from the last lemma, there is an optimal sequence S∗ for

A, in which the first activity is a. So to prove that S is optimal, it

suffices to show that the number of activities in S ≥ the number

of activities in S∗. To see this, all activities in S∗ after a do not

overlap with a. Thus, S∗ − a is a mutually compatible subset of A′

and by the optimality of S ′, we have

|S ′| ≥ |S∗ − a| = |S∗| − 1

As a result, |S | = 1 + |S ′| ≥ |S∗| and S is also optimal. QED.

Introduction

We use the second lemma to prove the correctness by induction:

1 Basis: If |A| = 0 or 1, the algorithm is correct. Trivial.

2 Induction Step: Assume the algorithm is correct for all sets of

size ≤ k , for some k ≥ 1. We show that the algorithm is also

correct for sets of size k + 1. Let A denote a set of k + 1

activities. The algorithm starts by finding a, an activity with

the earliest finish time in A. Then it makes a recursive call on

A′ to obtain a subset S ′ of A′. By the inductive hypothesis, S ′

must be an optimal solution for A′ as |A′| ≤ |A| − 1 = k .

From the second lemma we know S = (a, S ′) is optimal for A.

Introduction

Huffman codes: Given a set C of n characters and the frequency

0 ≤ f (c) ≤ 1 of each character c ∈ C , we need to design an

optimal prefix code for C . Equivalently, we need to construct a

binary tree T with n leaves (see examples in Figure 16.4) in which

each leaf is labelled with a distinct character c ∈ C . So any such

binary tree T is a feasible solution. Given T , we define its cost:

cost(T) =
∑
c∈C

f (c) · depthT (c)

Here depthT (c) denotes the depth of c (or the depth of the leaf

labelled with c) in T . We wish to construct an optimal binary tree

T , with respect to C and the frequencies f , to minimize its cost.

Introduction

Check the textbook for the motivation behind this classical

problem: What is a prefix code? How does such a binary tree

represent a prefix code for C ? Why does an optimal binary tree

with the minimum cost represent an optimal prefix code for C with

the frequencies f ?

Introduction

Before we discuss the greedy strategy, it is easy to prove that an

optimal binary tree for C and f must be full: every internal node

has two children. (Why? Show that if it is not full then we can

improve it.) So we will restrict our attention to full binary trees.

Introduction

Now we present the greedy algorithm invented by Huffman. Given

C and the frequencies f (c), it constructs an optimal binary tree

with the minimum cost. What is the greedy choice here?

Intuition: Let T be an optimal binary tree for C . Let u denote an

internal node with the largest depth. Because T is a full binary

tree, u has two children and both are leaves. Which two characters

should we put at these two leaves? Intuitively we want the

frequencies of the two characters there as low as possible because

these two leaves have the largest depth among all leaves of T . So

let x and y be two characters in C with the smallest frequencies.

Then intuitively they should be siblings in an optimal binary tree.

Introduction

Inspired by this observation, we present Huffman’s algorithm:

1 If |C | = 1 or 2, trivial; Otherwise

2 Find two characters x , y ∈ C with the smallest frequencies

3 Remove x , y from C (Greedy choice: x , y will be siblings in

the tree we construct); add a new character z with frequency

f (z) = f (x) + f (y)

Denote the new set by C ′; note that |C ′| = |C | − 1

4 Recursively find an optimal binary tree T ′ for C ′

5 Locate the leaf labelled with z in T ′ and replace it by an

internal node having x and y as its two children

6 Return the new tree T , now a binary tree for C

Introduction

Again we break the proof of its correctness into three steps:

1 Step 1: The first greedy choice is “safe” or “correct”: Show

that there is always an optimal binary tree T ∗ for C , in which

x and y are indeed siblings.

2 Step 2: Optimal substructure: Show that if T ′ is an optimal

binary tree for C ′, then the tree T obtained from T ′ must be

optimal for C . Here C ′ is obtained from C by removing x , y

and adding z with f (z) = f (x) + f (y); T is obtained from T ′

by replacing z with an internal node having x , y as children.

3 Step 3: Use induction and the lemma from Step 2 to conclude

that Huffman’s algorithm always outputs an optimal solution.

Introduction

Lemma

Let x , y be two characters in C with the smallest frequencies. Then

there is an optimal binary tree for C in which x and y are siblings.

Again we use an exchange argument. Let T denote an optimal

binary tree for C . Let u be an internal node of T with the largest

depth. If x and y are children of u, we are done. If neither x nor y

is a child of u, then we use a, b ∈ C to denote the children of u.

By exchanging x with a and y with b, we get a new binary tree T ′.

Because u has the maximum depth and because x , y have the

smallest frequencies in C , we must have cost(T ′) ≤ cost(T)

(why?) and T ′ is optimal as well. Thus, we get an optimal binary

tree for C in which x , y are siblings. The last case, where either x

or y is a child of u, can be handled similarly.

Introduction

Lemma

If T ′ is an optimal binary tree for C ′, then the tree T , obtained

from T ′ by replacing the leaf for z with an internal node having x

and y as children, must be optimal for C . Here C ′ is obtained

from C by removing x , y and adding z with f (z) = f (x) + f (y).

First of all, it is easy to check that

cost(T) = f (x) + f (y) + cost(T ′)

using the fact that all characters have the same depth in T as in

T ′ except x , y , where depthT (x) = depthT (y) = depthT ′(z) + 1.

Introduction

By the last lemma, there must be an optimal binary tree T ∗ for C

in which x and y are siblings. Given T ∗, we remove x and y and

label their parent with z . Denote the new tree T ′′, then T ′′ is a

binary tree for C ′. Similarly, one can show that

cost(T ∗) = f (x) + f (y) + cost(T ′′)

Due to the optimality of T ′, we have

cost(T ′) ≤ cost(T ′′)

and thus, cost(T) ≤ cost(T ∗). We conclude that T is also an

optimal binary tree for C (because its cost is no more than the

cost of an optimal).

Introduction

We skip Step 3 (induction). As for the time complexity of

Huffman’s algorithm, if we use a red-black tree (or any data

structure that supports Insert, Delete, and Min in worst case

O(lg n) time, e.g., a binary min-heap discussed in Chapter 6) to

store the characters, sorted using their frequencies as the keys,

then the running time is O(n lg n) in the worst case.

Introduction

