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Abstract— In Internet telephony, end systems can take a much
larger role in providing services than in traditional telephone
systems. We analyze the importance of end system services
and describe the services and the Service Logic Execution
Environment (SLEE) implemented in our SIP user agent,SIPC.
Since we believe that end system services differ in their require-
ments from network services, we define a new service creation
scripting language called Language for End System Services
(LESS). Compared with other service creation languages, LESS
is extensible, can be easily understood by non-programmers and
contains commands and events for direct user interaction and
the control of media applications.

I. INTRODUCTION

One of the key promises of Internet telephony lies in the
ability of developing and deploying innovative services rapidly
and efficiently. Internet telephony services are not limited to
those performed in servers operated by service providers; end
systems can play a much larger role in providing services
than in traditional telephone networks. In Internet telephony
systems, end systems could be PCs or embedded SIP (Ether-
net) phones with CPU and memory. End systems can execute
programs to perform call control and other telecommunication
services. For example, our SIP user agent, SIPC, can execute
SIP CGI [11] programs or Call Processing Language (CPL)
[9] [10] scripts to automatically handle SIP requests and
responses. The Pingtel Xpressa SIP phones allow users to
upload Java class files to perform services such as caller-
specific ring tones.

We define end system services as the services that are
performed in IP telephony end systems such as workstations,
PDAs, Ethernet phones or Internet-connected appliances and
network services as the services that are performed in network
servers such as SIP [13] proxy servers.

Unlike network services, end system services can directly
control media applications and interact with users. This allows
them to completely automate all aspects of a call. For example,
only an end system service can automatically accept a call
based on address information.

Enabling end system services not only provides additional
user convenience, but also encourages service innovation. In
general, while it is difficult for subscribers to modify network
services that are operated by carriers, they can install and
modify services on end systems they own.

The development of end system services depends on the
underlying protocols used for call signaling. SIP promotes end
system services because it allows end-to-end operations: two

SIP user agents (UAs) can talk to each other directly. SIP
header fields, which can be inserted and modified by end sys-
tems, can control services in end systems without interference
from proxy servers. The simplicity of SIP also makes it easy to
develop services in end systems since end systems often have
limited computational capabilities. In Section II, we show the
services and Service Logic Execution Environment (SLEE)
provided in our SIP user agent, SIPC.

Since traditional service creation methods address the needs
of carriers with trained personnel, we defined a new XML-
based script language called Language for End System Ser-
vices (LESS) specifically for end system service creation
(Section III). We then compare it with other languages.

II. END SYSTEM SERVICES AND SERVICE LOGIC

EXECUTION ENVIRONMENT IN SIPC

SIPC is a SIP user agent developed at Columbia University.
It can be used for Internet telephony calls, multimedia confer-
ences, instant messaging, shared web browsing and control of
network appliances.

A. End system services in SIPC

SIPC offers call control and presence-related services, emer-
gency services, network appliance control and shared web
browsing. We describe them in detail below.

Call control services: Call control services define how
incoming and outgoing signaling messages related to a call
session are handled. The call control services implemented in
SIPC include many services defined in ITU-T recommendation
Q.1211 [6] such as abbreviated dialing (ABD), automatic call
back (ACB), call forwarding on busy/don’t answer (CFC),
customized ringing (CRG), originating call screening (OCS),
terminating call screening (TCS), just to name a few.

Presence-related services: SIPC is a presence user agent
(PUA) that can notify others about the user’s presence state,
such as online or offline, and receive notifications. With
the support of CPL extensions for presence [19], SIPC can
automatically set up calls when a subscribed-to user comes
online.

Emergency services: An end system can connect to devices,
for example, a fire detector or a temperature monitor, to
detect emergency events and use the SIP event notification
architecture for emergency notification [14]. In addition, the
end system can issue device control commands to handle
the emergencies. In SIPC, we use SOAP messages [15] as



the content of emergency notifications. When SIPC gets an
emergency event, it can, for example, execute a script to flash
lights or close fire doors.

Integration with other Internet services: Several SIP headers
can contain URIs that are resolved by the end system. For
example, a URI in the Call-Info header describes the caller
or callee. A HTTP URL in a Contact header can forward a
call to a web page. In addition to using SIP headers to access
call-related web information, we defined a mechanism to use
the SIP MESSAGE method for shared web browsing [17].
Shared web browsing allows a group of people to visit the
same web sites. SIPC can interact with the local web browser
to retrieve the URL currently being viewed. The visited URL is
then sent to the remote party via the SIP MESSAGE method.
The remote SIPC will instruct its local web browser to visit
the same URL.

Conference control: An end system can also cooperate with
network servers to perform conference control services. We are
developing floor control services using SIP events and SOAP
[20]. With SIPC, the moderator can grant or revoke floors,
participants can claim a floor and watch its status.

B. The service execution environment in SIPC

Several service interfaces and languages have been defined
that allow the creation of services for SIP-based systems.
These include SIP CGI, SIP servlets [7] and CPL. Because
SIP servlets are built upon Java, while SIPC is implemented
in C/C++ and Tcl/Tk, SIPC only supports SIP CGI and CPL.
SIP CGI inherits the HTTP Common Gateway Interface model
[3]. It uses the CGI to exchange information between service
applications and SIP entities. For an incoming SIP message,
the SIP entity invokes the service application and conveys
message information to it through environment variables. The
service application then instructs the SIP entity via commands
written to standard output.

Since SIP CGI scripts allow general-purpose languages
and imposes no restrictions on scripts, they are ill-suited
for untrusted third parties. In contrast, CPL is an XML-
based language that is intentionally limited in its capabilities,
supporting neither loops nor variables nor recursion.

SIP CGI
Applications

CPL
Scripts

ESML
Scripts

Uploaded
Scripts

UI

WI

DC

AI

Services

Service Moderator

SIP stack

SIP CGI
engine

CPL
engine

ESML
engine

UI: User Interaction  WI: Web Interaction
DC: Device Control  AI: Application Interaction

CGI

Service
module

Hardcoded
services

Fig. 1. Architecture of end system service execution environment

Figure 1 shows the architecture of the end system service
execution environment in SIPC. The services include SIP

CGI applications, CPL scripts, LESS (see Section III) scripts
and the scripts uploaded to SIP servers. By using the SIP
PUBLISH method, a SIP UA can send service scripts to
network servers such as SIP proxy servers, saving a local copy
of the uploaded services. The service creation environment
is responsible for examining all the services for potential
conflicts, though the service execution engines will also check
at runtime.

The service engines in SIPC do not interact with the sig-
naling module directly, rather, they communicate with the
service moderator. The service moderator is responsible for
prioritizing services and resolving any conflicts. SIPC executes
services in the order LESS, CPL, SIP CGI and finally hard-
coded services. We chose this order so that the script most
suitable for end systems is executed first.

III. LANGUAGE FOR END SYSTEM SERVICES (LESS)

A. Motivation

Many existing service languages are designed for network
services. The call model for end system services and network
services differ. Figure 2 shows the models of a two-party call
for a network service and an end system service. A network
service establishes connections between multiple addresses,
while end system services instruct the local application to
send media to and receive media from remote addresses. The
different call model implies different states, events and actions
for services, thus a network service script is usually unsuitable
for end systems and vice versa.

Call

Connection Connection

Address1 Address2

Call

Address app1 app2 app3

a. Network service call model        b. End system service call model

Fig. 2. Call models of network services and end system services

In addition, the two kinds of services have different develop-
ers. Network services are usually implemented by experienced
programmers so the functional richness of the service language
is more important than its simplicity. On the other hand, end
system services are usually developed by non-programmers,
making simplicity a requirement.

B. Requirements for an end system service language

An end system service language needs to be simple and easy
to understand by non-programmers. Users would like to move
services they created to different platforms, so a platform-
neutral high-level language is called for. The language needs
to be able to express user interactions and control media
and other end system applications. It should be extensible to
accommodate new services. Since it is restricted to a certain
class of services, it does not have to be Turing-complete.



C. Design strategy of LESS

The development of the Internet and the rise of the eX-
tensible Markup Language (XML) as a language standard
have prompted proposals that XML-based scripting languages
be used for creating telecommunications services. Among
other advantages, XML is platform, network and technology
neutral, independent of underlying programming languages,
and readable by machines as well as humans. For these
reasons, we based LESS on XML.

LESS inherits the tree-like structure from CPL. Like CPL,
it avoids the use of loops, variables and recursion to allow
program inspection and the back-and-forth translation between
a graphical and textual representation.

To make LESS extensible, we use packages to group LESS
events and actions. Initial packages support general multime-
dia call and user interaction.(Section III-E).

LESS is defined as an XML schema rather than a DTD.
Schemas allow the derivation of new types from existing ones,
so LESS can derive a new package from an existing package.
For example, the triggers and actions in the presencepackage
can be derived from the eventpackage, which we will explain
in detail in Section III-E.2. Also, XML schema provides pre-
defined data types, such as datetime and list, making it easier
to define LESS and validate LESS scripts.

<LESS:LESS
xmlns:LESS="urn:ietf:params:xml:ns:LESS"
xmlns:Generic="...:ns:LESS:generic"
xmlns:Presence="...:ns:LESS:presence"
xmlns:UI="...:ns:LESS:ui"
xmlns:xsi="http://.../XMLSchema-instance"
xsi:schemaLocation="......"
name="xyzOnlineCall" priority="0.8">
<subaction name="generalCall">
<Generic:call/>
<UI:alert message="Calling %address%"/>

</subaction>
<Presence:notification
direction="incoming" package="presence">
<Presence:presence-switch>
<event package="presence" is="OPEN">
<LESS:address-switch field="origin">
<address is="sip:xyz@foo.com">
<sub ref="generalCall"/>

</address>
<otherwise>
<UI:alert message="%address% online"/>

</otherwise>
</LESS:address-switch>

</event>
</Presence:presence-switch>

</Presence:notification>
</LESS:LESS>

Fig. 3. LESS service example

D. Elements of LESS

Figure 3 shows a simple LESS script. When
sip:xyz@foo.com is online, the script automatically
places an outgoing call to sip:xyz@foo.com and alerts
the user. The name attribute in LESS:LESS tag provides a
reference of the feature. Users can enable or disable features
by names. The priority attribute in the LESS:LESS
tag is used to solve feature conflicts (Section III-F). The
Presence:notification tag indicates an incoming
presence notification. The Presence:presence-switch
and event tags check the status of the event. The
LESS:address-switch and address tags check
whether the notification is from xyz@foo.com. The sub
tag refers to a subaction named generalCall. Reference
to a subaction likes performing a function call in C
language. The generalCall subaction places an outgoing call
and alerts the user.

The example shows that LESS consists of three basic
elements, namely triggers, switches, and actions. Triggers
determine whether a LESS script should be executed. For ex-
ample, in Figure 3, the Presence:notification trigger
indicates that the script gets executed only for an incoming
presence notification. Triggers can be invoked by call signal-
ing, user interaction, timers or other applications. Switches
represent choices a LESS script can make. For example, in
Figure 3, the LESS:address-switch checks whom the
notification is from and performs different actions accordingly.
Actions place, redirect or reject calls or provide abstract user
interface actions such as alerting or user decisions.

E. LESS packages

LESS groups triggers, switches and actions into packages.
A LESS engine may support only a subset of packages. The
namespace declarations in the LESS:LESS tag indicate which
packages the script uses. Each package has its own namespace,
avoiding naming conflicts for extensions.
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Fig. 4. LESS packages for a full-function end system

As shown in Figure 4, a simple user agent only needs to
support the generic, media and ui packages. A SIP user agent
adds the sip package. The presenceand im packages support
presence and instant messaging agents. The presencepackage
is based on the event package, which provides general event
notification handling. A device control agent needs device



packages. For example, with a serial-to-IR controller like the
Slink-e, an end system can send infrared signal out and control
devices, like VCR. The vcr package, containing commands
such as play, record and fast forward, is then introduced for
VCR control. With the CM11A computer interface, an end
system can control X10 powerline devices and the x10package
is introduced. Other packages include the conference, web,
email and calendar packages, supporting conference control,
interaction with web content, email and calendaring services,
respectively.

Below, we briefly introduce the triggers and actions of the
generic, event and presencepackages and present how to
derive the presencepackage from the event package.

1) GENERIC package: The generic package covers most
call control services, such as accepting, forwarding, rejecting,
terminating calls and placing outgoing calls. It can handle
triggers for timers and incoming and outgoing calls,

2) EVENT package and PRESENCE package: The event
package is based on the SIP event notification architecture
[12]. It introduces two triggers, namely subscription
and notification. The new triggers handle incoming or
outgoing subscriptions and notifications respectively. It also
defines a new switch named event-switch making choices
based on the event value.

The presencepackage is derived from the event package.
Figure 5 shows the basic TriggerType defined in the basic
LESS schema. Figure 6 shows how the notification
trigger in the event package extends the basic TriggerType
with adding two new attributes. Figure 7 shows that in the
eventpackage’s notification trigger, with restricting the
package attribute to a fixed value presence, we get the
presencepackage’s notification trigger.

F. Handling feature interaction in LESS

The priority attribute in the event tag helps to resolve
conflicts when multiple scripts subscribe to the same event.
The script with highest priority gets executed first. If the ac-
tions defined in the higher-priority script cannot be performed
(e.g., the switches cannot be matched), the LESS engine will
continue to execute the lower-priority scripts.

G. Creating LESS services

Users can use a text editor to create LESS service scripts
directly. However, it is more efficient to break the service cre-
ation process into two stages. In the first stage, a service tem-
plate is created, represented in Figure 8 as service.less.
The service template is written in LESS, but uses conven-
tions for user-configurable values. For example, <address
is="${var}"> means that the address value is configurable.
${var} is then replaced by user input. The second stage
is to configure the service template and generate the LESS
scripts. Users can use a graphical editor to fill in variables
for the template or the template can be translated to HTML
page by eXtensible Stylesheet Language (XSL) and XSL
Transformations (XSLT). When performing translation, using
the xsl:if tag, the XSLT script checks the value of each

<xs:complexType name="TriggerType"
abstract="true">

<xs:group ref="Node"/>
</xs:complexType>

Fig. 5. TriggerType in the basic LESS schema

<xs:complexType name="NotificationType">
<xs:complexContent>
<xs:extension base="LESS:TriggerType">
<xs:attribute name="direction"
type="LESS:DirectionType"/>

<xs:attribute name="package"
type="xs:string" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Fig. 6. ’notification’ trigger in event package

<xs:complexType name="NotificationType">
<xs:complexContent>
<xs:restriction

base="LESSevent:NotificationType">
<xs:group ref="LESS:Node"/>
<xs:attribute name="direction"
type="LESS:DirectionType"/>

<xs:attribute name="package"
type="xs:string" fixed="presence"/>

</xs:restriction>
</xs:complexContent>

</xs:complexType>

Fig. 7. ’notification’ trigger in presencepackage

attribute to see whether it is configurable. For configurable
attributes, the XSLT generates an HTML input tag in the
HTML file so that users can input values. The CGI program,
translate.cgi, then translates the HTML file into a user-
configured LESS script.

H. Comparison with other service creation languages

Several XML-based call control languages have been pro-
posed, such as the Call Policy Markup Language (CPML)
[1], Telephony Markup Language (TML) [4], CallXML [2],
Call Processing Language (CPL), Service Creation Markup
Language (SCML) [5], and Call Control eXtensible Markup
Language (CCXML) [16]. Space constraints prevent a com-
plete survey of all these languages. We observe that the
more mature and interesting of these proposals are CPL,
being standardized by the Internet Engineering Task Force
(IETF), SCML, being developed by JAIN forum, and CCXML,
being developed by the Voice Browser working group in the
World Wide Web Consortium (W3C). Our examination of
CPL, SCML and CCXML concludes that none of the three
approaches provide enough support for end system services.

Among CPL, SCML and CCXML, CPL is the only fully
specified language. It is designed to run on a server where
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users may not be allowed to execute arbitrary programs, as
it has no variables, loops, or ability to run external programs.
These make it a suitable language for non-programmers. It can
proxy, reject or redirect calls. However, CPL cannot originate
a call, an important service for end systems. In addition, CPL
cannot be activated through non-call events, such as timers.

LESS uses many switches defined in CPL. However, at the
current stage, we cannot define LESS as a CPL extension. CPL
is defined as a XML DTD and is not using the built-in data
types in XML Schema, but LESS is defined as a XML Schema
for extensibility and strict data type checking. In addition, CPL
contains actions that cannot be executed in an end system,
such as proxy. We are working on a CPL schema [18] that
uses XML Schema built-in data types and separates the basic
CPL elements, such as address-switch, location, into
a basic CPL schema, and the elements specifically for proxy
servers, such as proxy, into a CPL extension for proxy
servers. With the modifications and the separation, we can
define LESS as an extension of the basic CPL schema.

CCXML is designed to provide telephony call control
support for dialog systems, such as VoiceXML systems,
making it suitable for only a subset of end systems. The
states and events for CCXML is in a lower level ab-
straction than those for LESS and CPL. For example,
in CCXML, the call event is represented as sub-events
such as call.CALL CONNECTED, call.CALL ACTIVE,
connection.CONNECTION ALERTING. Such signaling-
derived events are too low-level for non-technical users.

At the moment, SCML is still a work in progress. SCML
is developed by the JAIN forum. It is closely tied to the JAIN
Java Call Control (JCC) API. and defined using an XML
Schema that is derived from JCC. The object model of JCC
[8] is the same as the network service call model in Figure
2.a. It focuses on how to build connections between addresses,
not on how to instruct local applications. Unlike LESS, SCML
has not defined how to extend the language for different end
system applications.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the importance of end
system services and described the services and service ar-
chitecture in our SIP user agent, SIPC. We have developed
SIP CGI and CPL as service interfaces in SIPC, and are
designing a new scripting language, LESS, specifically for
end system services. Compared with the other existing call
control languages, LESS is based on a call model suited for
end system services and offers simplicity, safety, extensibility
and interaction with users, media applications and other end
system applications. We plan to investigate how end system
services are going to interact with existing network services
and how to handle feature interactions between the end system
and network services.
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