sipc, a multi-function SIP user agent

Xiaotao Wu, Henning Schulzrinne

Columbia University, Department of Computer Science,
New York, New York 10032, U.S.A.
{xiaotaow, hgs}@cs.columbia.edu

Abstract. Integrating multiple functions into one communication user agent can
introduce many innovative communication services. For example, with networked
appliance control, a user agent can turn off the stereo when receiving an incoming
call. With location sensing, a user agent can automatically reject a call if it knows
the location preference is quiet’. Multi-function interactions enable services that
are otherwise impossible. In this paper, we first present the new services intro-
duced by the integration, then introduce our SIP user agent, sipc, which handles
these new services in a programmable way. sIPC integrates multimedia call setup,
networked appliance control, presence handling, Internet TV, instant messaging,
location sensing, networked resource discovery, third-party call control, real-time
multimedia streaming, emergency call handling, and conference floor control into
one application. We analyze the relationship among these functions and propose
different approaches for function integration. sipc uses the Session Initiation Pro-
tocol (SIP) for multimedia call setup and the Language for End System Services
(LESS) for service programming.

Keywords: multi-function integration; SIP; SAP; networked appliance control;
location-based services; SLP; RTSP; SIP event notification; floor control; LESS

1 Introduction

One of the most important advantages of Internet telephony is its ability to provide
innovative services. In Internet telephony systems, traditional telephony services, such
as call transfer, can be enhanced by the integration of Internet services, such as email,
web, instant message, presence notification and directory lookups. The enhancements
require Internet telephony end systems to perform more functions in addition to audio
and video communications.

Some instant messaging applications, such as MSN Messenger, have integrated on-
line/offline indication, instant messaging, email, and web browsing into one application.
In our SIP [21] user agent, sipc [30], in addition to the functions mentioned above, we
also support networked appliance control, real-time multimedia streaming, networked
resource discovery, third-party call control, Internet TV, location sensing, emergency
call handling, and conference floor control. Multiple functions may interact with each
other and introduce many new services that are otherwise impossible. For example,
sipcC can automatically turn off the stereo in the user’s room when receiving an incom-
ing call. A sipc user can share an Session Announcement Protocol (SAP) session with
his friends by putting the session information in a SIP INVITE request. SIPC can base
call decisions on location information. In Section 2, we detail the new service examples.

Too many functions in one application may make the application too complicated
to maintain. In Section 3, we analyze the relationship among all the functions in sipc.
Based on the analysis, we discuss the practical integration approaches that can minimize
the overall application complexity, while still providing convenient ways for function
interaction.

sipc handles multi-function interaction in a programmable way. We have defined
a service creation scripting language called the Language for End System Services
(LESS) [31]. In Section 4, we describe how sipc uses LESS scripts to perform multi-
function interaction.

In Section 5, we briefly introduce the implementation details of sipc. Section 6
concludes the paper and discusses our future work.

2 New servicesintroduced by multi-function integration

In traditional telephony systems, communication services are provided by the switches
in communication networks. The services are performed based on very limited infor-
mation, such as the address and the busy status of the caller and the callee, allowing
only a small set of actions, in most cases, to route calls.

In Internet telephony systems, services can be implemented in both network servers
and intelligent end systems. With the integration of Internet services, such as presence
indication, Internet telephony services have access to much richer information, and of-
fer a richer set of service actions, not limited to call routing, the actions can also be
networked appliance control, instant messaging, email and web browsing. We describe
a few of the new services below.

2.1 Setup preferable communication environment

Communication quality is not only determined by the quality of audio/video streams
transmitted between endpoints, but also affected by the communication environment
where the talkers are in. For example, background noise may affect audio conversa-
tion and brightness of lights may affect video conversation. In a networked home with
network controllable appliances, the integration of networked appliance control into a
communication agent may help to setup environment conducive to communication. In
our lab environment, sipC can automatically pause the stereo through a Slink-e con-
troller [9] when receiving an incoming call. If the call requires video communication,
sIPC can also automatically adjust the brightness of the lamp in our lab through an X10
controller. sipc uses the SIP DO [14] method to perform networked appliance control.

2.2 Call handling based on presence information

The integration of presence information handling can help to make call decisions. In
traditional telephony systems, a caller usually knows nothing about a callee’s status
before making a call. In Internet telephony, a caller can know not only the online/offline
status, but also other information, such as the location privacy preference, of the callee.
SIPC can generate many new services based on the status information, for example,

automatically calling a friend when the friend is online, or starting a conference only
when all the essential participants are online.

2.3 Usenetworked resources

The integration of location sensing, networked resource discovery, networked appliance
control, and third-party call control enables a portable end system to use networked
resources for better communication quality. Usually the capability of an end system is in
inverse proportion to its portability. A portable end system usually has a small display,
low-quality audio, and inconvenient input devices. However, if there are networked
devices with good multimedia 1/0 capabilities in the communication environment, user
agents with the support of Service Location Protocol (SLP) [6] and SIP third-party call
control architecture (3pcc) [20] can control the networked devices for communication.

turn on projector

Location

¥ sensing

Network Resource SLp .
i i audio
Appliance Discovery op
Control (SLP UA) | | duery @ _ and
r > video
Resouee @ ~ SA streams
Control J
(3pce) T SIP
send audio to UA2 UA2

call

Fig. 1. Using networked resources for better communication quality

We have proposed an architecture [1] [29] that allows end systems to use avail-
able resources in the environment, such as displaying video on a wall-hanging plasma
display or getting audio from an echo-canceling microphone. To support such an ar-
chitecture, an end system needs to find out available resources and control them. As
shown in Figure 1, with location sensing, siPC may retrieve location information and
find available resources in the communication environment by including location infor-
mation in the SLP query [6]. SIPC can then use networked appliance control and SIP
third-party call control (3pcc) [20] to control the resources.

2.4 Location sensing and location-based services

Many applications used in the Internet today benefit from using location information.
In Internet telephony systems, location information may help to make call decisions or
trigger automatic communication actions. For example, when receiving an incoming
call, sipc can be programmed to check its own location and then play a loud ring tone

if the place-type is street, or flash its icon if the privacy of the place is quiet. SIPC uses
location information in three ways: it becomes part of outgoing requests sent to remote
parties, it triggers automatic actions, and it governs communication behaviors.

Location information can be revealed to remote parties for location tracking as part
of the presence notification or encoded in MIME [2] with other content. Location infor-
mation could be room (name or function information), civic (street and community),
categorical (such as movie theater), activity (such as travel) and privacy preference
(such as quiet). sipc can convey location information, for example, in a SIP NOTIFY
request in RPID format [24] or GEOPRIV Location Object Format [18], to the par-
ties explicitly showing interests in the information. sipC can also include the location
information in SIP REGISTER or PUBLISH [16] requests to upload the location in-
formation to a location server. When sending an emergency call, sipc will encode its
location information in MIME in a SIP INVITE request. The emergency call taker can
conveniently track the caller with the location information.

When sipc gets location information, it may invoke a service script, such as a LESS
[31] script, to perform automatic actions. The location information can be the user’s
own location or remote buddy’s location. The service script can handle absolute location
information or relative location information between two people. For example, when
SIPC gets its own room number, it can automatically turn on the light of the room.
When it gets its buddy’s location and find the distance to the buddy is less than a certain
value, it can automatically send an instant message to the buddy.

Integrating location information with call control services can help to govern appro-
priate communication behavior. For example, in a movie theatre with a movie playing,
the Bluetooth device in the movie theatre may broadcast its location information as
’quiet’, when sIpC gets the location information, its service scripts may automatically
block incoming calls unless the priority of the call is emergency.

25 Internet TV session sharing

The Session Announcement Protocol (SAP) [8] advertises multicast multimedia ses-
sions and their parameters to prospective participants. Integrating a SAP user agent into
sipc allows users to easily share an interesting program with their friends. If a user finds
an interesting program and wants to ask his friends to watch the same program, the user
needs to convey the program information to his friends. Since both SIP and SAP use
the Session Description Protocol (SDP) [7] to describe session information, SipC can
get the SDP content of the SAP packets and put the content in a SIP INVITE request.
This way, the user can simply call his friends with the SDP content without having to
know the session details.

2.6 Voicemail handling

The integration of web, email and SIP message waiting indication [12] provides vari-
ous ways for handling voicemail. A voicemail can be sent as an email attachment, or
as a HTTP [5] URL or a Real Time Streaming Protocol (RTSP) [27] URL in an email.

The voicemail information can also be in SIP message waiting indication[12] notifi-
cation. sipc can dial into the voicemail server to get the voicemail, or play the email
attachment, or start a web browser to retrieve the voicemail.

2.7 Conferencefloor control with active talker indicator

During a conference, floor control [22] helps to assign talking rights. Only the floor
holders’ voice gets delivered to each participant. In a classroom environment, when a
student gets the floor, turning on the light on the student’s desk, or adjusting the video
camera to face the student may help to find the talker. The integration of networked
appliance control with conference floor control in sipc can handle this task gracefully.

3 How tointegrate multiple functions

The above service examples show that multi-function integration may bring many inno-
vative services. However, integrating too many functions in one application may make
the application too complicated and may confuse users if the application contains func-
tions users don’t need. Since sipC directly interacts with users, any confusion from
users may impair its usability. It is very important to choose an appropriate integra-
tion method to enable the new services in sipC but without making it too complicated
and without adding too much implementation efforts. Before discussing the integration
methods, we first list the functions integrated in sipc, and investigate the relationship
among these functions.

3.1 Functionsintegrated in siPC

SIPC can support a range of media types, such as audio, video, whiteboard and desktop
sharing and can perform functions beyond multimedia calls. sipcC uses the SIP DO [14]
method to perform networked appliance control, uses the SIP event notification archi-
tecture [19] to perform presence notification, uses the Session Announcement Protocol
(SAP) [8] to retrieve multicast multimedia session information, uses RTSP to retrieve
voicemail, uses DHCP Options for Civic Addresses [23] and GEOPRIV Location Ob-
ject Format [18] for location sensing, uses the Service Location Protocol (SLP) [6] to
find available networked resources, uses SIP for third-party call control [20] to control
networked resources. SIPC uses external applications to handle email and web brows-
ing. sIPC integrates a SIP CGI [10] and a LESS [31]/CPL [11] engine to handle service
script. Section 5 provides more details on the implementation.

When integrating all these functions into sipc, we noticed that many functions
overlap each other, and the functions may interact with each other in different ways.
Below we analyze the relationship among these functions and propose the integration
approaches based on this analysis.

3.2 Overlap among sipc functions

Many of the functions mentioned in Section 2 overlap with each other. Because of the
overlap, integrating a new function into sipc will not increase the overall complexity

Conferencing| Multimedia Multicasts media_’SIP ﬁ
comm. — =, UA2
Presence streams stream — / i
agent SIP Event Message ‘ . I'NVITE DO Networked
Handling Waiting session with SDP appliance
I —
Indication description
Emergency SDP
SIP UA | Notification Network rtsp:// emergency
i notification
appliance
control
message F
wajiting [
| SDP| | RTP| %‘, i voicemail W‘]
SAP UA :
RTSP UA) 5 Emergency
Voicemail Server event detector
Fig. 2. Overlap among sipc functions Fig. 3. Interaction among sipPc functions

too much. As shown in Figure 2, SAP user agents, RTSP user agents and SIP [21] user
agents all use SDP [7] for session description and RTP [26] for real time media stream
transmission. The presence status, conference status, location information, and emer-
gency event can all be transmitted by the SIP event notification architecture [19]. All of
the SIP event notification, SIP multimedia session setup and SIP networked appliance
control can share the same SIP stack.

3.3 Interaction among siPc functions

In the service examples described in Section 2, we noticed that multi-function inter-
action introduces new services. As shown in Figure 3, the SAP user agent passes the
session description information to the SIP user agent so the SIP user agent can invite
another SIP user agent, SIP UA2, to watch the same multicast media session. When the
SIP user agent gets the message waiting indication from voicemail server, it can instruct
the RTSP user agent to retrieve the voicemail. When the SIP user agent gets an emer-
gency notification [25], it can control networked appliances for emergency handling.

Based on the investigation on the overlap and interaction among sipc functions, we
present the approaches on multi-function integration below.

3.4 Approachesfor multi-function integration

The integration methods can be build-in and interprocess-control. The build-in method
is to hardcode functions into a user agent so the user agent can invoke the functions
by using API calls. The functions integrated by the build-in method are tightly coupled
with each other. They can share code with each other and easily interact with each other
by API calls. The interprocess-control method puts functions outside the user agent.
The functions integrated by the interprocess-control method may interact with each
other via interprocess communication, such as Dynamic Date Exchange (DDE [4]) and
Message Bus (MBUS [17]). When adding a new function, three criteria may help to
choose an appropriate integration method. First, the build-in method is more applicable
if the new function shares many components with the existing functions. Second, if the

new function interacts with the existing functions extensively, the build-in method is
preferable. Third, if there are existing popularly used applications supporting the new
function, the interprocess-control method is more appropriate. Below we illustrate how

we apply the criteria in integrating the function set of sipc.

location Network Internet Third party
sensing appliance TV(SAP call control
s control Instant Emergency
- message handling
Multimedia Floor -
call control control SIP CG Serv_lce email
engine location client
(SLP)
SIP for TSo/CP
RTSP presence SIPCA web
engine browser

Fig. 4. Function set in sipc

Figure 4 shows the function set of sipc. The functions inside the big thick-line-
rectangle are integrated into the sipPC core, others are running in separate processes and
controlled by the core by interprocess communication.

In sipc’s function set, all SIP related functions, such as SIP call setup, SIP DO
method for networked appliance control, SIP event notification, SIP for instant mes-
saging, SIP third-party call control, and SIP emergency call handling, share the same
SIP stack and are tightly related to each other. These functions should be integrated in
build-in way and put into one application. If we choose to use SIP and SOAP [3] for
conference floor control [22], the floor control function should also be put into the same
application.

To support the Session Announcement Protocol (SAP) and the Real Time Streaming
Protocol (RTSP), based on the investigation in the Section 3.2 and 3.3, and the service
examples in Section 2, we consider the best way is to integrate them in build-in way
with the SIP functions. Both SAP and RTSP sessions use SDP for session description,
and RTP for multimedia transmission, the same as SIP multimedia sessions, so code
sharing is possible. Using external SAP and RTSP applications requires communication
interfaces between SIP functions and SAP and RTSP functions. The communication
interface is not trivial to build to handle function interactions.

The Service Location Protocol (SLP) support can be either build-in or interprocess-
control because there is not much code sharing between SLP support and other func-
tions. The communication interface between an SLP client and a SIP user agent can be
simple. We choose to build an SLP client into SIpC because the implementation effort
is not much but it is easier to perform function interactions.

There are two modes for location information retrieval. In the first, a user agent
determines its own location, and announces it to other system components that need
the information. We name this active location sensing. For example, the user agent

can use GPS or measure the field strength of wireless access points [15] to get the
location information. Active location sensing may involve different kinds of location
sensors. Instead of building all the location sensing technologies into sipc, we use
the interprocess-control method to integrate active location sensing functions. When
SIPC starts, it listens on a TCP port for location information. Location sensors can send
location documents in GEOPRIV Location Object Format [18] to that port.

The other mode is passive location sensing. In passive mode, a user’s profile is put
in a small device, such as an IR/RF programmable badge or an i-Button [28]. The de-
vice reader in a context can read the user’s profile and send the information to a location
server. The user needs to subscribe to the location server to get his own location infor-
mation. sipc implements the SIP event notification architecture [19] to handle location
subscriptions and notifications.

In terms of function support for email and web browsing, we noticed that there are
many existing email and web browsing applications. Instead of implementing email
and web functions into sipc, the preferable way is to integrate email and web browsing
functions in the interprocess-control way. For example, on a Windows platform, by
setting proper Windows Registry values, people can invoke sipc from a web browser,
or invoke a web browser from sipc.

4 Program multi-function interactions

In Section 2, we presented some new services but without describing how to perform
these services. Instead of hardcoding these services one by one, it is more convenient to
make the services programmable by service scripts and customizable. We defined a ser-
vice creation script language named Language for End System Services (LESS) [31].
LESS is extended from the Call Processing Language (CPL) [11], but with more empha-
sis on end system service creation. We choose to use LESS as the service creation lan-
guage for sipC because it is designed to be simple, easy to understand, and safe for end
users to use. The simplicity and the tree-like structure of LESS make the graphical de-
scription of a LESS script and its XML document fully exchangeable. Any valid LESS
scripts can be converted into graphical decision trees, and vice-versa. Though general
purpose programming languages, such as C/C++ and Java, may also have graphical de-
velopment environment, a graphical interface of an arbitrary program written in C/C++
or Java is extremely unlikely to be able to do anything more than represent the language
constructs in the most basic manner. We did an in-depth analysis of the simplicity and
safety of LESS [32] and developed a graphical service creation environment (SCE) for
LESS, which is presented in Section 5.4.

The script below shows a LESS service script performing stereo control based on
the caller’s address. With the script, if the call is from sip:bosse@example. com,
the script will turn off the stereo.

<less>
<incoming>
<address-switch field="origin">
<address is="sip:boss@example.com">
<device:turnoff device="sip:stereo@rooml.example.com"/>

</address>
</address-switch>
</incoming>
</less>

A more complicated LESS service script below requires the integration of presence
information handling, location sensing and instant messaging. When a siPC instance
equipped with the script receives an event notification showing that Bob, whose SIP
URI is sip:bobeexample. com, is online, it will check the location relation be-
tween the script owner and Bob. If they are at the same floor and close to each other,
the script generates an instant message to Bob.

<less>
<EVENT:notifications>
<address-switch> <address is="sip:bobeexample.com">
<EVENT:event-switch> <EVENT:event is="open"sx>
<location-relation-switch uril="sip:bob@example.com">
<location-relation distance="10" same="FLR">
<location url="sip:bob@example.com">
<IM:im message="Hi, I'm next to you"/>
</locations>
</location-relations>
</location-relation-switchs>
</EVENT:event> </EVENT:event-switchs>
</address> </address-switch>
</EVENT:notification>
</less>

To incorporate all the new functions, we need to extend LESS with new packages,
such as networked appliance control, presence information handling, SAP session han-
dling, and location information handling. For example, in the above service scripts, we
have the action device: turnon defined for networked appliance control. Defining
a new LESS package is covered in [31] and [11].

5 Implementation

sipc [30] is a SIP user agent written in Tcl/Tk and C/C++. It is originally developed
to handle Internet telephony calls. Figure 4 shows sipc’s function set. The functions
circled in solid have already been implemented, the functions circled in dotted line
are under development, the functions in rectangle are partially implemented. As we
integrated more and more functions into sipc, we found many new services introduced
by multi-function integration, some examples as we described in Section 2. Below, we
briefly introduce the main user interface, the service creation environment, the functions
for location sensing, and emergency call handling in sipcC.

51 Themain user interfaceof sipC

Figure 5 shows the main user interface of sipc. By clicking on different function but-
tons, users can manually invoke different functions. In the service frame, a user can

Configuration Networked Internet TV Emergency
Multimedig®PP!iance /" resource call handling Location map Speed dial
control discovery

EEX

B sipc

AT
Ghn | Mewcal |
;

by status |Online |

lamat [436 e | T [lamey Hicks <sipiamepicks@hpcom> =] ooy o8

3

Watching o Providing my T = Detall =~
¥ ooz T status @ Orine [21:38:37] Callng Jamey Hicks <siprjamey hicks@hp com>

W @ iaotao \Wu (3t 486)

W @ Ben Teitelbaum (at 486)
W @ dharon@mit.edu (at 485)
W jrork@ford.com 1

< [21:38:37] Jamey Hicks has received the call and is processing it
[21:38:41] Stop talking to Jamey Hicks

Information and Whiteboard

W @ Jamey Hicks (at 435) Insar;;(i :§r$yagl ng Izhak'top
W Candace Holman aring
¥ Steven Blair Preﬁenc_e

Information Shared web
W Rodger Wil browsing
W Jeremy George (at 4864)
W Jeff King OO 5w] «

Disconmect Wite heid Trensier Save Clear Clbse

¥ Shawn Mckee
W Daniel Eklund |

. v Instant messaging ®
+ G B EF input ﬁ

= g
4dd Remowvs Block CWatch Talk

<

= Hide — -

™ Enable end system servicss
P =5 =5 Service frame
& @%S @ @

Alwaps reject Automatic accept Conterence room call handing Add new

service
Right click on the service icon to edit or delete a service

~ = Server side services = -

Fig. 5. Main user interface of sipc

program new services to automatically handle multi-function interactions. We detail
the service creation environment of sipc in Section 5.4. In the ’presence information’
frame, the user can see not only the buddies’ presence status, but also their locations.
If the user click the ’location map’ button, the buddies’ locations can be pinpointed in
location maps.

5.2 Location sensing and location-based servicesin siPC

Figure 6 shows the location map in sipc. Buddies’ locations are pinpointed on the map.
In the map, a room can be a communication target. As shown in the figure, right click
on a room, a user can easily broadcast instant messages or conference call invitations
to all his buddies in the room.

As shown in Figure 7, sIPC supports both active location sensing and passive loca-
tion sensing. In active mode, SIPC can get its civil location encoded in DHCP options
for civic addresses [23] from a DHCP server, or get its geospatial location by reading
the serial port connected to a GPS receiver. It can also get its location information from
the Bluetooth beacon sent by a location server. In passive mode, users can use iButton,

?llsibentz@ w1 Hcke manually 75 Wireless client
MIErmet. edl Jatmey CiE - -
CSB Bl-ll|dll'lg 4th Bluetoott \'7\'/8 Scanner Scahner Scanner

2 online
oo | |09 v
Y
Hactao 456 e = : SUBSCRIBE, ™™ cation
[faom 456] 481 v SIpC NOTIEY server

Teremy —l Zend an announcement to everyone in +

George = Inwite everyone in 436 to a conference &1p | DHCP S
dbaron(@ |E Email evervone in 486 GPS g server 9 L?ﬁg;gvs
it edu =m0 Properties receiver iButton swipe card g

Fig. 6. Location map in sipC Fig. 7. Location sensing in SIpC

swipe card (such as university ID card), or active badge to generate location informa-
tion and store the location in our location server. The location server can then NOTIFY
sipc about the location changes.

sIpC was used by the Internet2 Presence Integrated Communication working group
(P1C WG) for their rich presence trials in Internet2 member meeting in Fall 2003 and
Spring 2004. sipc used passive location sensing in the trials. The gray area in Figure
7 shows the trial setup. Multiple scanners gathered signal strength from the wireless
client on which sipc was running. The consolidator calculated the location based on
the signal strength information and sent it to the location server. The location server
sent the location information to sipc by SIP NOTIFY requests.

5.3 sipc for emergency call handling

Figure 8 shows the emergency call handling architecture we are developing using sipc.
At the caller side, sipc acquires its location, e.g., from DHCP options. Since different
countries may have different emergency numbers, sipC will send a NAPTR [13] request
to the DNS server to get the local emergency numbers. When a user dials a number,
sipc will check whether it is an emergency number or not. If it is an emergency call,
sipc will encode the location in MIME in the outgoing SIP INVITE request. At the
emergency call taker side, sipc can pinpoint the caller on a map based on the location
encapsulated in the INVITE request. In the figure, the SIP proxy server helps to route
emergency calls to an appropriate emergency communications center.

5.4 Servicecreation environment in SIPC

We have developed a graphical service creation environment for sipc. As shown in Fig-
ure 9, a user can simply drag a trigger events, such as incoming call, into the drawing
area, then put different switches, such as location-switch and address-switch, for condi-
tion matching, then put different actions, such as accept or reject a call, into the drawing
area. The user can connect these elements into a decision tree. The decision tree can be
translated into a LESS script. sipc can then handle calls based on the LESS script.

DVQS Srv area——_

.s Mz .plmn triggers actiohs
polygon . .
SOS# NAPTR (GML) 3 E}. . ¥ incoming
polygon NAPTR HTTp i . Start time:

f NAPTR to ECC SOAP Incoming accept Mon Jul 13112371 AM

loc to get srv IocatlonMAP Ending time:
112 SOS# (2) area (5) & €3 MonJul1912:2911 PM

/ INVITE 5' ECG| INVITE ‘ outgaing reject If tlje. address of the caller

5 sipisos sipisos Ay , lzsiphob@example.com ¥ e oty is

~sDP+LOC| T |"spp+LOC™ ~ s 4 [ERE

b “

@] sipc tirnes >
location anlEhes alert accept
server proxy _<] accept

time

A

{r__:\F!eiec:t because Buzy

Fig. 8. Emergency call handling using sipc Fig.9. Service creation environment in SIpC

6 Conclusion and future work

In this paper, we described how to integrate multiple Internet-oriented functions in our
SIP user agent, sipc, and presented the new services facilitated by the multi-function
integration. The integration is not simply putting all the functions together but run them
separately, instead, a careful design is required to minimize the overall complexity of the
application, and enable function interactions. Multi-function interactions enable many
innovative services that are otherwise impossible. We use LESS service scripts to au-
tomate the interactions. We also briefly introduced the implementation details of sipc.
We will investigate more Internet services, such as conference control, quality of service
handling, and user profile management, for integration and define more LESS packages
for new services.

References

1. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.R., Peterson, J., Sparks, R., Han-
dley, M., Schooler, E.: SIP: session initiation protocol. RFC 3261, Internet Engineering Task
Force (2002)

2. Wu, X.: (Columbia university SIP user agent (sipc)) http://www.cs.columbia.edu/IRT/sipc.

3. Wu, X,, Schulzrinne, H.: Programmable end system services using SIP. In: Conference
Record of the International Conference on Communications (ICC). (2003)

4. Nirvis Inc.: (Slink-e) http://www.nirvis.com/slink-e.htm.

5. Moyer, S., Maples, D., Tsang, S.: A protocol for wide-area secure networked appliance
communication. IEEE Communications Magazine 39 (2001) 52-59

6. Guttman, E., Perkins, C.E., Veizades, J., Day, M.: Service location protocol, version 2. RFC
2608, Internet Engineering Task Force (1999)

7. Rosenberg, J., Peterson, J., Schulzrinne, H., Camarillo, G.: Best current practices for third
party call control (3pcc) in the session initiation protocol (SIP). RFC 3725, Internet Engi-
neering Task Force (2004)

8. Berger, S., Schulzrinne, H., Sidiroglou, S., Wu, X.: Ubiquitous computing using SIP. In:
ACM NOSSDAV 2003. (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
3L

32.

Shacham, R., Schulzrinne, H., Kellerer, W., Thakolsri, S.: An architecture for location-based
service mobility using the SIP event model. In: Mobisys Workshop on Context Awareness.
(2004)

Borenstein, N., Freed, N.: MIME (multipurpose Internet mail extensions) part one: Mech-
anisms for specifying and describing the format of Internet message bodies. RFC 1521,
Internet Engineering Task Force (1993)

Schulzrinne, H.: RPID - rich presence information data format. Internet draft, Internet
Engineering Task Force (2003) Work in progress.

Peterson, J.: A presence-based GEOPRIV location object format. Internet Draft draft-ietf-
geopriv-pidf-lo-01, Internet Engineering Task Force (2004) Work in progress.

Niemi, A.: Session initiation protocol (SIP) extension for event state publication. Internet
Draft draft-ietf-sip-publish-02, Internet Engineering Task Force (2004) Work in progress.
Handley, M., Perkins, C.E., Whelan, E.: Session announcement protocol. RFC 2974, Internet
Engineering Task Force (2000)

Handley, M., Jacobson, V.: SDP: session description protocol. RFC 2327, Internet Engineer-
ing Task Force (1998)

Mahy, R.: A message summary and message waiting indication event package for the session
initiation protocol (SIP). Internet draft, Internet Engineering Task Force (2003) Work in
progress.

Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Berners-Lee, T.: Hypertext transfer protocol
—HTTP/1.1. RFC 2068, Internet Engineering Task Force (1997)

Schulzrinne, H., Rao, A., Lanphier, R.: Real time streaming protocol (RTSP). RFC 2326,
Internet Engineering Task Force (1998)

Schulzrinne, H., Wu, X., Koskelainen, P., Ott, J.: Requirements for floor control protocol.
Internet Draft draft-ietf-xcon-floor-control-req-00, Internet Engineering Task Force (2004)
Work in progress.

Roach, A.B.: Session initiation protocol (sip)-specific event notification. RFC 3265, Internet
Engineering Task Force (2002)

Schulzrinne, H.: DHCP option for civil location. Internet draft, Internet Engineering Task
Force (2003) Work in progress.

Lennox, J., Schulzrinne, H., Rosenberg, J.. Common gateway interface for SIP. RFC 3050,
Internet Engineering Task Force (2001)

Lennox, J., Wu, X., Schulzrinne, H.: CPL: a language for user control of Internet telephony
services. Internet draft, Internet Engineering Task Force (2003) Work in progress.
Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: a transport protocol for real-
time applications. RFC 3550, Internet Engineering Task Force (2003)

Schulzrinne, H., Arabshian, K.: Providing emergency services in Internet telephony. IEEE
Internet Computing 6 (2002) 39-47

Netscape corporation: (Netscape’s DDE implementation)
http://developer.netscape.com/docs/manuals/ communicator/DDE/index.htm.

Ott, J., Perkins, C.E., Kutscher, D.: A message bus for local coordination. RFC 3259, Internet
Engineering Task Force (2002)

World Wide Web Consortium: (Simple object access protocol (soap) 1.1)
http://www.w3.0rg/TR/SOAP/.

Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: GLOBECOM (1). (2001)
2926-2931

Dallas Semiconductor: (iButton) http://www.ibutton.com.

Wau, X., Schulzrinne, H.: The simplicity and safety of the language for end system services
(LESS). Technical report, Department of Computer Science, Columbia University (2004)
Mealling, M., Daniel, R.W.: The naming authority pointer (NAPTR) DNS resource record.
RFC 2915, Internet Engineering Task Force (2000)

