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Abstract

We present several integral attacks on MISTY1 using the FO Relation, which is derived from
Sakurai-Zheng Property used in previous attacks. The FO Relation is a more precise form of the
Sakurai-Zheng Property such that the functions in the FO Relation depend on 16-bit inputs instead
of 32-bit inputs used in previous attacks, and that the functions do not change for different keys while
previous works used different functions. Thus we can reduce the attack complexity by a factor of 220.68.

We use the FO Relation to improve the 5-round integral attack. The data complexity of our attack,
234 chosen plaintexts, is the same as previous attack, but the running time is reduced from 248 encryp-
tions to 227.32 encryptions. The attack is then extended by one more round with a data complexity of 234

chosen plaintexts and a time complexity of 2108.10 encryptions. By exploring the key schedule weakness
of the cipher, we also present a chosen ciphertext attack on 6-round MISTY1 with all the FL layers with
a data complexity of 232 chosen ciphertexts and a time complexity of 2126 encryptions. Compared with
other attacks on 6-round MISTY1, our attack has the least data complexity.
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1 Introduction

The MISTY1 algorithm is a block cipher with a 64-bit block size and a 128-bit key size proposed by Matsui
[10]. It was recommended by the European NESSIE project and the CRYPTREC project, and became an
ISO standard in 2005. The cipher generally uses an 8-round Feistel structure with a round function FO.
Before each odd round and after the last round, there is an additional FL layer.

Many cryptanalysis results on MISTY1 have been published [1, 3, 5, 6, 7, 8, 9, 12, 13]. The integral at-
tack on 5 rounds with all but the last FL layers [6] requires 234 chosen plaintexts, and has a time complexity
of 248 encryptions. The impossible differential attack on 6 rounds with all the FL layers [3] requires 251

chosen plaintexts, and has a time complexity of 2123.4 encryptions. With all the FL functions absent, the
impossible differential attack [3] could break the 7 rounds with data complexity of 250.2 known plaintexts
and time complexity of 2114.1 encryptions.

In this paper, we present several integral attacks using a more precise form of the variant Sakurai-Zheng
Property for the round function FO. We call this new property the FO Relation. Sakurai-Zheng Property
was founded by Sakurai and Zheng in [11]. Knudsen and Wagner used a variation of this property for the
FO function to attack the 5-round MISTY1 [6]. Compared with the variant Sakurai-Zheng property, there
are two merits of the FO Relation: the inputs of the functions in the FO Relation are shortened from 32 bits
to 16 bits, and these functions do not change for different keys while the previous property used different
functions for different keys.

We use this new relation to improve the integral attack [6] on 5 rounds with all but the last FL layers.
The data complexity of our improved attack is 234 chosen plaintexts, and the time complexity of the attack
is 227.32 encryptions. Compared with the 5-round integral attack [6], the time complexity of our attack is
reduced from 248 to 227.32 with the same data complexity.

Next, we extend the 5-round attack by one more round. Using the equivalent description of the FO
function [7, 13] and the FO Relation, we modify the partial decryption process of computing the required
intermediate values to reduce the key bits needed.The data complexity of this 6-round attack is 234 chosen
plaintexts, and the time complexity of the attack is 2108.10 encryptions.

We also provide an attack on 6 rounds with all the FL layers. The attack is a chosen ciphertext attack
starting from the FL3, FL4 layer to the end of the cipher. We explore the key schedule weakness to
speed up the computation of the required intermediate values. The data complexity of the attack is 232

chosen ciphertexts, and the time complexity of the attack is 2126 encryptions. Compared with other attacks
on 6 rounds with all the FL layers, our attack has the least data complexity. The summarization of our
attacks and previous attacks is listed in Table 1, where the data complexity is measured by the number
of plaintexts/ciphertexts and the time complexity is measured by the number of encryptions needed in the
attack.

The paper is organized as follows: In Section 2 we give a brief description of MISTY1 block cipher.
We present the FO Relation in Section 3, and then use this new property to improve the integral attack on
5-round MISTY1 with all but the last FL layers in Section 4. Section 5 extends the 5-round attack to 6
rounds with all but the last FL layers. In Section 6 we present the attack on 6 rounds with all the FL layers.
Section 7 concludes this paper.

2 The MISTY1 Block Cipher

MISTY1 is a block cipher with a 64-bit block size and a 128-bit key size. Let P and C denote the 64
bit plaintext and ciphertext, respectively. We use the superscript without brackets to distinguish the values
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Rounds Attack FL functions Data Time Ref.
5 Higher-Order Differential None 210.5 CP 217 [1]
6 Impossible Differential None 254 CP 261 [7]
6 Impossible Differential None 239 CP 2106 [7]
6 Impossible Differential None 239 CP 285 [9]
7 Impossible Differential None 250.2 KP 2114.1 [3]
4 Impossible Differential Most 223 CP 290.4 [7]
4 Impossible Differential Most 238 CP 262 [7]
4 Collision Search Most 220 CP 289 [7]
4 Collision Search Most 228 CP 276 [7]
4 Slicing All 222.25 CP 245 [8]
4 Slicing All 227.2 CP 281.6 [8]
4 Impossible Differential All 227.5 CP 2116 [8]
5 Integral Most 234 CP 248 [6]
5 Impossible Differential All 238 CP 246.45 [3]
6 Impossible Differential All 251 CP 2123.4 [3]
5 Integral Most 234 CP 227.32 Section 4
6 Integral Most 234 CP 2108.10 Section 5
6 Integral All 232 CC 2126 Section 6

CP - Chosen plaintext CC - Chosen ciphertext
Most - the version of MISTY1 without the final FL layer

All - the version of MISTY1 with all the FL layers

Table 1: Attacks on MISTY1

corresponding to different plaintexts, e.g, C1 and C2 denote the ciphertexts for P 1 and P 2 respectively.
The superscript with brackets denotes the bits of the words, e.g, C1(1...7) denote the left 7 bits of C1. The
subscript(without brackets) is used to distinguish the FO functions or corresponding intermediate values
for different rounds.

MISTY1 has a recursive structure. As shown in Figure 1(a), the cipher generally uses an 8-round Feistel
structure with a round function FO. In each round, the left 32-bit part is functioned with the FO function,
and then is XORed with the right 32 bits. This new 32-bit value is the left 32-bit input of the next round and
the right 32-bit input of the next round is the original 32 left bits. Before each odd round and after the last
round, there is an additional FL layer.

In the original specification of MISTY1 [10], the round function FO uses a 112-bit key. Several equiv-
alent descriptions of the FO function [7, 13] have been proposed, which use less key bits. Here we use the
equivalent FO description presented in [7] with a little modification. The round function FOi itself has a
3-round Feistel-like structure. The 32-bit input of FOi is divided into two 16 bits, denoted as ILi and IRi,
respectively. In each round, the left 16-bit part is XORed with a subkey AKOi,1 and then functioned with
FI using a 9-bit key AKIi,1. The output of the FI is XORed with the right 16 bits. The left 16 bits and the
right 16 bits are then swaped. The same procedure is repeated three times, the left 16 bits and the right 16
bits after the third round are denoted as MLi and MRi. OLi is the XOR of MLi and the subkey AKOi,4,
and ORi is the XOR of MRi and AKOi,5. The output of FOi is OLi||ORi (|| denotes concatenation).
All the AKOi,k(1 ≤ k ≤ 5) are 16-bit subkeys, and all the AKIi,k(1 ≤ k ≤ 3) are 9-bit subkeys, hence
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Subkey Correspondence
KLi,1 K i+1

2
(odd i) or K i

2
+1(even i)

KLi,2 K i+1
2

+6(odd i) or K i
2
+4(even i)

AKOi,1 Ki

AKOi,2 Ki+2

AKOi,3 Ki+7 ⊕K ′(1...7)i+5 ||00||K ′(1...7)i+5

AKOi,4 Ki+4 ⊕K ′(1...7)i+5 ||00||K ′(1...7)i+5 ⊕K ′(1...7)i+1 ||00||K ′(1...7)i+1

AKOi,5 K
′(1...7)
i+5 ||00||K ′(1...7)i+5 ⊕K ′(1...7)i+1 ||00||K ′(1...7)i+1 ⊕K ′(1...7)i+3 ||00||K ′(1...7)i+3

AKIi,1 K
′(8...16)
i+5

AKIi,2 K
′(8...16)
i+1

AKIi,3 K
′(8...16)
i+3

Table 2: The Key Schedule for MISTY1

the FOi function uses a 107-bit key. Since AKO(8...9)
i,5 is zero and AKO(1...7)

i,5 is equal to AKO(10...16)
i,5 , the

FOi function actually takes a 98-bit key.
The FI function also has a 3-round Feistel-like structure. In the first round, the left 9-bit input enters a

S-box S9, and then is XORed with the right 7-bit input(padded two zero bits left to the 7 bits). Swap the
left and the right parts. In the second round, the left 7-bit part enters a S-box S7 and then is XORed with
the right 9 bits(truncated the left 2 bits). The right 9-bit part is XORed with AKIi,1 and then is swaped with
the left 7 bits. The third round of FI is the same as the first round.

In the FL layer, the left 32 bits and the right 32 bits are put into the FL functions. In each FL function,
the 32-bit input is divided into two blocks of 16 bits. The left 16-bit part is ANDed with the subkey KLi,1,
and then XORed with the right 16 bits to produce the right 16-bit output. This right 16-bit output is ORed
with the subkey KLi,2 and then XORed with left 16 bits to produce the left 16-bit output.

The key schedule of MISTY1 divides the 128-bit key into eight 16-bit words K1, K2, . . . , K8. Another
eight 16-bit words are computed by K ′i = FIKi+1(Ki). The correspondence of these 16 bit words and the
subkeys used in the encryption is listed in Table 2.

3 The FO Relation

The following proposition on the FO function, which is a variant for Sakurai-Zheng Property [11], is pre-
sented in [6].

Proposition 3.1 ([6]). 1 For the FO function of round i, the following equation holds

OL
(1...7)
i = fAKOi,1(ILi||IRi)⊕ gAKOi,2(ILi||IRi)⊕ k (1)

where fAKOi,1 and gAKOi,2 are functions related to subkeys AKOi,1 and AKOi,2, respectively, and k is a
constant related to the key used in this FOi function.

1 The description of this proposition in [6] uses the subkeys KOi,1 and KOi,2 corresponding to the original form of the FO
function described in [10]. Here we use the subkeys AKOi,1 and AKOi,2 as described in Section 2. The proposition does not
change because AKOi,1 = KOi,1 and AKOi,2 = KOi,2.

3



As shown in Figure 1(b), MLi is the XOR of the values corresponding to the point α and β, hence
OL

(1...7)
i = α ⊕ β ⊕ AKO(1...7)

i,4 . Since the left 7 bits of the values at α and β are not related to AKIi,1
and AKIi,2, Equation (1) holds by letting fAKOi,1(ILi||IRi) correspond to the left 7 bits of the value at α,
gAKOi,2(ILi||IRi) correspond to the left 7 bits of the value at β and the key-related constant k correspond

to AKO(1...7)
i,4 . Expanding fAKOi,1 and gAKOi,2 , Equation (1) is

OL
(1...7)
i = [FI(1...7)(ILi ⊕AKOi,1)⊕ IR(1...7)

i ]⊕ [FI(1...7)(IRi ⊕AKOi,2)]⊕AKO(1...7)
i,4 (2)

where FI(1...7) denotes the partial FI function which inputs 16-bit input of FI , and outputs the left 7-bit
output of FI . By identical transformation, Equation (2) can be rewritten as follows:

OL
(1...7)
i = [FI(1...7)(ILi⊕AKOi,1)]⊕[FI(1...7)(IRi⊕AKOi,2)⊕(IRi⊕AKOi,2)

(1...7)]⊕[AKO(1...7)
i,4 ⊕AKO(1...7)

i,2 ]

Let fAKOi,1(ILi||IRi) be FI(1...7)(ILi ⊕ AKOi,1), gAKOi,2(ILi||IRi) be FI(1...7)(IRi ⊕ AKOi,2) ⊕
(IRi ⊕AKOi,2)

(1...7) and the key-related constant k be AKO(1...7)
i,4 ⊕AKO(1...7)

i,2 , Equation (1) still holds,
but fAKOi,1 is not related to IRi and gAKOi,2 is not related to ILi. Hence Proposition 3.1 can be refined as
follows:

Lemma 3.2 (the FO Relation). For the FO function of round i, the following equation holds

OL
(1...7)
i = f(ILi ⊕AKOi,1)⊕ g(IRi ⊕AKOi,2)⊕ k (3)

where f and g are two fixed functions, and k is a constant related to the key used in this FOi function.

The FO Relation can be viewed as an improvement of Proposition 3.1. There are two folds of the
improvement:

1. The functions f and g used in Lemma 3.2 rely only on the 16-bit partial input of the FO function
instead of the whole 32-bit input used in Proposition 3.1 (the original Sakurai-Zheng Property [11] is
similar to this form, however, Proposition 3.1 for the FO function proposed in [6] does not have this
property).

2. The functions f and g are not related to the subkeys AKOi,1 and AKOi,2. The Subkeys AKOi,1 and
AKOi,2 are moved into the inputs of the functions f and g.

These two merits will benefit our attack.
Based on the FO Relation, the following theorem can be obtained:

Theorem 3.3. Let IL1||IR1, IL2||IR2, . . . ,IL2n||OL2n denote 2n inputs of the FO function of round i
for some even number 2n, the following equation holds:

2n⊕
j=1

OL
j(1...7)
i =

2n⊕
j=1

f(ILj
i ⊕AKOi,1)⊕

2n⊕
j=1

g(IRj
i ⊕AKOi,2) (4)

This theorem indicates that to obtain the value of
⊕2n

j=1OL
j(1...7)
i , we can treat the left 16 bits and the

right 16 bits separately to compute the value of
⊕2n

j=1 f(IL
j
i ⊕ AKOi,1) and

⊕2n
j=1 g(IR

j
i ⊕ AKOi,2).

Based on this theorem, we are ready to present our attack.
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4 Improved Integral Attack on 5-Round MISTY1

The integral attack on 5-round MISTY1 with all but the last FL layers, which was proposed in [6], uses the
following four-round integral:

Proposition 4.1 ([6]). Consider such a structure (named integral structure) of 232 plaintexts where the left
32 bits are held constant and the right 32 bits take on all possible values. The four round integral after
FL6(the XOR of all the 232 32-bit corresponding intermediate values of the structure after FL6) is equal to
zero.

The main idea of the attack is to partially decrypt the encryptions of the structure and check whether
Proposition 4.1 holds. Proposition 3.1 shown in Section 3 is used for fast checking whether the left seven
bits of the integral are equal to zero predicated by Proposition 4.1.

We improve the above attack by using the FO Relation, which provides a more efficient method for
checking the left seven bits of the integral than Proposition 3.1. The attack is as follows:

1. Ask for the encryptions of four different integral structures. Each structure includes all plaintexts that
have the same left 32 bits and all possible right 32 bits.

2. For encryptions of each integral structure:

(a) For every possible AKO5,1, compute the value of
⊕232

j=1 f(IL
j
5 ⊕AKO5,1).

(b) For every possible AKO5,2, compute the value of
⊕232

j=1 g(IR
j
5 ⊕AKO5,2).

(c) Discard all the AKO5,1, AKO5,2 pairs such that
⊕232

j=1 f(IL
j
5 ⊕ AKO5,1) ⊕

⊕232

j=1 g(IR
j
5 ⊕

AKO5,2) does not equal to
⊕232

j=1C
j(1...7).

3. For the remaining AKO5,1, AKO5,2 pairs, guess all possible values of AKI5,1, AKI5,2 to get full
16 bit

⊕232

j=1OL
j , discard all guesses such that Proposition 4.1 is not satisfied.

There exists one technique when implementing Step 2(a). There are only 216 possible different IL5

values. For one 16-bit value that occurs an even number of times in all ILj
5 (1 ≤ j ≤ 232), the XOR of all

the corresponding f(ILj
5 ⊕ AKO5,1) is zero. Hence, in Step 2(a) the attack first counts the occurrences of

each 16-bit value in all ILj
5. Then for each guessed AKO5,1, using the 16-bit values that occur odd times

in all ILj
5 to compute

⊕232

j=1 f(IL
j
5 ⊕AKO5,1).

For an integral structure, in Step 2(a), counting the occurrence of every possible 16 bits among all ILj
5

can be accomplished by 232 simple instructions, whose workload is less than 228 encryptions. there are
expected 215 different 16 bit values which occur odd times in all ILj

5. So, for one fixed AKO5,1 we could
compute

⊕232

j=1 f(IL
j
5 ⊕ AKO5,1) by computing 215 times function f . If we precompute all the possible

value of function f (the time for this preprocess can be neglected compared with the total time complexity),
it is possible use table look up to speed up. Since one time of table look up takes no more than 2−7

encryptions, the running time for Step 2(a) is no more than 215 · 2−7 · 216 = 224 encryptions for an integral
structure. Hence, this step needs only about 226 encryptions for all the four integral structures. By using
similar technique, Step 2(b) also needs about 226 encryptions.

In Step 2(c), each guess of AKO5,1, AKO5,2 pair has a probability of 2−7 passing the check of an
integral structure. For each integral structure, if we generate all the values could pass this check and then
check whether they have already been discarded, there are at most 232 · 2−7 = 225 candidates need to check
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for each integral structure. Since checking one pair needs only one table look up, this step needs about
226 · 2−7 = 219 encryptions, which is neglectable compared with the time used in Step 2(a) and 2(b).

After checking of four integral structures, the probability of one AKO5,1, AKO5,2 pair not being dis-
carded is 2−28, thus there are about 24 such pairs entering Step 3. Therefore, it is possible to finish this step
within 225 encryptions. After Step 3, only the correct guess remains and the wrong guesses are all discarded
with high probability.

As shown above, the total time needed is dominated by Step 2(a), Step 2(b) and Step 3. Hence, the time
complexity of this attack is about 226 + 226 + 225 = 227.32 encryptions.

5 Attack on 6-Round MISTY1 Without the Last FL Layer

In this section, we extend the improved 5-round integral attack to 6-round without the last FL layer. To
apply the method of the 5-round integral attack, the 6-round attack needs to recover the actual value of the
input of FO5, which means the attack needs to partially decrypt the sixth round. However, directly guessing
98 key bits used in FO6 will make the attack slower than exhaustive key search. To reduce the time needed,
we start from the following observation.

As shown in Figure 2, the input ofFO5, IL5||IR5, can be written asC(1...16)⊕ML6⊕AKO6,4||C(17...32)⊕
MR6 ⊕AKO6,5. The corresponding form of Equation (4) is then

2n⊕
j=1

OL
j(1...7)
5 =

2n⊕
j=1

f(Cj(1...16)⊕MLj
6⊕AKO6,4⊕AKO5,1)⊕

2n⊕
j=1

g(Cj(17...32)⊕MRj
6⊕AKO6,5⊕AKO5,2)

(5)
whereAKO5,1 andAKO5,2 are then replaced byAKO5,1⊕AKO6,4 andAKO5,2⊕AKO6,5, respectively,
and the input of FO5 is then replaced by C(1...16)⊕ML6||C(17...32)⊕MR6, because the subkeys AKO6,4,
AKO6,5, AKO5,1 and AKO5,2 are not related to compute ML6 and MR6.

To compute the intermediate valuesC(1...16)⊕ML6 andC(17...32)⊕MR6,AKO6,1,AKO6,2,AKO6,3,
AKI6,1, AKI6,2 and AKI6,3 are required. These six subkeys only take 75 key bits. The attack can be
described as follows:

1. Ask for the encryptions of four different integral structures. Each structure includes all plaintexts that
have the same left 32 bits and all possible right 32 bits.

2. Guess 75 key bits, and partially decrypt all the 234 encryptions to obtain the value of C(1...16)⊕ML6

and C(17...32) ⊕MR6.

3. For each integral structure:

(a) For every possible AKO6,4 ⊕ AKO5,1, compute the value of
⊕232

j=1 f(C
j(1...16) ⊕ MLj

6 ⊕
AKO6,4 ⊕AKO5,1).

(b) For every possible AKO6,5 ⊕ AKO5,2, compute the value of
⊕232

j=1 f(C
j(17...32) ⊕ MRj

6 ⊕
AKO6,5 ⊕AKO5,2).

(c) Discard allAKO6,4⊕AKO5,1,AKO6,5⊕AKO5,2 pairs such that
⊕232

j=1 f(C
j(1...16)⊕MLj

6⊕
AKO6,4 ⊕ AKO5,1) ⊕

⊕232

j=1 g(C
j(17...32) ⊕MRj

6 ⊕ AKO6,5 ⊕ AKO5,2) does not equal to⊕232

i=1C
j(33...39)
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4. For the guessed keys that are not discarded, exhaustively search for remaining key bits.

For each guessed 75-bit key, Step 2 partially decrypts 234 encryptions. Each partial decryption takes no
more than 1/4 encryption. So this step needs about 232 encryptions for each guessed 75-bit key.

As shown in Section 4, Both Step 3(a) and 3(b) need less than 227 encryptions for the four integral
structures, and Step 3(c) needs neglectable time compared with Step 3(a) and 3(b).

There are expected 24 out of 232 possible AKO5,1 ⊕AKO6,4, AKO5,2 ⊕AKO6,5 pairs entering Step
4 for each guessed 75 bits in Step 2. For each guess entering Step 4, the attack exhaustively searches the
221 possible remaining key bits. So the running time of this step is about 225 encryptions for each guessed
75-bit key in Step 2.

As a result, the total time complexity of this attack is 275 · (232+227+227+225) = 2108.10 encryptions.

6 Attack on 6-Round MISTY1 With All FL Layers

In this attack, we do a chosen ciphertext attack on last 6 round MISTY1 block cipher with all FL functions.
The encryption then starts before the FL3, FL4 layer and ends at the end of the cipher.

In this attack, we also make use of the 4-round integral. Since the attack is a chosen ciphertext attack, the
four round integral corresponds to the XOR of all the 232 32-bit intermediate values of the integral structure
before FL5. We also use Theorem 3.3 for fast checking the integral. As shown in Figure 3, the Equation (4)
of Theorem 3.3 for the forth round can be rewritten as:

2n⊕
j=1

OL
j(1...7)
4 =

2n⊕
j=1

f(Dj(33...48)⊕MLj
3⊕AKO3,4⊕AKO4,1)⊕

2n⊕
j=1

g(Dj(49...64)⊕MRj
3⊕AKO3,5⊕AKO4,2)

(6)
where D denotes the result of the plaintext P passing through first FL3 and FL4 layer as shown in Figure
3.

We need to obtain the values of D(33...48) ⊕ML3 and D(49...64) ⊕MR3 from decryptions. For one
encryption, if the attack partially decrypts for these values directly, it needs to guess at least total 105
key bits. Such a guess together with 232 partial decryption will make the attack slower than exhaustive
key search. However, to check Equation (6), we could obtain all the 232 Dj(33...48) ⊕ MLj

3 to compute⊕232

j=1 f(D
j(33...48) ⊕MLj

3 ⊕ AKO3,4 ⊕ AKO4,1) and obtain all the 232 Dj(49...64) ⊕MRj
3 to compute⊕232

j=1 g(D
j(49...64) ⊕MRj

3 ⊕AKO3,5 ⊕AKO4,2) separately.
By exploring the key schedule weakness, we notice that none of the two processes needs all the 105 key

bits. To obtain D(33...48), the attack needs KL4,1 and KL4,2, which are K ′4 and K6. To obtain ML3 from
the plaintext P , the attack needs only the subkeys KL3,1, KL3,2, AKO3,1, AKO3,2, AKI3,1 and AKI3,2,
which correspond to K2, K ′8, K3, K5, K ′(8...16)8 , K ′(8...16)4 . Thus, only K ′4, K2, K ′8, K3, K5 and K6 are
required.

Proposition 6.1. For one encryption, computing D(33...48) ⊕ML3 from plaintext needs only 96 key bits.

Consider the process of computingD(49...64)⊕MR3. To obtainD(49...64), the attack only needs to know
KL4,1(K ′4) but not KL4,2(K6). To obtain MR3, the attack needs only KL3,1, KL3,2, AKO3,1, AKO3,2,
AKO3,3, AKI3,1, AKI3,2 and AKI3,3, which correspond to K2, K ′8, K3, K5, K2 ⊕ K

′(1...7)
8 ||00|| ⊕

K
′(1...7)
8 ,K ′(8...16)8 , K ′(8...16)4 , K ′(8...16)6 , as Table 2.

Proposition 6.2. For one encryption, computing D(49...64) ⊕MR3 from plaintext needs only 89 key bits.
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When computing the value of
⊕232

j=1 f(D
j(33...48)⊕MLj

3⊕AKO3,4⊕AKO4,1) for an integral structure,

the AKO4,1 and AKO3,4 used correspond to K4 and K7 ⊕K ′(1...7)8 ||00||K ′(1...7)8 ⊕K ′(1...7)4 ||00||K ′(1...7)4 .
The subkey K7 is not included in the guessed 96 key bits. Hence K7 should be guessed after obtaining all
the D(33...48) ⊕MLj

3.
To obtain

⊕232

j=1 g(D
j(49...64) ⊕ MRj

3 ⊕ AKO3,5 ⊕ AKO4,2), the attack still needs to guess K6 ⊕
K6′(1...7)||00||K6′(1...7). This guess can be done after obtaining all the D(49...64) ⊕MRj

3.
The attack is as follows:

1. Ask for decryptions of one integral structure in which all ciphertexts have the same left 32 bits and all
possible right 32 bits.

2. Guess 80-bit K2, K ′8, K3, K5, K ′4, and obtain the value of
⊕232

j=1D
j(1...7).

3. Guess 16-bit K6 and obtain all the 232 Dj(33...48) ⊕MLj
3. Continue to guess 16 bit words K7 and

compute
⊕232

j=1 f(D
j(33...48) ⊕MLj

3 ⊕AKO3,4 ⊕AKO4,1).

4. Guess 9-bit K ′(8...16)6 and obtain all the 232 Dj(49...64) ⊕ MRj
3. Continue to guess 16 bit words

K6 ⊕K ′(1...7)6 ||00||K ′(1...7)6 and obtain
⊕232

j=1 g(D
j(49...64) ⊕MRj

3 ⊕AKO3,5 ⊕AKO4,2).

5. Discard all guesses of K6, K7, K ′(8...16)6 and K6 ⊕K ′(1...7)6 ||00||K ′(1...7)6 such that Equation (6) does
not hold or the guesses that result in conflict (K6 andK7 do not produceK ′6 corresponding toK ′(8...16)6

and K6 ⊕K ′(1...7)6 ||00||K ′(1...7)6 ).

6. For the guesses not discarded, exhaustively search for the remaining key bits.

In Step 3, for each guessed 16-bit K6, the calculation of 243 Dj(33...48) ⊕MLj
3 takes no more than 232 ·

1/4 = 230 encryptions. For each K7, the calculation of
⊕232

j=1 f(D
j(33...48)⊕MLj

3⊕AKO3,4⊕AKO4,1)

takes about 215 table lookup, which is equivalent to about 215 · 2−7 = 28 encryptions. Hence, the running
time of Step 3 is no more than 216 ·(230+216 ·28) ≈ 246 encryptions for each guessed 80 key bits. Similarly,
Step 4 needs at most 239 encryptions for each guessed 80 key bits.

In Step 5, for each K6 and K7, calculate the value of K ′(8...16)6 and K6⊕K ′(1...7)6 ||00||K ′(1...7)6 , and then
check whether Equation (6) holds. Hence Step 5 checks 232 guesses, and the time needed is also neglectable
to Step 3. For each guess of the 32 bit K6 and K7, the probability of satisfying Equation (6) is 2−7. Hence,
for each guessed 80 bits in Step 2, there are expected 223 guesses out of 232 possibleK6,K7 entering Step 6.
We notice that for each guess entering Step 6, the attack still needs to exhaustively search for the remaining
16 key bits. Therefore, Step 6 takes 239 encryptions for each guess in Step 2.

The running time of the whole attack is dominated by Step 3. The time complexity of the attack is
246 · 280 = 2126 encryptions.

7 Conclusion

In this paper, we presented several integral attacks on reduced MISTY1 block cipher. Our attack improved
the 5-round integral attack presented in [6] with the use of the FO Relation. We also extended the attack to
6-round with all FL layers by using weakness of the key schedule algorithm.
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The existence of the FO Relation stems from the structure of the FO function and the fact that the key
is XORed in the FO function. The resulting diffusion effect is too weak to defeat popular cryptanalysis
techniques, such as differential cryptanalysis and integral cryptanalysis.

Our attack also indicates that the correspondence between subkeys used and the 128-bit key might be
too simple. Further exploration of this weakness of the key schedule is still worthy studying.
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Figure 1: (a) MISTY1 general structure (b) FO function (c) FI function (d) FL function
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Figure 2: Partial decryption in the attack on 6-round MISTY1 with all but the last FL layers
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Figure 3: Partial decryption in attack on 6-round MISTY1 with all layers
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