
Analysis of Algorithms I:

Maximum Flow

Xi Chen

Columbia University

Introduction

In this class, we start by introducing the maximum flow problem.

We then present the Ford-Fulkerson method based on the

Max-Flow Min-Cut Theorem. In the next class, we will discuss one

particular implementation of the Ford-Fulkerson method: the

Edmonds-Karp algorithm for the maximum flow problem.

Introduction

Let G = (V ,E) be a directed graph with positive edge weights

c : E → R>0. For now we assume all the weights are positive

integers. We also assume G satisfies the following condition:

G is reduced: If (u, v) ∈ E then (v , u) /∈ E .

We make this assumption mainly to simplify the analysis. We will

see shortly how to work around this restriction. There are two

distinguished vertices in G : a vertex s called the source and a

vertex t called the sink. (Note that here s may have incoming

edges and t may have outgoing edges.)

Introduction

Consider G as a computer network and we want to send data from

s to t. An edge from u to v with weight c(u, v) > 0 means we can

send data from u to v at a maximum rate of c(u, v) Mbps. Given

G , what is the maximum rate of sending data from s to t? This is

what we call the maximum flow problem. Since we want to send

data from s to t, we may well assume that every v ∈ V lies on a

path from s to t. Otherwise, we can remove v from the graph.

Introduction

Given G , c (positive edge weights), s (source) and t (sink), a flow

f in G is a nonnegative function f : E → R≥0 such that

1 Capacity constraint: For every (u, v) ∈ E ,

0 ≤ f (u, v) ≤ c(u, v)

2 Flow conservation constraints: For every u ∈ V − {s, t},∑
v :(u,v)∈E

f (u, v) =
∑

v :(v ,u)∈E

f (v , u)

For the second cond., consider a router u in a network. Its out-flow

(sum on the left) should be equal to its in-flow (sum on the right).

Introduction

The value of a flow f , denoted by |f |, is then defined as

|f | =
∑

v :(s,v)∈E

f (s, v)−
∑

v :(v ,s)∈E

f (v , s)

This is what we call the net-out-flow of s. It is not surprising

that the net-out-flow of s is always the same as the net-in-flow

of t. Intuitively this is because all other vertices have in-flow

equals out-flow. So all the packages that s sends out must end up

at t. Formally, we have the following equation (try to prove it):

|f | =
∑

v :(v ,t)∈E

f (v , t)−
∑

v :(t,v)∈E

f (t, v)

Introduction

Here is a proof: There are two ways to write
∑

(u,v)∈E f (u, v):∑
u∈V

∑
v :(u,v)∈E

f (u, v) =
∑
u∈V

∑
w :(w ,u)∈E

f (w , u)

This implies that∑
u∈V

out-flow (u) =
∑
u∈V

in-flow (u)

As out-flow (u) = in-flow (u) for all u ∈ V − {s, t}, we have

out-flow (s) + out-flow (t) = in-flow (s) + in-flow (t)

So the net-out-flow of s is the same as the net-in-flow of t.

Introduction

In the maximum flow problem, we are asked to find a flow f that

maximizes |f |. Before we present the Ford-Fulkerson method, it is

worth pointing out that the restriction of G being reduced (i.e.,

(u, v) ∈ E implies (v , u) ∈ E) is without loss of generality.

Notation: Given a graph G = (V ,E), if both (u, v) ∈ E and

(v , u) ∈ E then we call them two antiparallel edges.

Introduction

To see this, let G be a graph with antiparallel edges. We modify G

to get G ′ as follows: For every two antiparallel edges (u, v) and

(v , u) ∈ E , add a new vertex w and replace (u, v) with (u,w) and

(w , v). Also set c(u,w) = c(w , v) to be the capacity c(u, v) of

the original edge (u, v). It is clear that the new graph G ′ has no

antiparallel edges and thus, is reduced. Also G ′ is essentially

equivalent to G : a maximum flow in G ′ has the same value as a

maximum flow in G . (Actually, there is clearly a one-to-one

correspondence between flows in G ′ and flows in G .) This implies

that any algorithm for finding a maximum flow in a reduced graph

can be used to solve the same problem over general graphs.

Introduction

We now describe the Ford-Fulkerson method. It is in some sense

a greedy algorithm: Start with the zero flow: f (u, v) = 0 for all

(u, v) ∈ E . Repeatedly increase the value of f by finding an

“augmenting path” from s to t in the “residual graph” Gf , until

no such path exists. We will see that in each round, the value of

f strictly increases. But the flow on a particular edge of G may

increase or decrease! To describe the Ford-Fulkerson method, we

need to define “residual graph” and “augmenting path”.

Introduction

Let f be a flow in G . The key idea is the following. Let

〈v0v1 · · · vk〉

be a sequence of vertices (not necessarily a path in G !) starting

from v0 = s and ending at vk = t. We call it a “good” sequence if

it is simple (no vertex appears twice) and for each i ∈ [0 : k − 1],

one of the following two holds:

1 Either (vi , vi+1) ∈ E and is not saturated:

f (vi , vi+1) < c(vi , vi+1)

2 Or (vi+1, vi) ∈ E and f (vi+1, vi) is positive

Introduction

Given a good 〈v0v1 · · · vk〉, we can modify f as follows: Let

δ = min
i∈[0:k−1]

 c(vi , vi+1)− f (vi , vi+1) if (vi , vi+1) ∈ E

f (vi+1, vi) if (vi+1, vi) ∈ E

Then 1) increase the flow f (vi , vi+1) of each (vi , vi+1) ∈ E by δ;

and 2) decrease the flow f (vi+1, vi) of each (vi+1, vi) ∈ E by δ.

Denote the new flow by f ′. We now show that the new flow f ′

is still feasible and its value increases by δ. To see this, first of

all it is easy to check that f ′ satisfies the capacity constraint:

0 ≤ f ′(u, v) ≤ c(u, v), for all (u, v) ∈ E

Introduction

Also f ′ satisfies the flow conservation property. For each vi in the

sequence, where i ∈ [1 : k − 1], we have the following four cases:

1 If (vi−1, vi) ∈ E and (vi , vi+1) ∈ E , then both

the in-flow and out-flow of vi increase by δ

2 If (vi−1, vi) ∈ E and (vi+1, vi) ∈ E , then both

the in-flow and out-flow of vi remain the same

3 If (vi , vi−1) ∈ E and (vi , vi+1) ∈ E , then both

the in-flow and out-flow of vi remain the same

4 If (vi , vi−1) ∈ E and (vi+1, vi) ∈ E , then both

the in-flow and out-flow of vi decrease by δ

Finally, it is easy to verify that |f ′| = |f |+ δ.

Introduction

The message here is that to improve the value of f , sometimes we

need to decrease the flow along an edge (u, v) ∈ E . This is kind of

anti-intuitive so make sure to think it through before moving on.

Now we can informally describe Ford-Fulkerson: Start with the

zero flow; Repeatedly find a good sequence and use it to improve

f , until no such sequence exists. To better describe this method,

we introduce the concept of residual graphs.

Introduction

Let f be a flow in G . The residual graph Gf = (V ,Ef) with

respect to f has the following directed edges. Each edge in Ef

also has a positive residual capacity cf defined as follows:

1 Forward edges: (u, v) ∈ Ef if (u, v) ∈ E and is not saturated

in f : f (u, v) < c(u, v). The residual capacity of (u, v) ∈ Ef

is set to be cf (u, v) = c(u, v)− f (u, v). The residual capacity

tells us how much we can increase the flow along (u, v) ∈ E .

2 Reverse edges: (v , u) ∈ Ef if (u, v) ∈ E and f (u, v) > 0.

The residual capacity of (v , u) ∈ Ef is cf (v , u) = f (u, v).

The residual capacity tells us how much we can decrease

the flow along the original edge (u, v) ∈ E .

Introduction

It is clear that Gf in general is not reduced, and has a lot of anti-

parallel edges. Key observation: 〈v0v1 · · · vk〉 is a good sequence if

and only if it is a simple path from s to t in Gf . We will from now

on refer to a simple path p = 〈v0v1 · · · vk〉 from s to t in Gf as an

augmenting path. Let the residual capacity of p be

cf (p) = min
{

cf (u, v) : (u, v) is on p
}
> 0

Then we can modify f to improve its value by cf (p), in the same

way we did using a good sequence (again, an augmenting path is

essentially a good sequence defined earlier, with a fancy name).

Introduction

More exactly, for each edge (vi , vi+1) ∈ Ef in p, two cases:

1 If (vi , vi+1) is a forward edge, increase f (vi , vi+1) by cf (p)

2 If (vi , vi+1) is a reverse edge, decrease f (vi+1, vi) by cf (p)

By the end we get a new flow f with its value increased by cf (p).

This gives us a round-by-round method to increase the value of

the current flow f . The million-dollar question is then the

following: When Ford-Fulkerson stops, meaning there exists no

augmenting path in the current residual graph Gf , is f optimal?

The answer is yes! The Ford-Fulkerson method always returns a

maximum flow upon termination.

Introduction

To prove it, recall that an s-t cut of G = (V ,E) is a partition of

V into two sets S and T = V − S such that s ∈ S and t ∈ T .

Given a cut (S ,T), we define the capacity of (S ,T) to be

c(S ,T) =
∑

(u,v)∈E : u∈S ,v∈T

c(u, v)

Minimum cut: an s-t cut (S ,T) of minimum capacity. The first

lemma we prove is simple:

Introduction

Lemma

Max flow is ≤ Min cut: maxf |f | ≤ min(S ,T) c(S ,T).

Proof: Let f be a maximum flow in G , and let (S ,T) be “any”

s-t cut. Then it is easy to show (Prove it by yourself) that

|f | =
∑

(u,v)∈E : u∈S ,v∈T

f (u, v)−
∑

(u,v)∈E : u∈T ,v∈S

f (u, v)

≤
∑

(u,v)∈E : u∈S ,v∈T

c(u, v) = c(S ,T)

It follows that max flow is ≤ min cut.

Introduction

Also note that given f and (S ,T), we have |f | = c(S ,T) if and

only if f (u, v) = c(u, v) for all (u, v) ∈ E : u ∈ S , v ∈ T and

f (u, v) = 0 for all (u, v) ∈ E : u ∈ T , v ∈ S . Now consider a flow

f in G such that there is no augmenting path in Gf . This means

t is not reachable from s. Let S denote the set of all vertices

reachable from s, and T = V − S . It is clear that (S ,T) is an

s-t cut because t ∈ T .

Introduction

As vertices in T are not reachable from S , none of the edges in

Ef goes from a vertex in S to a vertex in T . This implies that

1 For every (u, v) ∈ E such that u ∈ S and v ∈ T , (u, v) must

be saturated in f : f (u, v) = c(u, v). Otherwise (u, v) ∈ Ef .

2 For every (u, v) ∈ E such that u ∈ T and v ∈ S , we must

have f (u, v) = 0. Otherwise we have (v , u) ∈ Ef .

This implies that |f | = c(S ,T) and thus,

|f | = c(S ,T) ≥ min
(S ′,T ′)

c(S ′,T ′)

and f is a max flow because maxf |f | ≤ min(S ′,T ′) c(S ′,T ′).

Introduction

We summarize it in the following Max-Flow Min-Cut theorem:

Theorem

Max flow equals min cut:

max
f
|f | = min

(S ,T)
c(S ,T)

Moreover, if f is a flow in G such that Gf has no augmenting

path, then f must be a maximum flow.

Introduction

Now we can describe the Ford-Fulkerson method formally:

1 set f to be the zero flow

2 while there exists a simple path p from s to t in Gf do

3 use p to modify f and increase its value by cf (p)

Introduction

It stops within a finite number of rounds because each while loop,

the value of f increases by at least 1 (since we assumed that all

the capacities are positive integers). If f ∗ is a maximum flow in G ,

then Ford-Fulkerson executes the while loop at most |f ∗| times.

So the total running time is O((n + m) · |f ∗|) if we use BFS or

DFS to find a path from s to t in the residual graph Gf each

round. As we assumed that all vertices are reachable from s,

m = |E | ≥ |V | − 1 = n − 1

and thus, O(n + m) = O(m) so the running time is O(m · |f ∗|).

Introduction

It turns out that there are bad examples for which Ford-Fulkerson

does need to execute the while loop for Ω(m · |f ∗|) many times.

See one such example in Figure 26.7 on page 728. A more efficient

implementation of Ford-Fulkerson, as we will see in the next class,

is the Edmonds-Karp algorithm. The only difference is that in each

while loop, we do not just pick an arbitrary augmenting path in

Gf . Instead, we always pick one that minimizes the number of

edges. We will show that by doing this, the while loop is executed

at most O(nm) times so the total running time is O(nm2).

Introduction

