
Analysis of Algorithms I:

Binary Search Trees

Xi Chen

Columbia University

Introduction



Hash table: A data structure that maintains a subset of keys from

a universe set U = {0, 1, . . . , p − 1} and supports all three

dictionary operations: Insert, Delete and Search. Has very good

performance: Universal hashing and Perfect hashing. But what if

we need a data structure that supports additional operations:

1 Minimum (·): return the smallest key;

2 Maximum (·): return the largest key;

3 Successor, Predecessor, Nearest matches: to be defined later

Starting from this class, we study binary search trees that support

all these operations. We show that all these operations can be

done in time linear in the height h of the tree.

Introduction



Binary tree: A tree in which each internal node has at most two

child nodes, usually referred to as its left and right child node.

How to represent a binary tree? Check Section 10.4 of the text

book. Each node x in the tree consists of three pointers:

1 x .p points to its parent node (nil if x is the root);

2 x .` and x .r point to its left and right child nodes; nil if x has

no left or right child; e.g., if x is a leaf then both are nil.

Introduction



Binary search tree: A binary tree in which each node x has a key

x .k from the universe set U (or a pointer that leads to an object

that has a key from U). Moreover, the keys satisfy the following

binary-search-tree property: Let x be any node in the tree. Then

for any node y in the left subtree of x , we have y .k ≤ x .k . For any

node z in the right subtree of x , we have x .k ≤ z .k.

Note that we allow duplicate keys in a binary search tree, which

sometimes makes things more complicated. We usually use n to

denote the number of nodes and h to denote the height of the tree

being considered.

Introduction



Height of a binary search tree: length of the longest path from

the root to a leaf. This parameter is crucial to the worst-case

performance of a binary search tree. Note that two binary search

trees may have exactly the same set of keys but have extremely

different shape, one balanced and the other unbalanced (see the

example on Page 287). In general, a binary search tree can be

extremely unbalanced (e.g., a tree consists of a single path of

length n − 1) and has a height much larger than O(lg n) and thus,

has bad worst-case performance. Now we start to describe

operations that a binary search tree supports with O(h) worst-case

running time. In the next class, we will see how to maintain a

balanced binary search tree with height bounded by O(lg n).

Introduction



Let v be a node in the tree. Start with Min and Max:

Min (v): find a node in the subtree of v with the smallest key

1 while v .` 6= nil

2 do v = v .`

3 return v

Keep moving to the left until v has no left child.

Introduction



Max (v): find a node in the subtree of v with the largest key

1 while v .r 6= nil

2 do v = v .r

3 return v

Symmetric. Just keep moving to the right child.

Introduction



Given a node v , the keys in its subtree can be sorted in linear time:

Inorder (v): visit each node in the subtree of v in the sorted order

1 If v .` 6= nil

2 Inorder (v .`)

3 print v .k

4 If v .r 6= nil

5 Inorder (v .r)

Introduction



The running time is linear in the number of nodes in the subtree of

v . Check Theorem 12.1 on page 288. Use the following recurrence:

T (n) ≤ max
0≤k≤n

(
T (k) + T (n − k − 1)

)
+ O(1)

and the substitution method.

Introduction



Search (v , k): Find a node with key = k ∈ U in the subtree of v

1 If v .k = k , return v

2 If k < v .k

3 If v .` = nil, return nil; otherwise return Search (v .`, k)

4 If k > v .k

5 If v .r = nil, return nil; otherwise return Search (v .r , k)

Check page 291 for an implementation without using recursions.

Introduction



The following two operations assume that the keys are distinct.

Successor (v): find the node with the smallest key > v .k . First, if

the right subtree of v is nonempty, then the successor of v is the

leftmost node in v ’s right subtree (or equivalently, the node with

the smallest key in v ’s right subtree). Now if v .r = nil, examine

the path from v back to the root. Find the lowest ancestor u of v

whose left child is also an ancestor of v , and u is the successor of v .

I leave both proofs of correctness as exercises. If no such u exists,

it means v has the largest key in the tree and has no successor.

Introduction



Deletion is easy (but keep in mind that we need to maintain the

binary-search-tree property). If we want to delete a node v with no

child, just remove it. If v has one child, then remove v and

connect v ’s parent node with v ’s child. If v is the left child of v .p

then v ’s child becomes the new left child of v .p, and vice versa.

The tricky case is when v has both left and right child nodes.

Introduction



For this case, let u = v .r . We have u 6= nil because v is assumed

to have two children. Next, starting from u, keep going left until

reaching a node w with no left child. Check that w has the

smallest key in the subtree of u. Finally we remove w (using one of

the first two cases because w does not have left child), and then

replace the key of u by the key of w . Verify the correctness as how

the binary-search-tree property is maintained.

Introduction



Insertion is easier. We start by searching for the input key k in the

binary tree. This finally leads us to a leaf u. If u.k > k , create a

new node v as the left child of u and set v .k = k . If u.k ≤ k ,

create a new node v as the right child of u and set v .k = k .

Again, verify the correctness that the binary-search-tree property

is well maintained.

Introduction



While both insertion and deletion are easy, they may lead to highly

unbalanced trees and they are responsible for very bad worst-case

performance. For example, start with an empty tree and insert

1, 2, . . . , n. This results in a tree (a path actually) of height n − 1.

In the next class we will see how to insert and delete “carefully” in

order to maintain a balanced tree with O(lg n) height. This gives

us a data structure that supports all operations in worst-case

O(lg n) running time.

Introduction


