
Analysis of Algorithms I:

Amortized Analysis

Xi Chen

Columbia University

Introduction



Amortized analysis is a set of techniques (Aggregate analysis, the

Accounting method, and the Potential method) for proving upper

bounds for the running time of an algorithm, usually involving a

sequence of data-structure operations. Here is what we usually do:

Determine the worst-case running time of any data-structure

operation in the sequence, say t; If the sequence contains n

operations, then nt is an upper bound for the total running time.

This analysis is technically correct (and in many cases gives us a

tight upper bound for the total running time, as we have seen in

many examples so far), but sometimes is overly pessimistic (as we

will see in the following example).

Introduction



Consider a stack S (right now no need to worry about overflow but

we will come back to this issue later) that supports not only Push

and Pop but the following Multipop operation as well:

Multipop (S , k):

1 while S is not empty and k > 0 do

2 Pop (S)

3 k = k − 1

It is clear that Pop is the special case when k = 1. We let S .num

denote the number of elements in S . At the beginning, S .num = 0.

For simplicity, we assume a Push operation costs one unit of time

and a Multipop costs ` units of time if it makes ` calls to Pop.

Introduction



The question is then: Starting with an empty stack, what would be

a good upper bound for the worst-case total cost (or running time)

of a sequence of n Push and Multipop operations? Here is a rather

loose analysis: Each Push operation costs 1; Each Multipop

operation costs ≤ n because there can never be more than n

elements in the stack; Therefore, each operation in the sequence

costs ≤ n and the worst-case total running time is ≤ n2. However,

a better analysis reveals that the total running time is indeed ≤ 2n.

Introduction



The reason why n2 is a very loose upper bound: While it is

possible that some of the Multipop operations in the sequence may

cost a lot by making a lot of calls to Pop, not all of them can. In

particular, for a Multipop operation to take Ω(n) time, there must

be Ω(n) Push operations before it to build up the stack with Ω(n)

many elements.

Introduction



Proof of the 2n upper bound: The total cost of all the Push

operations is clearly ≤ n. For Multipop, notice that the cost of

each Multipop operations is equal to

the number of calls made to Pop

So the total cost of all Multipop operations in the sequences is

equal to the total number of calls to Pop. But this can be no more

than n because we only call Pop when the stack is non-empty:

number of calls to Pop ≤ number of Push in the sequence ≤ n

It then follows that the total cost of all Multipop operations in the

sequence is ≤ n as well. The upper bound of n + n = 2n follows.

Introduction



The method we just used is called the Aggregate analysis in the

textbook, where we try to analyze the total cost (or running time)

directly. We can also use the Accounting method: Assume each

unit of running time (e.g., a Push or a Pop operation) costs one

dollar. For each operation, we associate it with two costs:

1 Actual cost: the running time of the operation. For example,

the actual cost of a Push operation is 1 and the actual cost of

a Multipop operation is the number of calls to Pop.

2 Amortized cost: the money we actually pay for this operation.

Introduction



The tricky part: The amortized cost of an operation may not be

the same as its actual cost. To apply this method, the most

difficult part is to design an appropriate pricing scheme: How do

we set the amortized cost of each opertion? If an operation’s

amortized cost exceeds its actual cost, we use the former to pay

the actual cost first and store the difference in a bank account. (At

the beginning, the balance is 0.) If an operation’s amortized cost is

less than its actual cost, we can draw from the bank account to

cover the difference. We claim that if the bank account by the end

(after all n operations) is nonnegative, then the total amortized

cost is an upper bound for the total actual cost (or equivalently,

the total running time).

Introduction



More formally, given any sequence of n operations, we use ci to

denote the actual cost of the ith operation and use di to denote

the amortized cost (charged according to a pricing scheme to be

specified later). After k operations, the bank account balance is

k∑
i=1

di −
k∑

i=1

ci

If by the end the bank account balance is nonnegative, we have

n∑
i=1

di ≥
n∑

i=1

ci

so the total amortized cost is an upper bound for the total actual

cost. The tricky part: How to set the amortized cost of each op?

Introduction



For the stack problem, we set the amortized cost as follows:

1 If the ith operation is Push, di = 2;

2 If the ith operation is Multipop, di = 0.

Intuition behind this scheme: A Multipop may have a very high

actual cost. But we do not charge it on Multipop directly. Instead,

we charge (or blame) it to each Push operation because it is these

Push operations that build up a large stack. So for each Push

operation we charge 2 dollars: 1 for its actual cost and 1 for the

cost of a future Pop (called by Multipop). It may remind you of

the deposit money we pay for each bottled water for the recycling

cost in the future.

Introduction



To see this pricing scheme works, check the following two things.

First, what is the total amortized cost? This is easy:

n∑
i=1

di ≤ 2n

Second, is the balance nonnegative by the end? If so we know that

n∑
i=1

ci ≤
n∑

i=1

di ≤ 2n

which gives us an upper bound of 2n for the total actual cost.

Running an example would suggest the following lemma:

Introduction



Lemma

At any time, if there are k ≥ 0 elements in the stack, then our

bank account balance is exactly k.

From it we know that the balance never goes to negative. Great!

This implies that 2n, the total amortized cost, is an upper bound

for the total actual cost (or equivalently, the total running time).

In the next slide, we prove this lemma.

Introduction



We use induction. The basis is trivial because at the beginning the

balance is 0 and the stack is empty. Assume by the end of the ith

operation, the stack has k elements and the balance is k . We show

that the statement holds after the (i + 1)th operation. Two cases:

1 If it is a Push operation: The actual cost is 1 but the

amortized cost is 2, so we store 1 dollar into the account and

the new balance is k + 1. But the number of elements in the

stack also increases by 1 so they match.

2 If it is Multipop and makes ` ≤ k calls to Pop: The actual

cost is ` but the amortized cost is 0, so we need to draw `

dollars from the account. The new balance is k − ` but there

are now only k − ` elements in the stack. Again they match.

Introduction



Next example, Dynamic Stack (Dynamic Table in the textbook,

same thing): Suppose we need a standard stack to handle a

sequence of Push and Pop (each costs 1). For now assume we need

to deal with a sequence of Push operations (no Pop). However, we

do not know the length of the sequence in advance and thus, we do

not know how much space we should allocate for the stack. (Given

a stack S , we will use S .size to denote the space we allocate to it

so S can store S .size many elements at most. We continue to use

S .num to denote the current number of elements in S .)

Introduction



We use the following doubling strategy: Start by allocating no

space to S . When the first Push (S , x) operation arrives, we create

a stack with size 1 and push the element x into the new stack.

After this, we deal with each Push operation as follows:

1 If S .num < S .size then

2 Push (S , x)

3 Else (S overflows because it is full: S .num = S .size)

4 Create a new stack of size twice of the current size

5 Copy all elements of the old stack into the new stack

6 Also push the new element into the new stack

7 Free up the space allocated to the old stack

Introduction



For simplicity, the cost a Push operation is 1 if the stack is not full

(so no stack expansion occurs); and the cost of a Push operation,

when an expansion occurs, is:

size of the old stack + 1

This accounts for the number of operations needed to move

elements from the old stack to the new one as well as pushing the

new element into the new stack. For example, the cost of the first

7 Push operations are: 1, 2, 3, 1, 5, 1, 1, . . .

Introduction



This strategy is clearly space-efficient: At any time, the space

allocated is at most twice of the number of elements in the stack.

But is it time/cost-efficient? What is the total cost of a sequence

of n Push operations? A very loose upper bound: Every Push in

the sequence costs ≤ n (as S .num ≤ n − 1 before any Push in the

sequence) so the total cost is ≤ n2. Again, it is loose because not

all Push operations in the sequence can cause stack expansions.

Most of them cannot and only cost 1 each. A tight upper bound is

indeed 3n.

Introduction



Aggregate analysis: Because we only consider a sequence of n

Push here, we actually know exactly the cost of the ith Push:

ci =

{
i if i − 1 is a power of 2

1 otherwise

It comes from the observation that the size of the stack is always a

power of 2 (after the first Push). Now assume at this moment the

stack has size 2k , when will the next expansion (to 2k+1) happen?

It happens when the stack is full (overflow) and a new Push

operation comes in. As a result, this must be the (2k + 1)th Push

in the sequence, and the cost of this Push operation is 2k + 1. The

formula above then follows.

Introduction



Let k be the unique integer such that n ≥ 2k + 1 but

n < 2k+1 + 1. Using the formula from the last slide, we have

n∑
i=1

ci =
n∑

i=1

1 + (ci − 1) = n +
k∑

j=0

2j = n + 2k+1 − 1 < 3n

Introduction



Finally we use this problem to demonstrate the potential method.

This is the most powerful method, and is somewhat similar to the

accounting method but is more delicate and can deal with more

difficult problems when used appropriately. The most tricky part is

to design an appropriate potential function Φ, a function that maps

a stack (or a data structure being considered) to a real number.

Introduction



The reason why Φ is called a potential function is due to its

similarity with the conversion between potential and kinetic energy

in physics. The potential method has the following four steps:

1 Design a function Φ that maps a stack to a real number.

2 Given any sequence of n operations (for now any sequence of

n Push operations, will allow Pop later), let S0 denote the

initial stack with S0.num = S0.size = 0 and let Si denote the

stack after the first i operations. Show that Φ(Sn) ≥ Φ(S0).

3 Use Φ to derive the amortized cost of the ith operation:

di = ci + Φ(Si ) − Φ(Si−1)

4 Conclude that
∑n

i=1 di is an upper bound for
∑n

i=1 ci .

Introduction



To prove the conclusion of Step 4, we have

d1 = c1 + Φ(S1) − Φ(S0)

d2 = c2 + Φ(S2) − Φ(S1)

· · ·
dn = cn + Φ(Sn) − Φ(Sn−1)

Summing up all these n equations gives us

n∑
i=1

di =
n∑

i=1

ci + Φ(Sn) − Φ(S0) ≥
n∑

i=1

ci

where the last inequality uses Φ(Sn) ≥ Φ(S0) from Step 2.

Introduction



Now we use the following function Φ to give an upper bound for a

Dynamic Stack, given a sequence of n Push operations:

Φ(S) = 2 · S .num − S .size

It is easy to check that Φ(S0) = 0 because S0.num = S0.size = 0.

We also have Φ(Si ) ≥ 0 for any i = 1, 2, . . . , n. This is simply

because the doubling strategy guarantees that at any time, the

number of elements in S is at least half of its size (space-efficient).

This finishes Step 2 because Φ(Sn) ≥ 0 = Φ(S0).

Introduction



In Step 3, we show that di ≤ 3 for any i = 1, 2, . . . , n. For i = 1,

we have d1 = 1 + Φ(S1) − Φ(S0) = 1 + 1 − 0 = 2. For any i > 1,

we consider the following two cases: Case 1: The ith Push

operation does not trigger an expansion (so ci = 1). Use S and S ′

to denote the stack before and after the operation, then we have

S ′.num = S .num + 1 and S ′.size = S .size

As a result, we have

di = 1 + (2 · S ′.num − S ′.size) − (2 · S .num − S .size) = 3

Introduction



Case 2: The ith Push operation does trigger an expansion. Let S

and S ′ denote the stack before and after the operation, then

S .num = S .size, ci = S .size + 1 and

S ′.num = S .num + 1 and S ′.size = 2 · S .size

As a result, we have

di = ci + (2 · S ′.num − S ′.size) − (2 · S .num − S .size) = 3

Therefore, we conclude in Step 4 that the total amortized cost∑
i=1 di ≤ 3n is an upper bound for the total actual cost

∑n
i=1 ci .

Introduction



Read Section 17.4, in which we use the following contraction

strategy to support dynamic Pop: Whenever a Pop operation

causes the table to become less than 1/4 full, we create a new

stack of half the size of the current stack; copy all elements from

the current stack into the new one; and free up space allocated for

the current stack. Space-efficient: For any sequence of Push and

Pop operations, the number of elements in the stack is always at

least 1/4 of the stack size.

Introduction



Using a carefully designed potential function (See equation 17.6),

one can show that the amortized cost of any operation (no matter

it is Push or Pop) in the sequence is bounded above by a constant.

Thus, the total running time remains O(n). This is an example

that demonstrates the power of the potential method (mission

impossible for the Aggregate analysis).

Introduction


