
Analysis of Algorithms I:

Augmenting Data Structures

Xi Chen

Columbia University

Introduction

In many situations, we need to design our own data structures for

features not supported by the standard ones. It is usually easier to

augment existing data structures than designing a new one from

scratch. We will use red-black trees to demonstrate ideas useful in

augmenting data structures. Red-black tree: Insert, Delete,

Search, Min, Max, Predecessor and Successor all in O(lg n) time in

the worst case. Can we augment it to support order statistics:

1 Select (i): return the node with the ith smallest key.

2 Rank (x): given a node x , return the rank of x .k (i.e., return i

such that x .k is the ith smallest key in the tree).

also in O(lg n) worst-case running time?

Introduction

Idea: For each node x , add a new field/attribute x .size to store

of internal nodes (excluding the nils) in the subtree of x .

We call it the subtree size of x . They satisfy:

1 If x is a nil leaf, then x .size = 0;

2 If x is an internal node (and thus, has two children), then

x .size = x .left.size + x .right.size + 1

that is, the size of the left subtree plus the size of the right

subtree plus x itself.

Introduction

First, we show that, given a red-black tree in which each node x

has this extra field x .size, then Select can be done efficiently in

worst-case O(lg n) running time.

Introduction

To find the node with the ith smallest key:

1 Set x to be the root and h = x .left.size + 1 Because of the

Binary Search Tree property, all keys in the left subtree are

≤ x .k and all keys in the right subtree are ≥ x .k . Since there

are x .left.size many keys in the left subtree, we know that x .k

must be the hth smallest key in the tree.

2 i = h: simply return x

3 i > h: find the the (i − h)th smallest key in the right subtree

4 i < h: find the ith smallest key in the left subtree

Introduction

The Rank operation can be done similarly in O(lg n) time, given a

red-black tree in which each node maintains its subtree size. A

quick question: Why not just add an extra field x .rank in each

node x? This certainly makes the Rank operation much more

efficient: O(1), while we can still handle Select in O(lg n). Recall

in Select from the last slide, h is essentially the rank of x .

Introduction

However, the rank of a node (its key, more exactly) is very fragile.

Remember the goal here is to maintain a dynamic set. So between

order statistics queries, there might be insertions and deletions. If

we insert a new key, it may change the rank of many nodes in the

tree. Worst-case: If we insert a new key smaller than all keys

currently in the red-black tree, then all the ranks increase by 1,

which would cost us Ω(n) time to update the ranks. But we will

see that the cost of updating subtree sizes when inserting (or

deleting, see the textbook) a new node is much lower.

Introduction

In RB-Insert, we start by calling BST-Insert to insert the new

node, which we denote by z . By the end of BST-Insert, most of

the nodes in the tree have its subtree size remain unchanged. The

only nodes for which we need to update the size field are those on

the path from z to the root, and we need to increase each of them

by 1. So it only takes us O(lg n) time, because a red-black tree has

O(lg n) depth. By the end, every node x in the tree has the correct

size field x .size.

Introduction

Then RB-Insert continues! The key here is that RB-Insert never

changes the tree structure in Case 1 (recoloring only), so the

subtree size of each node remains the same. RB-Insert only

changes the tree structure in Case 2/3 by rotation (and the total

number of rotations performed is ≤ 2). We show next that the

damage caused by a rotation is minimal: the size fields can be

fixed in O(1) time.

Introduction

We follow Figure 14.2 where a left-rotation is performed at y in

the tree on the right. Check that all the nodes have the same

subtree size before and after the rotation, except x and y . We can

use the following code to fix the damage caused by a left-rotation:

y .size = x .size

x .size = 1 + x .left.size + x .right.size

This clearly can be done in O(1) time.

Introduction

To summarize, here is how we augment RB-Insert to update

subtree sizes during the insertion of a new node: After calling

BST-Insert, we increment the size field of every node on the path

from the root to the new node (and set the size field of the new

node to be 1). When we perform a rotation in Case 2/3, we

update the size field of the two nodes involved properly. As a

result, the running time of the new RB-Insert is still O(lg n) in the

worst case. Same story for RB-Delete because the only structural

changes in the tree come from rotations.

Introduction

Next we give a more involved example, called Interval trees (very

useful in practice), of augmenting data structures. Goal: A data

structure that maintains a dynamic set of intervals. In addition to

Insert and Delete, the data structure also needs to support

Interval-Search (to be defined later).

Introduction

Here an (closed) interval [t1, t2] is an ordered pair of real numbers

with t1 ≤ t2. (For example, t1 and t2 are the starting and ending

time of a process.) We will use i to denote an interval. When

i = [t1, t2], we denote t1 by i .low and t2 by i .high.

Introduction

We need a data structure to support Insert (inserting an interval

into the set), Delete (deleting an interval), and Interval-Search:

Given an interval i , find an interval that overlaps with i .

We say two intervals i and i ′ overlap if

i .low ≤ i ′.high and i .high ≥ i ′.low

And they do not overlap if

either i .low > i ′high or i .high < i ′.low

Introduction

We augment red-black trees to support Interval-Search as follows:

1 Each node x contains an interval x .int, and we use the low

endpoint of x .int as the key of x in the red-black tree.

2 In addition to an interval (and of course, a color because it is

a red-black tree), each node x also stores the largest high

endpoint in the subtree rooted at x , in x .max. (This is the

place where things become less intuitive but we will see it

works out later.)

3 Check that RB-Insert (and RB-Delete as well) can still be

augmented to update the max fields while inserting a new

node, with worst-case O(lg n) running time.

Introduction

Next we show that, given an interval red-black tree in which each

node has a max field, Interval-Search can be done in O(lg n) time.

Interval-Search (i): search for an interval that overlaps with i

1 Set x to be the root

2 If x .int and i overlap

3 return x

4 else if x .left.max ≥ i .low

5 recursively call Interval-Search (i) in the left subtree

6 else

7 recursively call Interval-Search (i) in the right subtree

Introduction

To prove the correctness of Interval-Search, we need to show that

the algorithm always makes a “correct” decision of going left or

right, if x .int and i do not overlap (if they overlap we are done).

The tricky thing here is the meaning of a “correct” decision. Here

it means when the algorithm decides to go left or right, there must

be an interval that overlaps with i in that subtree if there is one

such interval in the whole tree. So the algorithm never makes a

“wrong” decision by going into a subtree with no interval that

overlaps with i while such intervals exist in the other subtree.

Introduction

We let x denote the root, and let

L =
{
i ′ ∈ left subtree of the root that overlaps with i

}
R =

{
i ′ ∈ right subtree of the root that overlaps with i

}
Lemma

If x .int and i do not overlap and the algorithm decides to go right,

then L = ∅.

Lemma

If x .int and i do not overlap and the algorithm decides to go left,

then L ∪ R 6= ∅ implies that L 6= ∅.

Introduction

The first lemma is usually what we would expect: If the algorithm

decides to go right, it means all intervals that overlap with i (if

any) must lie in the right subtree because none of them lies in the

left subtree as the first lemma indicates. The second lemma is the

tricky part. If the algorithm decides to go left, it does not mean

that R is empty. It only means that if there is at least one interval

that overlaps with i in the tree, then some of them must lie in the

left subtree so we may just narrow the search down to the left

subtree. So in either cases, the algorithm moves to a subtree with

at least one interval that overlaps with i , if such an interval exists

in the tree. The correctness follows from these two lemmas.

Introduction

Proof of the first lemma is straight-forward. Let y = x .left.

Because y .max < i .low and because y .max is the largest high

endpoint among all intervals in the left subtree, we have

i ′.high ≤ y .max < i .low, for any interval i ′ in the left subtree

Therefore, none of the intervals in the left subtree overlaps with i .

Introduction

For the second lemma, we show that L = ∅ implies R = ∅. Assume

L = ∅. By the definition of y .max, there is an interval i ′ in the left

subtree with i ′.high = y .max ≥ i .low. But L = ∅ implies that i ′

does not overlap with i . This means that i ′ must satisfy

i ′.low > i .high

On the other hand, because we use the low endpoint as the key of

the tree. Every interval i ′′ in the right subtree satisfies

i ′′.low ≥ i ′.low > i .high

and thus, none of the intervals in the right subtree overlap with i .

Introduction

