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Abstract— Internet telephony can introduce many novel com-
munication services, however, this novelty puts learning burden
on users. We have developed an intelligent service creation
environment which can automatically create services by learning
from communication behavior. The service creation environment
models communication services as decision trees and uses the
Incremental Tree Induction (ITI) algorithm for learning. We
use our Language for End System Services (LESS) to describe
learned results and have implemented a simulation environment
to verify the learning algorithm. We noticed that automatically
generated services may introduce undesirable side-effects that
can cause users to lose calls, money, or privacy. Thus, we did
an analysis on service risk management for LESS-based services
and proposed several approaches for fail-safe services.

I. INTRODUCTION

One of the key advantages of Internet telephony is its ability
to provide many innovative communication services, however,
novelty is a barrier to entry. Many users may not be aware of
what services are available and not know how to customize
or create their own services. It will be a great help to users if
there is a service creation environment that can automatically
generate desired services.

We consider the learning process for automatic service
creation is applicable in Internet telephony systems because
of the following reasons. Internet telephony signaling can
convey more information to end users. The information allows
people to make sensible call decisions which are usually
impossible in PSTN networks. In addition, Internet telephony
end systems usually have more computational capabilities so
they can execute programmable call handling services and can
easily collect users’ communication behaviors for learning.
The extended abilities of Internet telephony end systems make
service learning practical and useful.

We believe many services can be generated automatically,
for example, phone spam filtering, call handling based on
callee’s location (as defined in GEOPRIV location object
format [8]), media capabilities (as defined in User Agent
Capability Extension to Presence Information Data Format
[7]) and status ( as defined in Rich Presence Extensions to the
Presence Information Data (RPID) [12]), call routing based on
caller’s address, time based call handling, and call handling
based on priority, preferred language and subject of calls.
There are a lot of parameters for call decision making. Users

may not even know some of the parameters, not to speak of
how to use them. In addition, creating such services manually
is tedious and error-prone. Thus, we describe how proxies and
end systems can create call handling rules automatically by
learning from observed user behavior. We focus on services
using the Session Initiation Protocol (SIP) [11].

We need to handle four tasks for service learning: represent-
ing communication behaviors, finding a learning algorithm,
representing the learned results, and handling service risk
management. We choose to use decision trees to represent
communication behaviors and detail the rational of the choice
in Section II. Section III gives the criteria on which decision
tree learning algorithm to use. Because the Language for End
System Services (LESS) [18] is simple, safe, and tree-like,
we decide to use LESS scripts to describe learned results.
Section IV shows how to convert a decision tree to a LESS
script. In most cases, communication services bring great con-
veniences to users. However, services may have undesirable
side-effects and users may have the risk of losing calls, money,
or privacy. In Section V, we give a comprehensive analysis on
service risks and propose several approaches to create fail-safe
services. Section VI describes how we integrate the service
learning functions in our SIP user agent, SIPC [17]. Section VII
concludes the paper and discusses our future work.

II. REPRESENTING USERS’ COMMUNICATION BEHAVIORS

We consider using binary decision trees to represent com-
munication behaviors is the most suitable way for service
learning, among other possible user behavior representations,
such as finite state machines, use case maps [2], rule sets, and
Bayesian networks [6].

We can clearly identify learning targets in a binary decision
tree due to its simple structure. As shown in Figure 1(a), the
learning target is to find non-leaf tree nodes that can best
partition a user’s behavioral data. It is hard to identify learning
targets with using finite state machines or use case maps.

The cost of simplicity is to sacrifice some functionality.
A binary decision tree is not Turing-complete so it cannot
represent all possible communication behaviors. However, we
believe service learning should only focus on commonly used
services. Learning of complicated services is error prone and
usually causes confusion.
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Fig. 1. Representing communication behaviors as decision trees

Using rule sets to represent communication behaviors is
another viable way. Rules sets and decision trees are exchange-
able, but decision trees are more efficient for execution.

Bayesian networks [6] are commonly used in machine
learning, however, we found Bayesian networks are not ap-
propriate for communication service learning because when
making a communication decision, different factors may not
be independent of each other. For example, domain-based call
rejection is not independent of caller-based call rejection. It
is hard to build a Bayesian network with co-related decision
factors [6].

III. DECISION TREE LEARNING

To perform learning, we need to identify input variables
as well as expected outputs. As we mentioned earlier, the
learning target is to find non-leaf tree nodes that can best
partition a user’s behavioral data. We define possible user
communication behavior as the actions a user can perform,
such as accept, reject, proxy, redirect for incoming
call handling, call for outgoing call setup, transfer,
hold, mute for mid-call handling, notify for event han-
dling, and power-on, power-off for networked appliance
control. The actions will be leaf tree nodes. The non-leaf nodes
represent the parameters of a call and its context to match,
such as the identity, status, location, media capabilities, and
device type of the caller and callee, the time, priority, subject,
preferred language of the call. The value of the parameters
can be acquired from SIP INVITE messages and SIP event
notification messages [10]. Once we get these data, we can
perform decision tree learning.

A. Criteria for choosing a learning algorithm

There are several existing decision tree learning algorithms
[9], [15]. To choose an appropriate algorithm for our com-
munication decision tree learning, we defined several require-
ments for the algorithm.

The algorithm should perform incremental learning. Behav-
ior learning is a dynamic process. New samples and new rules
may get introduced from time to time, and old rules may get
broken. Building decision trees in an incremental way reflects
the dynamics of people’s communication behaviors.

The algorithm should have an appropriate tree quality
measurement mechanism [16]. As shown in Figure 1(b), two

trees represent the same user behavior over 47 calls. They
have the same height. The left tree has fewer leaves and fewer
nodes, but the right tree has a shorter path for most of the
training samples (e.g., 30 matches for rejecting calls from
Bob with priority lower than urgent). In terms of simplicity,
the left tree is better. In terms of efficiency, the right tree is
better. Because service learning is to help users to create and
understand communication services, a simpler decision tree is
preferable. For example, in Figure 1(b), the left tree is the
desired result.

The algorithm must have an effective pruning method to
filter decision errors (noise) because there are so many random
factors that can affect communication behaviors. In addition,
due to the dynamics of people’s communication habits, the al-
gorithm should be able to save and reactivate pruned branches
because a pruned branch may get restored with additional
learning samples.

B. Incremental Tree Induction (ITI) algorithm

Based on the above requirements, we chose to use the
Incremental Tree Induction (ITI) [15] algorithm. ITI can map
an existing tree and a new training example to a new tree
based on several tree transformation mechanisms. The average
incremental cost of updating a tree is much lower than the
average cost of building new trees from scratch each time.

ITI uses an algorithm called direct metric tree induction to
map one tree to another based on tree quality measurements.
The algorithm introduces four tree quality measurement ma-
trices, namely expected number of tests, minimum description
length, expected classification cost, and expected misclassifica-
tion cost [15]. We choose to use the expected number of tests
matrix for our service learning process because that reflects
the simpleness of a decision tree.

ITI also introduces a pruning technique named virtual
pruning. Instead of deleting pruned branches, it uses one bit
on every node to mark prune decision. If the bit value is true,
the branch rooted at the node should be hidden from users.
When new learning samples added, ITI will use the unpruned
tree for learning so pruned branches may get reactivated for
useful services.

C. Accuracy of the ITI algorithm

There are two ways to measure the accuracy of the ITI al-
gorithm for communication service learning: one is to perform
real world usage testing and the other is to do simulation.

To perform real world usage testing, we need to perform
service learning based on the data collected from real users,
and submit the learned services to users for evaluation. This
requires a large deployment of VoIP systems and to have
people using the systems for their daily communications.
Currently, people are making efforts to deploy VoIP systems,
such as the SIP.edu [14] initiatives in Internet2 community
and many companies have deployed VoIP solutions in their
intranet. However, most of the deployments are still in their
testing stage, not used as primary communication means for
people’s daily usage. Thus, we consider simulation a more
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appropriate way, but real world usage testing is in our future
work plan when our local VoIP deployment becomes available.

We have built a simulation environment to generate random
simulated calls. In the simulation environment, the distribution
of call arrival time, priority of calls, and caller’s address are
adjustable. By default, we use Poisson distribution for call
arrival time, uniform distribution multiplied by weights for
setting the priority of calls and picking callers: 98% of the
calls are of normal priority, 0.9% urgent calls, 0.1% emergency
calls, and 1% non-urgent calls. 30% of the calls are from
user1, 10% each from user2, user3, and user4, the
rest from all the other users. The simulation environment also
simulates people’s daily life, such as time for meal and sleep,
and can load calendars in iCal [5] format for meeting and
appointment information.

We then randomly created several expected services,
applied the services to the simulated calls, and sim-
ulated the call handling process. For example, if we
have an expected service "reject all calls from
sip:bob@example.com", when we apply the service to
the generated calls, all calls from sip:bob@example.com
get rejected. The other calls will be handled based on the
default simulation setup. With the default setup, if a call
arrives when the simulated user is sleeping, 50% of the calls
will not get answered; when the user is in meal, 20% of the
calls will not get answered; if the user is in an appointment,
40% of the calls get rejected; in normal cases, 85% of the
calls get accepted. The default setup will introduce reasonable
noise for service learning. Once the simulation completes, we
save the simulated communication behavior data in C4.5 [9]
format. We can then use the ITI algorithm to learn from the
behavior data. The pruned trees generated by ITI algorithm
should match the expected services. We tested 40 expected
services, each applied to 300 simulated calls. The tests show
that 80% of the learning results exactly match their expected
services, 10% of the learning results represent the expected
services in different ways, and 10% of the learning results do
not match the expected services. The mismatch comes from
the randomness of the simulation data. For example, if an
expected service is "accept all emergency calls",
however, since only 0.1% of calls are emergency, there may
not be emergency calls in the simulated call set, the learning
algorithm cannot infer the expected service. Based on the
simulation, we consider the ITI algorithm fits our need.

D. Performance of the ITI algorithm

Figure 2(a) and Figure 2(b) show the performance of the ITI
algorithm based on 700 simulated calls, running on an IBM
ThinkPad laptop with Linux operating system, a 1GHz Intel
Pentium III Mobile CPU, and 256MB memory. The expected
services in the testing make call decisions based on the priority
of calls, caller’s addresses, and callee’s ongoing activities when
receiving calls.

Figure 2(a) shows that the training time for non-incremental
training increases polynomially as more training samples are
added in, while the training time for incremental training is
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Fig. 2. Training time of the ITI algorithm

a constant if only training on the new added samples. For 20
new added samples, the training time for incremental training
is about 0.12 seconds, which is quick enough to provide
automatic service creation to users.

Figure 2(b) shows that for incremental training, the training
time is independent of the number of internal nodes in the
expected services. This is because ITI algorithm uses the
virtual pruning technique to handle the overfitting problem
so it always constructs complete decision trees. The number
of nodes in a pruned tree will not affect the training time of
building a complete decision tree.

IV. USING LESS TO REPRESENT LEARNED RESULTS

Since the Language for End System Services (LESS) [18]
has a tree-like structure, it is straightforward to convert learned
results to LESS scripts. The non-leaf tree nodes can be
converted to LESS switches, the leaf nodes can be converted
to LESS actions, and the root nodes can be converted to
triggers. For example, we can convert the decision tree in
Figure 1(a) to the LESS script below:

<less><incoming>
<priority-switch><priority less="urgent">
<where-switch type="civil"><where LOC="conf">
<address-switch field="origin"
subfield="display">
<address is="Bob"><accept/></address>
<otherwise><reject/></otherwise>

</address-switch>
</where></where-switch>
</priority>
<otherwise><accept/></otherwise>
</priority-switch>
</incoming></less>

The generated LESS scripts can be loaded into a user agent’s
service engine to automate call processing.

V. SERVICE RISK MANAGEMENT

Automatically generated services may introduce unexpected
side-effects which users may not be aware of. Users using the
services may have to take the risk of losing calls, money,
or privacy. However, risk is a part of any activities and can
never be eliminated, nor can all risks ever be known. The
opportunity for better communication experience cannot be
achieved without taking risk. What we should do is “to balance
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the possible negative consequences of risk against the potential
benefits of its associated opportunity.”[13]

We consider that service risk should be handled in the ser-
vice creation stage. As Charette [4] has said, “Risk engineering
does not deal with future decisions, but with the future of
present decisions.”

There are three key elements for risk management: [13][3]
Identify: We must find the cause of service risks.
Analyze: We must evaluate potential loss of risks.
Resolve: We must help users to act on the risks.

A. Identify service risks

There are two factors that comprise a risk: [13] “loss
resulting from its occurrence and probability or likelihood that
it will occur.” We will identify possible losses in this section
and analyze the probability in next section. We consider the
following losses are possible for communication services,
namely losing communication, compromising privacy, costing
money, and distracting attention.

Since we use LESS to represent services, the loss can only
occur when performing LESS actions. There are only very
limited actions defined in LESS. Thus, we can easily identify
the cause of service risks by checking the relationship between
LESS actions and potential losses, as shown in Table I.

Loss LESS actions may cause the loss
Losing communication reject, redirect, transfer,

disconnect, accept on a wrong branch
media-update, hold

Releasing privacy call, accept, notify
Costing money accept, redirect, or transfer calls

to a device with higher charge rate
distracting attention alert, accept, appliance control

TABLE I

LESS ACTIONS MAY CAUSE LOSS

B. Analyze service risks

Three main steps can be used to analyze service risks:
estimating the probability of a risk, evaluating the impact of
a risk, and determining the overall risk of a service.

1) Probability: We can estimate the probability of a risk
quantitatively as well as qualitatively. When we use the ITI
algorithm for learning, it can associate the number of matching
instances to each tree branch. We can use these numbers to
perform quantitative analysis to estimate how likely a risk
may happen in a tree branch. The bigger the number, the
more likelihood the branch may introduce service risks. We
can also perform qualitative analysis. In a decision tree, the
internal nodes along the path to a leaf node comprise the
conditions under which a corresponding service action will
execute. To estimate the probability of a risk, we must analyze
the internal nodes. In LESS, the internal nodes are switches,
such as address-switch, and time-switch. Different
arguments of a switch have different risk characteristics. For
example, in an address-switch, domain matching or

wildcard matching is more likely to introduce risk than specific
URL matching. Changing the arguments with higher risk
probability to the arguments with lower risk probability can
help to resolve service risks. We will not detail the analysis
for every LESS switch in this paper.

2) Impact: Different risks have different impact to users.
The impact can be categorized as negligible, marginal, critical,
and catastrophic [1], or as very low, low, moderate, high,
and very high in commonly-used classification. In general,
for communication services, we consider the risks causing
irreversible loss have higher impact than the other risks. Thus,
compromising privacy, losing communication, and costing
money are more severe than distracting attention. We can
set the impact of compromising privacy and losing commu-
nication as high, costing money as moderate, and distracting
attention as low.

3) Overall risk: Service risks are not independent to each
other. For example, when a user trys to preserving commu-
nications, he may take the risk of losing privacy, money,
or attention. To resolve service risks, we must try to avoid
or mitigate risks with higher impact, even though it may
introduce risks with lower impact, the overall risk can still
get lowered.

C. Resolve risks

Since a risk is composed of the probability of its occurrence
and the loss of its outcome [3], to resolve or mitigate it, we
can reduce its probability or reduce its potential loss. The
design rule of the resolution is to ensure that either the overall
impact of service risks is low, or users can get alerted of risk
occurrence and the correction is viable. There are several risk
resolution options we can use [3], e.g., risk avoidance, risk
transfer, risk impact reduction, and building contingency plan.

1) Risk avoidance: We can avoid a service risk by reducing
the probability of its occurrence. As we discussed in Section V-
B.1, we can adjust the arguments of switches in a LESS
decision tree to reduce risk probability.

2) Risk transfer: Service risks can be transferred to another
person. For example, in a meeting, instead of rejecting calls,
a boss can transfer calls to his secretary so the risk of losing
calls decreased, but the risk of being distracted is transferred
to his secretary.

3) Risk impact reduction: For risk impact reduction, we
only focus on risks with high loss impact, such as the risk of
losing communication and compromising privacy, as defined in
Section V-B.2. Table I shows the action that may cause these
risks. In this paper, we use reject action as an example
showing how to reduce the risk of losing communication.

Automatically rejecting a call is dangerous. People reject
calls due to many different reasons, but in most cases, due to
people’s availability and the subject of calls. Nowadays, there
are many different communication methods. We noticed that
different communication methods have different characteristics
in terms of disturbance factors and expected response time as
shown in Table II. This gives us a hint that when a call gets
rejected, we may use other communication methods to mitigate
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the potential loss. For example, if a user has a service to
automatically reject all calls when he is in a meeting. We can
modify the service as below to make it safer: In an unimportant
meeting, change the alerting style from ringing to vibrating; in
an important conference, forward the call to a voicemail and
provide voicemail indication. If the user is doing a presentation
in a conference and does not want to be disturbed in any way,
forward the call to voicemail without providing any indication.
Note that vibrating a user’s end device or showing voicemail
indication may somewhat distract the user’s attention. But as
we discussed in Section V-B.3, the overall risk will still get
lowered.

Action Disturbed entities Expected response time
Call/ringing Callee and others seconds - minutes

Immediate attention otherwise lose the call
Call/vibrating Callee seconds - minutes

Immediate attention otherwise lose the call
Instant messaging Callee minutes - hours

Immediate attention but delay is ok
Voicemail/Email Callee minutes - days
with indication Immediate attention but delay is ok
Voicemail/Email Callee hours - days
without indication No immediate attention

TABLE II

THE CHARACTERISTICS OF DIFFERENT COMMUNICATION METHODS

4) Building contingency plan: It is very important to make
the correction viable when service risk occurred. To achieve
this, we should log all the actions performed by service scripts.
For each service action, we should define a convenient way
for users to remedy the potential loss caused by the action.
For example, if a call gets automatically rejected, the service
execution environment should allow users easily retrieve the
caller’s number and call back.

VI. IMPLEMENTATIONS

We have implemented a SIP user agent called SIPC [17].
SIPC has a built-in LESS engine that can execute LESS scripts
and provide communication services. SIPC can support a large
set of functions and collect all the required information we
need for service learning [19]. SIPC records all the call related
information and user performed actions in a file in C4.5 [9]
format, the same format as what we used in the simulation
environment we introduced in Section III-C. Once the number
of new call records reaches a threshold, e.g., 20 new call
records, SIPC will use the ITI algorithm to perform service
learning. The learned result will be saved in two files, one
is a LESS script that representing the pruned tree, the other
is a binary file that representing the whole tree with virtual
pruning marks. SIPC will then load the LESS script in its
LESS engine to provide communication services. We are still
working on building a user friendly interface to help users to
handle communication service fail-safe.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a model for communication service
learning. Because usually end users are not trained for commu-
nication service creation, they may not know how to customize
or create their own services. Service learning can help them
by generating communication services automatically based
on their communication behaviors. Because people are still
rarely using VoIP systems as primary means for their daily
communications, we cannot perform real world testing for
the ITI learning algorithm, but we had done accuracy and
performance measurements for the algorithm in our simulation
environment and proved that it fits our learning model. We
noticed that communication services may introduce unex-
pected side-effects and proposed several options for service
risk management. But we still need to find out how to present
potential risks and possible solutions to users in a friendly and
easy to understand way.
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