
Analysis of Algorithms I:

Dynamic Programming

Xi Chen

Columbia University

Introduction



Compared to Greedy Algorithms, Dynamic Programming (DP) is a

more sophisticated scheme to attack optimization problems. We

start with the following example: Rod cutting.

Input: A rod of length n inches and a sequence of prices

p1, . . . , pn ≥ 0. Output: Determine the maximum revenue rn
obtainable by cutting up the rod and selling the pieces: the value

of a piece of length i is pi . See an example on page 361: A rod of

length n = 4 with 8 possible ways of cutting it. Seems to be a very

difficulty problem: the number of feasible solutions is exponential

in n. How can we compute the maximum revenue rn efficiently?

Introduction



The problem has the following Optimal Substructure:

An optimal solution to the problem contains within it optimal

solutions to subproblems. Usually after the first choice, finding an

optimal solution reduces to solving multiple subproblems. Here

assume that the first piece has length k , where 1 ≤ k ≤ n:

1 If k = 1, then the maximum revenue is p1 + rn−1;

2 If k = 2, then the maximum revenue is p2 + rn−2;

3 · · ·
4 If k = n − 1, then the maximum revenue is pn−1 + r1;

5 If k = n, then the maximum revenue is pn + r0

where we set r0 = 0 for convenience.

Introduction



While at this moment, it is by no means clear which choice of k is

the best (this is the crucial difference between DP and Greedy), we

obtain the following useful recursive formula:

rn = max
(
p1 + rn−1, . . . , pn−1 + r1, pn + r0

)

Introduction



This gives us the following naive recursive algorithm:

1 If n = 0, return 0

2 Recursively compute r1, . . . , rn−1 (with r0 = 0)

3 Return rn = max
(
p1 + rn−1, . . . , pn−1 + r1, pn + r0

)
However, if we denote its running time by T (n), then

T (n) = O(n) +
n−1∑
i=1

T (i)

which solves to be exponential in n.

Introduction



The reason why this recursive algorithm is so slow is due to its

huge recursion tree. See Figure 15.3 on page 364. A quick

observation reveals the following idea to speed it up: The first

recursive call is made to compute r3. During its execution, we

made a recursive call to compute r2. Once the algorithm gets r3, it

makes another (and totally unnecessary) recursive call to compute

r2 again! If we have stored the value of r2, then there is no need to

make this recursive call for r2 at all.

Introduction



Inspired by this observation, DP-Rod-Cutting (n):

1 Create r [1 . . . n] (to store the max revenues r1, . . . , rn)

2 Set r [1] = p1 (initialization)

3 For i = 2 to n do

4 r [i ] = max
(
p1 + r [i − 1], . . . , pi−1 + r [1], pi

)
5 Return r [n]

The worst-case running time of this algorithm is Θ(n2): there are

n − 1 for-loops and each has Θ(i) running time. The correctness

can be proved by induction: Before the ith for-loop, we have

r [j ] = rj (max revenue from a rod of length j) for all j : 1 ≤ j < i .

Introduction



Recovering an optimal solution: The DP algorithm computes the

value of an optimal solution. But can we compute an optimal

solution, here a way of cutting up a rod of length n to achieve the

maximum revenue rn, efficiently? It turns out that a DP algorithm

can usually be easily modified to not only compute the optimal

value but also construct an optimal solution efficiently as well.

Introduction



For this purpose, we come back to the main recursive formula:

rn = max
(
p1 + rn−1, . . . , pn−1 + r1, pn + r0

)
with r0 = 0. Let k ∈ [n] denote an index that maximizes pk + rn−k
(so that rn = pk + rn−k), then to achieve the maximum revenue of

rn, we first cut the rod into two pieces: the first one has length k

and the second one has length n − k . Then if we continue to cut

the second rod optimally, the total revenue will be pk + rn−k = rn
and we get an optimal solution. We call k an (instead of “the”

because it may not be unique) optimal size of the first piece.

Introduction



We modify DP-Rod-Cutting (n) as follows:

1 Create r [1 . . . n] (store the max revenues r1, . . . , rn)

2 Create k[1 . . . n] (store the optimal sizes of the first piece)

3 Set r [1] = p1 and k[1] = 1

4 For i = 2 to n

5 r [i ] = max
(
p1 + r [i − 1], . . . , pi−1 + r [1], pi

)
6 k[i ] = any k ∈ [i ] such that r [i ] = pk + r [i − k]

7 While n > 0 (print out an optimal cut for a length-n rod)

8 print k[n] (optimal size of the first piece)

9 set n to be n − k[n]

Introduction



To summarize, problems for which DP works usually share the

following critical properties:

1 Optimal substructure: After the first choice, finding an

optimal solution reduces to solving multiple subproblems.

2 Overlapping subproblems: The total number of subproblems

needed to solve is “small”. (In Rod-cutting, we have n

subproblems to solve in total: computing r1, . . . , rn.) Do not

solve the same subproblem repeatedly (avoid the naive

recursive implementation). Solve each subproblem once and

store the result in an array (or table as in the next example).

Introduction



When developing a DP algorithm, we follow three steps:

1 Understand the optimization problem. Use its optimal

substructure to derive a recursive formula for the optimal

value in terms of optimal values of smaller subproblems.

2 Take advantage of the overlapping subproblems property.

Use the recursive formula to compute the optimal values of all

subproblems, usually in a bottom-up fashion. (For example, in

Rod-cutting we compute from r1, r2, . . . to rn.)

3 Maintain additional information (the optimal choice made in

each subproblem) to construct an optimal solution efficiently.

For example, in Rod-cutting we need to maintain the optimal

sizes of the first piece, for rods of length 1, 2, . . . , n.

Introduction



Longest Common Subsequence (LCS): Given two sequences

X = (x1, . . . , xm) and Y = (y1, . . . , yn)

determine the length of the longest common subsequence of X

and Y , denoted by LCS(X ,Y ). We use DP to give an efficient

algorithm for LCS(X ,Y ). Later by maintaining additional

information, we will modify the algorithm so that it can output

an LCS of X and Y efficiently.

Introduction



Here a subsequence of a given sequence X is a sequence that can

be derived from X by deleting zero or more characters (without

changing the order of the remaining characters). For example, if

X = (A,B,C ,B,D,A,B) and Y = (B,D,C ,A,B,A)

then (B,C ,A) is a common subsequence of both X and Y . Again,

the LCS problem seems to be difficult because a sequence X of

length m has 2m possible subsequences. If we enumerate all

subsequences of X and find the longest one that also appears in Y ,

the running time will be clearly exponential.

Introduction



It turns out that the LCS problem has the following optimal

substructure. Here we use LCS(X ,Y ) to denote the length of the

longest common subsequence of X and Y :

Theorem

Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) be two sequences with

m, n ≥ 1. Denote X ′ = (x1, . . . , xm−1) and Y ′ = (y1, . . . , yn−1).

Then we have the following two cases:

1 If xm = yn, LCS(X ,Y ) = 1 + LCS(X ′,Y ′).

2 If xm 6= yn, LCS(X ,Y ) = max
(
LCS(X ,Y ′), LCS(X ′,Y )

)
.

Introduction



Assume xm = yn, and let Z = (z1, . . . , zk) denote an LCS of X and

Y , so LCS(X ,Y ) = k . First we show that zk = xm = yn. If

zk 6= xm, we could append xm = yn to Z to obtain a common

subsequence of X and Y of length k + 1, contradicting the

assumption that Z is longest. Thus, we get zk = xm = yn. Let

Z ′ = (z1, . . . , zk−1) then it is easy to check that Z ′ is a common

subsequence of X ′ and Y ′. It suffices to show that Z ′ is an LCS of

X ′ and Y ′. This can be proved by contradiction. If X ′ and Y ′

have a common subsequence Z ′′ of length > k − 1, then

appending xm = yn to Z ′′ produces a common subsequence of X

and Y , with length > k , contradicting with the assumption that Z

is an LCS of X and Y .

Introduction



Now consider the case when xm 6= yn. One direction is easy:

LCS(X ,Y ) ≥ max
(
LCS(X ,Y ′), LCS(X ′,Y )

)
To prove the other direction, we let Z = (z1, . . . , zk) denote an

LCS of X and Y and consider the following two cases: If zk 6= xm,

then Z must be a common subsequence of X ′ and Y and thus,

LCS(X ,Y ) = k ≤ LCS(X ′,Y ). If zk 6= yn, similarly we can show

that LCS(X ,Y ) ≤ LCS(X ,Y ′). Combining the two cases we get

LCS(X ,Y ) ≤ max
(
LCS(X ,Y ′), LCS(X ′,Y )

)
The theorem is now proved.

Introduction



This gives us the following naive recursive algorithm LCS (X ,Y ):

1 If m = 0 or n = 0, return 0

2 If xm = yn then

3 return 1 + LCS(X ′,Y ′) (one recursive call)

4 else

5 return max
(
LCS(X ,Y ′), LCS(X ′,Y )

)
(two recursive calls)

Unfortunately this naive implementation ends up with exponential

running time in the worst case, because it makes multiple recursive

calls to solve the same subproblem again and again.

Introduction



Actually, each of the recursive calls in the naive recursive algorithm

is made to compute the following number:

LCS(Xi ,Yj), for some i , j : 0 ≤ i , j ≤ n

where we use Xi = (x1, . . . , xi ) to denote the ith prefix of X and

Yj = (y1, . . . , yj) to denote jth prefix of Y . From now on we will

use c[i , j ] to denote LCS(Xi ,Yj) for convenience.

Introduction



Using the theorem proved earlier, we immediately get the following

useful recursive formula:

c[i , j ] =


0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i , j > 0 and xi = yj

max(c[i , j − 1], c[i − 1, j ]) if i , j > 0 and xi 6= yj

Recall our goal here is to compute LCS(X ,Y ) = c[m, n].

Introduction



To compute c[m, n], we set up a table c[0 . . .m, 0 . . . n] to store

c[i , j ], i , j : 0 ≤ i ≤ m and 0 ≤ j ≤ n. By definition, we have

c[0, j ] = c[i , 0] = 0, for all i , j

so we can set these entries of c , its row 0 and column 0, to be 0.

The trick is then to compute the rest of the entries of c in the

row-major order: fill in row 1 from c[1, 1] to c[1, n]; fill in row 2

from c[2, 1] to c[2, n]; . . . fill in row m from c[m, 1] to c[m, n]. In

this order, whenever we need to fill in an entry c[i , j ], all three

entries c[i − 1, j − 1], c[i , j − 1] and c[i − 1, j ] must have already

computed so we can invoke the recursive formula to compute c[i , j ]

very efficiently in O(1) time.

Introduction



1 Create two tables c[0 . . .m, 0 . . . n] and b[1 . . .m, 1 . . . n]

2 Set c[i , 0] and c[0, j ] to be 0 for all i , j

3 for i = 1 to m (follow the row-major order)

4 for j = 1 to n

5 if xi = yj

6 set c[i , j ] = c[i − 1, j − 1] + 1 and b[i , j ] =↖
7 else if c[i − 1, j ] ≥ c[i , j − 1]

8 set c[i , j ] = c[i − 1, j ] and b[i , j ] = ↑
9 else

10 set c[i , j ] = c[i , j − 1] and b[i , j ] =←

Introduction



Here we also maintain a table b[1 . . .m, 1 . . . n] to help construct

a longest common subsequence efficiently. By the end of the

execution, the entries of the b table has the following meaning:

1 Case b[i , j ] = ↑: To get an LCS of Xi and Yj , we only

need to construct an LCS of Xi−1 and Yj ;

2 Case b[i , j ] =←: To get an LCS of Xi and Yj , we only

need to construct an LCS of Xi and Yj−1;

3 Case b[i , j ] =↖: To get an LCS of Xi and Yj , we only need

to get an LCS of Xi−1 and Yj−1 and append xi = yj to it.

Introduction



Using the table b, we can easily construct an LCS of X and Y .

Start from the [m, n]th entry of b, its lower-right corner, and follow

the arrows in b. Every time we arrive at an entry [i , j ] with an

b[i , j ] =↖

print xi = yj . At the end, reverse the string and we get an LCS.

Introduction


