
Analysis of Algorithms I:

Graph Representation and BFS

Xi Chen

Columbia University

Introduction

An undirected graph G = (V ,E) is a pair in which V is a set of

vertices (or nodes) and E is a set of edges (or arcs). Each edge is

a set {u, v} (or an unordered pair), where u and v are vertices in

V . When u = v , we call it a self-loop. By convention, we usually

use the notation (u, v) for an edge, instead of {u, v}, and we

consider (u, v) and (v , u) to be the same edge. In particular, this

means that if (u, v) ∈ E then we also have (v , u) ∈ E simply

because {u, v} = {v , u}.

Introduction

For example, the undirected graph in (b) on Page 1169 has:

E =
{

(1, 2), (1, 5), (2, 5), (3, 6)
}

Again, the order in each pair does not mean anything here. Usually

we use n = |V | to denote the number of vertices and m = |E | to

denote the number of edges. Usually the vertices are numbered

from 1, 2, . . . to n so we have

V =
{

1, 2, . . . , n
}

For convenience, we will always assume that this is the case in all

the discussions on graph algorithms.

Introduction

We usually consider simple undirected graphs: no self-loops and no

parallel (duplicate) edges. (Safe to assume this in all the graph

algorithms we discuss in this course.) So we always have m < n2.

(Not a formal definition: When m� n2 we call G a sparse graph

and when m = Θ(n2) we call G a dense graph.) If (u, v) ∈ E , we

say v (or u) is adjacent to u (or v); we say v (or u) is a neighbor

of u (or v); we say this edge (u, v) is incident on vertices u and v .

The degree of a vertex u is then the number of edges that are

incident on u. Review Appendix B.4 for other notation.

Introduction

One way to represent an undirected graph is to use its adjacency

matrix: Given G = (V ,E), where V = {1, 2, . . . , n}, we refer to

the following n × n {0, 1}-matrix A as the adjacency matrix of G :

Ai ,j =

{
1 if (i , j) ∈ E ; and

0 otherwise

Note that A is always symmetric: Ai ,j = Aj ,i (why?).

Introduction

A directed graph G = (V ,E) is a pair, where V is a set of vertices

and E is a set of (directed) edges. Here each edge is an ordered

pair (u, v) with u, v being vertices in V . The order does matter

here: (u, v) ∈ E does not imply (v , u) ∈ E . For example, check

the example (a) on Page 1169.

Introduction

The directed graphs G = (V ,E) we consider may have self-loops

(e.g., the graph in Figure 22.2 on Page 590 has a self-loop (6, 6) in

E), but we always assume that there are no parallel edges in E and

thus, m ≤ n2. Similarly, if (u, v) ∈ E , we say v is adjacent to u or

there is an edge from u to v . We also say this edge (u, v) is

incident from (or leaves) vertex u and is incident to (or enters)

vertex v . The in-degree of a vertex u is the number of edges

incident to it (or enter it) and the out-degree is the number of

edges incident from it (or leave it). The degree of a vertex is then

its in-degree plus its out-degree.

Introduction

Similarly, a directed graph G = (V ,E), where V = {1, 2, . . . , n},
can be represented by its adjacency matrix A:

Ai ,j =

{
1 if (i , j) ∈ E ; and

0 otherwise

But unlike undirected graphs, A is not symmetric in general!

Introduction

We will also work on weighted (undirected or directed) graphs

G = (V ,E), in which each edge has an associated weight. We

usually denote these edge weights using a weight function

w : E → R

So the weight of an edge (u, v) ∈ E is w(u, v), with

w(u, v) = w(v , u)

when the graph G is undirected. If G is directed, then w(u, v)

and w(v , u) are different in general.

Introduction

For each vertex u ∈ V , we let N(u) denote the following set of

vertices: If G is undirected, then N(u) is the set of all neighbors

of u, so |N(u)| = deg(u); and if G is directed, then N(u) is the set

of all v such that (u, v) ∈ E , so |N(u)| = out-deg(u).

The adjacency-list representation of a graph G = (V ,E) consists

of n = |V | lists (sometimes we may use doubly linked lists for easy

deletion) one for each u ∈ V : the adjacency list Adj(u) of u ∈ V

contains all the vertices v ∈ N(u). See examples on Page 590.

Introduction

A quick question: If G = (V ,E) has m = |E |, then what is the

total length of all the n = |V | lists? The answer depends on

whether G is undirected or directed:

1 If G is undirected, then every edge (u, v) leads to two entries:

v in Adj(u) and u in Adj(v). So the total length is 2m.

2 If G is directed, then every edge (u, v) leads to exactly one

entry: v in Adj(u). So the total length is m.

Also we can adapt adjacency lists to represent a weighted graph

(undirected or directed): For each edge (u, v) ∈ E , just store the

weight w(u, v) of (u, v) ∈ E with vertex v in Adj(u).

Introduction

Comparison between the two representations: Given a graph

G = (V ,E) with n = |V | and m = |E |, the space used is

1 Adjacency matrix: n2

2 Adjacency list: m

So space-wise the adjacency list representation is more efficient

(unless the graph is dense: m = Θ(n2)).

Introduction

However, the other (sometimes more important) difference between

these two representations is the following: Given a vertex u ∈ V ,

the enumeration of edges incident on (or from) u (or equivalently,

the enumeration of all vertices v with (u, v) ∈ E) takes time

1 Matrix: Θ(n) (to go through a binary string of length n)

2 List: linear in the length of Adj(u) (or equivalently, deg(u) if

G is undirected, and out-deg(u) if G is directed)

So the list representation always performs better. But the matrix

representation of course has its own advantage: To decide if

(u, v) ∈ E , it only uses O(1) time, while the list representation

has worst-case running time linear in the length of Adj(u) (why?).

Introduction

Usually we do not consider the issue of which representation to use

until the algorithm analysis stage. If the input graphs are sparse

and we make a lot of enumerations of edges incident to a vertex in

our algorithm, then the list representation usually fits better. If the

algorithm uses a lot of random access of edges in G , then the

matrix representation may perform better. We will see the use of

both representations in different graph algorithms.

Introduction

In the rest of this class, we describe Breadth-first search (BFS) and

its applications. We start with the following problem: Given a

(directed or undirected) graph G = (V ,E) and a “source” vertex

s ∈ V , which vertices are reachable from s? Formally, if G is

undirected, then we say v ∈ V is reachable from s if there is a

path connecting s and v . If G is directed, then we say v is

reachable from s if there is a directed path “from” s “to” v :

s, u1, . . . , uk , v

for some k ≥ 0 such that (s, u1), (u1, u2), . . . , (uk , v) ∈ E . (Note

that when G is undirected, the set of vertices reachable from s is

indeed the connected component that contains s. Prove it.)

Introduction

Consider the following “generic” search algorithm:

1 set R = {s}
2 while there is an edge from R to V − R do

3 let (u, v) ∈ E be such an edge with u ∈ R, v ∈ V − R

4 set R = R ∪ {v}

Note that we did not specify which edge (u, v) to pick if at the

beginning of a while-loop, there are multiple edges from R to

V − R. As we will see, different strategies give us different

algorithms that are useful in different contexts. Before that, we

show that the algorithm is always correct: upon termination, R has

all vertices reachable from s, no matter which strategy is used.

Introduction

Some notation: During the execution of the algorithm, if we add

v into R in a while loop because of (u, v), we say u discovers v .

Given two vertices u and v in V , we use δ(u, v) to denote the

shortest-path distance (or simply distance) from u to v : the

minimum number of edges in any path from u to v ; if there is no

path from u to v (i.e., v is not reachable from u), then we set

δ(u, v) =∞. The following two lemmas are easy to prove:

Introduction

Lemma

Let s be a vertex in V . If (u, v) ∈ E then δ(s, v) ≤ δ(s, u) + 1.

Lemma

Assume δ(s, v) = d ≥ 2 and let

s, u1, . . . , ud−1, v

denote a path from s to v of length d, then δ(s, ud−1) = d − 1.

Introduction

Lemma

Upon termination, R is the set of vertices reachable from s.

First, using induction it is easy to show that at any time (and in

particular, when the algorithm terminates), all vertices in R are

reachable from s. (Prove this as an exercise.)

Introduction

Second, assume there is a vertex in V − R reachable from s upon

termination. Let v denote a vertex in V − R with the smallest

distance from s. Because R is the set we get upon termination, it

must be the case that there is no edge from R to V − R (because

otherwise the algorithm should continue). Let δ(s, v) = d ≥ 1

then by definition, there is a path from s to v of length d :

s, u1, . . . , ud−1, v

Introduction

Consider the following two cases: ud−1 ∈ R or /∈ R:

1 If ud−1 ∈ R, this contradicts with the assumption that R is

the set we get upon termination (why?).

2 If ud−1 /∈ R, contradict with the assumption that v has the

minimum distance from s among all vertices in V −R (why?).

This finishes the proof of the lemma.

Introduction

Now we describe the breadth-first search in more details: First we

maintain the set R by having an extra field called color with each

vertex: u.color = white means that u ∈ V − R at this moment and

is not reached yet; u.color = black means that u ∈ R at this

moment and thus, is reachable from s. Note that the textbook

uses three colors just for illustration purposes (see the footnote).

Introduction

We use the following BFS strategy to pick an edge in each round:

Choose an edge (u, v) where u is the earliest vertex added to R

that has an edge (u, v) ∈ E with v ∈ V − R (white).

A straight-forward implementation for the BFS strategy is the

following: Maintain a list L of all vertices in R (black) at the

moment, ordered by the time they are added into R; Start with

L = (s); At the beginning of each while-loop, we go through the

list from left to right (starting with s) and for each u in the list,

check every v ∈ N(u): If there is a white vertex v ∈ N(u), we

color v black (add v into R) and also append v to the end of L

(because it is the newest vertex in R).

Introduction

However, this implementation is not the most efficient. During the

first |N(s)| many while-loops, we keep adding vertices v ∈ N(s)

into R. Once we have discovered all vertices in N(s) (meaning

every v ∈ N(s) is black), s can no longer be used to discover new

reachable vertices any more. So we should remove s from L

(though s remains black and remains in R) just because there is

no need to go through N(s) anymore, when trying to find an edge

from R to V − R at the beginning of each loop that follows.

Introduction

This inspires us to maintain a first-in, first-out queue Q instead.

All vertices in Q are ordered according the time they are added

into R. Every time we need to find an edge between R and V − R,

Dequeue a vertex u from Q and add all white vertices v ∈ N(u)

into R. (Note that we Dequeue u from Q because after adding all

vertices in N(u) into R, there is no need to explore u anymore.)

Whenever we add a vertex v into R (by changing its color from

white to black), we also Enqueue v into Q as well because we just

discovered v and need to use N(v) to expand R in the future. As

Q is FIFO, v will be appended to the end of Q. This guarantees

that vertices in Q are ordered by the time they are added into R.

Introduction

Breadth-first search (G , s): where G = (V ,E)

1 for each vertex u ∈ V − {s} do

2 set u.color = white and u.d =∞
3 set s.color = black and s.d = 0

4 Enqueue (Q, s)

5 while Q 6= ∅ do

6 u = Dequeue (Q)

7 for each v ∈ N(u) do

8 if v .color = white then

9 set v .color = black and v .d = u.d + 1

10 Enqueue (Q, v)

11 u.color = black

Introduction

It is clear that we have v ∈ V is reachable from s if and only if

v .color = black

upon termination, simply because any strategy works as we proved

earlier. But one advantage of BFS is that if we add an extra field

v .d for each vertex v ∈ V (as we did in the last slide), we can also

obtain the distance δ(s, v) from s to every vertex v , stored in v .d .

Introduction

Before proving that BFS computes the distances correctly, which

representation should we adopt and what is the running time of

BFS? First, if u = Dequeue (Q) in a while-loop, then what is the

total running time of this loop? It depends on the graph

representation! We choose to use the list representation here

because the for-loop is essentially an enumeration of vertices in

N(u) (Why does the list representation performs better here?).

If we use the list representation, then this can be done by going

through Adj(u) in time linear in |N(u)|. So the total running time

of this while-loop is O
(
|N(u)|

)
.

Introduction

Second, given a vertex u ∈ V , how many times can u be

dequeued from Q during the execution of BFS? At most once!

(why?) Therefore, the total running time is bounded by

O(n) +
∑
u∈V

O
(
|N(u)|

)
= O(n) + O(m) = O(n + m)

where the first O(n) term accounts for the initialization.

Introduction

Finally, we work on the correctness of BFS. We start with some

intuition of how BFS works. Check the example on Page 596. At

the beginning, Q = 〈s〉, s = 0 and is the only black vertex. In the

first while-loop, we dequeue s from Q; change its two neighbors

w , r to black; and enqueue them into Q. Note that Q = 〈w , r〉 at

this moment and we have

δ(s,w) = δ(s, r) = w .d = r .d = 1

Also note that r ,w are the only vertices of distance 1 from s.

Introduction

Then we dequeue w from Q; change its two neighbors t, x to

black (note that s is already black so we ignore it); and enqueue

them into Q. We then dequeue r from Q; change its neighbor v to

black (again, s is black so we ignore it); and enqueue it into Q.

After this while-loops, we have

Q = 〈t, x , v〉

and note that

δ(s, t) = δ(s, x) = δ(s, v) = t.d = x .d = v .d = 2

Also check that these are the only vertices of distance 2 from s.

The BFS algorithm then continues.

Introduction

From this example we see that BFS adds vertices to Q wave by

wave according their distances from s. It starts by discovering

vertices with distance 1 from s first, i.e., vertices in N(s). For each

vertex u ∈ N(s), it discovers those white vertices in N(u); adds

them into R; and enqueues them into Q. From the example, after

all u ∈ N(s) are dequeued and explored, Q consists of exactly those

vertices of distance 2 from s. Then after all vertices of distance 2

are dequeued and explored, Q consists of exactly those vertices of

distance 3 from s. And it continues. This is how BFS is named

because it visits vertices of distance 1, 2, . . . from s, level by level.

Introduction

We show that upon termination:

δ(s, v) = v .d , for all v ∈ V

If v is not reachable from s, then as we showed earlier, upon

termination v .color remains white (∈ V − R). As a result, v .d

remains ∞ since we only change v .d when changing its color from

white to black (or equivalently, when adding v into R). So the

equation above holds. To prove the equation for vertices reachable

from s, we need the following lemma:

Introduction

Lemma

Given two vertices u, v both reachable from s, if

δ(s, u) < δ(s, v)

then u is added into R earlier than v.

We prove it by induction on δ(s, u)! (I used induction on δ(s, v) in

class. It worked but is not the best proof ...) The basis is trivial: If

δ(s, u) < δ(s, v) and δ(s, u) = 0, u must be s. The property then

follows trivially because s is the first vertex in R.

Introduction

Now assume that the claim holds for all u, v with

δ(s, u) < δ(s, v) and δ(s, u) ≤ k

for some k ≥ 0. (This is our inductive hypothesis.) We need to

show that it also holds for all vertices u, v with

δ(s, u) < δ(s, v) and δ(s, u) = k + 1

For this purpose, let s, u1, . . . , uk , u denote a path from s to u

of length k + 1. We must have (why?):

δ(s, uk) = k

Moreover, we know that by the end of the while loop in which uk
is dequeued from Q, u must be in R (why?).

Introduction

On the other hand, let w denote the vertex that discovers v .

This means that (w , v) ∈ E and we add v into R during the

while loop in which w is dequeued. By (w , v) ∈ E , we have:

δ(s,w) ≥ δ(s, v)− 1 > δ(s, u)− 1 = k = δ(s, uk)

Now we can apply our inductive hypothesis because

δ(s, uk) < δ(s,w) and δ(s, uk) = k

(see the importance of picking the right induction variable!) It

implies that uk enters Q before w and thus, is also dequeued

from Q earlier. It then follows that u enters Q before v (why?).

Introduction

Finally we prove the correctness of BFS: Upon termination,

v .d = δ(s, v), for any v ∈ V reachable from s.

We use induction on δ(s, v). Basis is trivial: If δ(s, v) = 0 then we

must have v = s and thus, s.d = 0 = δ(s, s) upon termination.

Induction step: Assume v .d = δ(s, v) for any v with δ(s, v) ≤ k,

for some k ≥ 0. We show that any v with δ(s, v) = k + 1 has

v .d = δ(s, v) = k + 1

Introduction

To this end, we use u to denote the vertex that leads BFS to

discover v . This means that u is black, just dequeued from Q,

(u, v) ∈ E ; and BFS sets

v .d = u.d + 1

when adding v into R and Q. On the other hand, let

s, u1, u2, . . . , uk , v

denote a path from s to v of length k + 1, then δ(s, uk) = k.

Introduction

We claim that u must satisfy

δ(s, u) = k

Otherwise (if δ(s, u) 6= k), because

δ(s, u) ≥ δ(s, v)− 1 = k

we have δ(s, u) > k and thus, by the last lemma u enters Q

after uk+1. This implies that u cannot be the vertex that

discovers v (why?), contradicting with our assumption. So we

must have δ(s, u) = k . By the inductive hypothesis, we have

v .d = u.d + 1 = δ(s, u) + 1 = k + 1

Introduction

Also check the textbook for the definition of Breadth-first trees.

By introducing another attribute v .π for each vertex v ∈ V (a

pointer to another vertex, set to be nil at the beginning), one can

simply add a line to set v .π = u when u discovers v . Then upon

the termination of BFS, these pointers give us a Breadth-first tree,

with essentially the same running time.

Introduction

Using BFS, we have the following algorithm that computes

all the connected components of G = (V ,E):

1 Initialization: set all vertices to be white

2 Pick an arbitrary vertex s ∈ V , and call BFS (G , s)

3 Copy all the black vertices to an array (as the first

connected component) and remove them from G

4 Pick another vertex s ′ ∈ V , if V is not empty yet

5 BFS (G , s ′) and repeat, until V is empty

Prove that the total running time is O(n + m). This requires a

more accurate upper bound for the running time of BFS (G , s):

Show that it is linear in the number of vertices in the connected

component that contains s.

Introduction

