
Analysis of Algorithms I:

All-Pairs Shortest Paths

Xi Chen

Columbia University

Introduction

The All-Pairs Shortest Paths Problem. Input: A directed weighted

graph G = (V ,E) with an edge-weight function w : E → R.

Output: δ(u, v) for all u, v ∈ V , where δ(u, v) denotes the

shortest-path weight from u to v . Depending on the weights of G :

If only nonnegative weights are allowed, we can run Dijkstra’s

algorithm |V | = n times, once for each vertex u ∈ V : total running

time is O(n(m + n lg n)). If we allow negative weights, then run

Bellman-Ford n times: O(n2m). We will focus on the latter more

general case, and give three algorithms with running time much

better than O(n2m).

Introduction

Since we are dealing with directed graphs with general weights,

recall that δ is well-defined over all pairs of vertices (u, v) only

when there is no negative-weight cycle in G . We start by giving an

algorithm, using Bellman-Ford, to test whether G has a negative

cycle or not. Recall that if we run Bellman-Ford on G and a vertex

u ∈ V , then it returns “negative cycle” if and only if there is a

negative-weight cycle reachable from u.

Introduction

Test if G has a negative-weight cycle:

1 Add a new vertex s and an edge (s, v) for every v ∈ V

with 0 weight. Call the new directed graph G ′.

2 Run Bellman-Ford on G ′ and s: There is a negative cycle in

G ′ reachable from s if and only if G has a negative cycle.

For the last statement: It is easy to see that if G has a negative

cycle, then the same cycle must be reachable from s in G ′. On the

other hand, if G ′ has a negative cycle C then C cannot visit the

source vertex s (why?) so it is also a negative cycle in G as well.

This algorithm clearly has running time O(nm).

Introduction

Now assume G has no negative cycle. We start with Johnson’s

algorithm for all-pairs shortest paths. The running time is

O(n2 lg n + nm)

Compare it with O(nm) of Bellman-Ford for single-source shortest

paths. When does it have essentially the same running time as

Bellman-Ford? Johnson’s algorithm uses the so-called technique of

reweighting: As mentioned earlier, if all the weights are

nonnegative, we can compute δ by running Dijkstra n times:

O(n(m + n lg n)) = O(n2 lg n + nm)

Introduction

But our input graph G may have negative weights. In this case,

Johnson’s algorithm uses Bellman-Ford to compute a new

nonnegative weight function w ′ : E → R≥0 such that

For any u, v ∈ V , it is easy to compute δ(u, v) using δ′(u, v),

where δ′ denote the shortest-path weight in G with w ′.

Introduction

It will become clear later how easy it is to recover δ(u, v) from

δ′(u, v). But if it is the case, then we get the following algorithm:

1 Reweight w : Compute (nonnegative) w ′ from w

2 Run Dijkstra n times to compute δ′(u, v) for all u, v ∈ V

3 For all u, v ∈ V , compute δ(u, v) from δ′(u, v)

Introduction

Here is how we compute w ′ (reweight): Run Bellman-Ford on G ′

(recall the construction of G ′ from G earlier) and s. Assume there

is no negative cycle in G ′. Then upon termination we get δG ′(s, v)

for all v ∈ V , where δG ′(s, v) denotes the shortest-path weight

from s to v in G ′ (note that it must be ≤ 0, why?). Finally for

each edge (u, v) ∈ E , reweight w(u, v) to be:

w ′(u, v) = w(u, v) + δG ′(s, u)− δG ′(s, v)

Introduction

Two things we need to check: (1) Is w ′ nonnegative? (2) How

can we recover δ(u, v) from δ′(u, v) efficiently? For convenience

we use h(u) to denote δG ′(s, u) for u ∈ V . First, we show that

w ′(u, v) ≥ 0 for all (u, v) ∈ E . This is because δG ′ satisfies

δG ′(s, v) ≤ δG ′(s, u) + w(u, v) ⇒ w(u, v) + h(u)− h(v) ≥ 0

The second question is less trivial. Let p = 〈v0v1 · · · vk〉 denote a

path from u = v0 to v = vk in G . We compare w(p) and w ′(p):

w(p) =
k−1∑
i=0

w(vi , vi+1) and w ′(p) =
k−1∑
i=0

w ′(vi , vi+1)

Introduction

Plugging in the construction of w ′ from w , we have

w ′(p) =
k−1∑
i=0

(
w(vi , vi+1) + h(vi)− h(vi+1)

)
= w(p) + h(v0)− h(vk) = w(p) + h(u)− h(v)

As a result:

δ′(u, v) = min
p:u v

w ′(p) = min
p:u v

(
w(p) + h(u)− h(v)

)
= h(u)− h(v) + min

p:u v
w(p) = h(u)− h(v) + δ(u, v)

Introduction

To summarize, here is Johnson’s algorithm:

1 Construct G ′ from G

2 Bellman-Ford on G ′ and s to get h(v) = δG ′(s, v), ∀ v ∈ V

3 For each edge (u, v) ∈ E do

4 set w ′(u, v) = w(u, v) + h(u)− h(v)

5 Run Dijkstra n times to compute δ′(u, v) for all u, v ∈ V

6 For all u, v ∈ V do

7 set δ(u, v) = δ′(u, v) + h(v)− h(u)

Total running time: O(nm + n(m + n lg n)) = O(nm + n2 lg n).

Introduction

Next we present two algorithms based on Dynamic Programming.

In both algorithms, we assume there is no negative cycle in G so

δ(u, v) is always well-defined. In both algorithms, we fill up a

3-dimensional table of size n3, but based on different recursive

formulas. The cells of the two tables also have different meanings.

From now on, we assume V = {1, . . . , n} = [n] and let W = (wij)

denote the following n × n matrix:

wij =


0 if i = j

w(i , j) if i 6= j and (i , j) ∈ E

+∞ if i 6= j and (i , j) /∈ E

Introduction

The first algorithm is based on the following recursive formula:

Given i , j ∈ V and t ≥ 1, let d
(t)
ij denote the minimum weight

of any path from i to j that contains at most t edges. Thus,

d
(1)
ij = wij

For each t ≥ 1 we also define the following n × n matrix D(t):

The (i , j)th entry of D(t) is exactly d
(t)
ij , i , j ∈ V .

Introduction

Now it becomes clear that in the DP algorithm, we will start with

D(1) and use it to compute D(2), and then D(3), and so on and so

forth. Before giving the recursive formula for computing D(t) from

D(t−1), we first answer the following question: When should this

algorithm stop? The answer is t = n − 1 because we have

δ(i , j) = d
(n−1)
ij

This follows from the fact that, because there is no negative cycle

there must be a simple path from i to j with at most n − 1 edges.

Now our goal is clear: start from D(1) = W and compute D(n−1).

Introduction

Assume we have computed D(t−1) for some t ≥ 2. How can we

use it to compute D(t) efficiently? Here is a recursive formula:

d
(t)
ij = min

k∈V

{
d
(t−1)
ik + wkj

}
(1)

Intuitively, this formula says that to get d
(t)
ij , we just need to

enumerate all possible predecessors k of j . For each k, concatenate

a shortest path from i to k, that contains at most t − 1 edges, and

(k , j) of weight wkj . Taking the minimum gives us d
(t)
ij .

Introduction

The proof is very simple. Let p = 〈i0i1 · · · i`−1i`〉 denote a

shortest-path from i to j of length at most t so that

d
(t)
ij = w(p)

Let p′ = 〈i0i1 · · · i`−1〉 and s = i`−1, then (why?)

d
(t)
ij = w(p) = w(p′) + wsj ≥ d t−1

is + wsj

This implies that

d
(t)
ij ≥ min

k∈V

{
d
(t−1)
ik + wkj

}
The other direction is even simpler.

Introduction

This immediately gives us the following DP algorithm:

1 set D(1) = W

2 for t from 2 to n − 1 do

3 for i from 1 to n do

4 for j from 1 to n do

5 set d
(t)
ij = mink∈V

{
d
(t−1)
ik + wkj

}
6 return D(n−1)

The running time is clearly Θ(n4). We next give a connection to

matrix multiplication to reduce its running time to O(n3 lg n).

Introduction

To this end, recall that given three n × n matrices:

A = (aij), B = (bij) and C = (cij)

C = A · B means the following equation for all i , j ∈ [n]:

cij =
∑
k∈[n]

aik · bkj

Introduction

Now we define the so-called “funny” multiplication of A and B:

C = A⊗ B, where cij = min
k∈[n]

{
aik + bkj

}
Basically we replace “·” by “+” and replace

∑
by min. It is easy

to check that this “funny” operation remains associative:

A⊗ (B⊗ C) = (A⊗ B)⊗ C

Introduction

Using the “funny” multiplication and (1), we have for any t ≥ 2

D(t) = D(t−1) ⊗W

Because D(1) = W, we have

D(t) =
((

(W ⊗W)⊗W
)
⊗ · · · ⊗W

)
⊗W

Using the technique of repeated squaring, we can compute the

matrix D(n−1) more efficiently as follows:

Introduction

Assume n − 1 is a power of 2, then starting from D(1) = W:

1 D(2) = D(1) ⊗D(1)

2 D(4) = D(2) ⊗D(2)

3 · · ·
4 D(n−1) = D(n−1)/2 ⊗D(n−1)/2

So overall we only need to perform lg n “funny” multiplications of

n × n matrices, instead of n. Each “funny” multiplication, by its

definition, can be done in O(n3) time. So the total running time is

O(n3 lg n). Quick question: What if n − 1 is not a power of 2? A

more important question: Where did we use the property that ⊗ is

an associative operation? Actually all the equations above, except

the first one, require the associative property (why?).

Introduction

Can we continue to improve it and get an algorithm with running

time O(n3)? The previous naive DP algorithm takes O(n4)

running time because to compute each entry of the 3-dimensional

table, the recursive formula needs to compute the minimum of n

sums. Next we show a different DP algorithm. While the table is

still 3-dimensional and of size n3, we redefine the meaning of each

entry and show that the recursive formula becomes much simpler

and each entry can be computed in O(1) time, leading to a O(n3)

DP algorithm: the Floyd-Warshall algorithm. This is a good

example where different recursive formulas lead to DP algorithms

with different running time.

Introduction

Here is the most tricky part of Floyd-Warshall: What do we store

in the 3-dimensional table? Recall V = {1, 2, . . . , n} = [n]. Given

i , j ∈ n and k : 0 ≤ k ≤ n, let c
(k)
ij denote the weight of a shortest

path from i to j in which all intermediate vertices (except i and j

themselves) are in the set {1, 2, . . . , k}. In particular, for k = 0 we

have c
(0)
ij = wij because the path can only visit i and j . For k = n,

d
(n)
ij = δ(i , j)

So the goal of Floyd-Warshall is to compute d
(n)
ij for all i , j ∈ V .

Introduction

For any k ≥ 1, we have the following recursive formula for c
(k)
ij :

c
(k)
ij = min

(
c
(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj

)
One direction, c

(k)
ij ≤ min

(
c
(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj

)
, is trivial.

Introduction

We prove the other direction: Let p be a shortest path from i to j

for which all intermediate vertices come from {1, . . . , k}, then

c
(k)
ij = w(p) ≥ min

(
c
(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj

)
To this end, we consider the following two cases. If k is not an

intermediate vertex of p, then by definition we have (why?)

w(p) ≥ c
(k−1)
ij

Introduction

If k is actually an intermediate vertex of p, then let p′ denote the

subpath of p from i to k and let p′′ denote the subpath from k to

j . Then by definition we have (why?)

w(p′) ≥ c
(k−1)
ik and w(p′′) ≥ c

(k−1)
kj

and thus, we get

c
(k)
ij = w(p) = w(p′) + w(p′′) ≥ c

(k−1)
ik + c

(k−1)
kj

This finishes the proof of the correctness of the recursive formula.

Finally we present the Floyd-Warshall algorithm:

Introduction

Floyd-Warshall:

1 for all i , j ∈ [n] do

2 set c
(0)
ij = wij

3 for k from 1 to n do

4 for i from 1 to n do

5 for j from 1 to n do

6 set c
(k)
ij = min

(
c
(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj

)
7 return

(
c
(n)
ij

)
The running time is Θ(n3). Again, the improvement is due to the

fact that each entry only takes O(1) time using the new formula.

Introduction

