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Abstract

We consider the problem of locating facilities in a metric space to serve a set of selfish agents. The
cost of an agent is the distance between her own location and the nearest facility. The social cost is the
total cost of the agents. We are interested in designing strategy-proof mechanisms without payment that
have a small approximation ratio for social cost. A mechanism is a (possibly randomized) algorithm
which maps the locations reported by the agents to the locations of the facilities. A mechanism is
strategy-proof if no agent can benefit from misreporting her location in any configuration.

This setting was first studied by Procaccia and Tennenholtz [21]. They focused on the facility game
where agents and facilities are located on the real line. Alon et al. studied the mechanisms for the facility
games in a general metric space [1]. However, they focused on the games with only one facility. In this
paper, we study the two-facility game in a general metric space, which extends both previous models.

We first prove an Ω(n) lower bound of the social cost approximation ratio for deterministic strategy-
proof mechanisms. Our lower bound even holds for the line metric space. This significantly improves
the previous constant lower bounds [21, 17]. Notice that there is a matching linear upper bound in the
line metric space [21]. Next, we provide the first randomized strategy-proof mechanism with a constant
approximation ratio of 4. Our mechanism works in general metric spaces. For randomized strategy-proof
mechanisms, the previous best upper bound is O(n) which works only in the line metric space.
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1 Introduction

We start with a typical problem in economics: the government plans to build several libraries in a city to
serve a local community. All residents report their home addresses so that the government can decide the
most appropriate library locations. Every resident wants to be as close to one of the libraries as possible;
meanwhile, the government wants to minimize the sum of distances between each resident and her near-
est library, which is called the social cost. In many cases, the government cannot trust the self-reported
addresses from residents, because people are selfish, and could report false addresses for personal benefits.

This type of problem is called the facility game. In this game, agents report their locations and accord-
ingly a mechanism chooses positions to build facilities. A mechanism is also called a social choice function
in the Economics literature. Specifically, agents and facilities are located in some metric space. To model
real problems, the distance function could be the Euclidean distance, the shortest path distance (in a graph),
or any other metric. An agent may misreport her location if she can reduce her own cost. To avoid such
misreport, the strategy-proofness is introduced in game theory, which is the main focus of this paper. In a
strategy-proof mechanism, no agent can unilaterally benefit from misreporting. A stronger requirement is
called group strategy-proofness. In a group strategy-proof mechanism, no group of agents can misreport
their locations such that each member can strictly benefit. Formal definitions of the these concepts are given
in Section 2.

The facility game has a rich history in social science literatures. There has been some partial character-
izations of the strategy-proof mechanisms for some metric spaces, e.g. a facility on a line [6, 19, 4, 25] or
on a general network [23]. However, these works have not considered the optimizations or approximations
over the social cost.

The study of algorithmic aspect of mechanism design problem was initiated by the seminal work of
Nisan and Ronen [20] in 1999. During the past decade, a significant body of work has been done for
optimization problems from a mechanism design point of view [15, 2, 10, 14]. Most of the work deals
with mechanisms which employ payment. In particular, the well known Vickrey-Clarke-Groves (VCG)
mechanism [26, 8, 12] is strategy-proof, which gives an optimal solution for our facility game if payment is
allowed.

However, in many social choice settings, monetary transfer may be unavailable due to legal or ethical
issues as noted by Schummer and Vohra [24]. Voting is one perfect example. More recently, Procaccia and
Tennenholtz formally initiated the study of approximate mechanism design without money in their seminal
paper [21]. This type of work can also be traced back to the work on incentive compatible learning by
Dekel et al. [9]. From a more algorithmic viewpoint, Procaccia and Tennenholtz studied strategy-proof
mechanisms that give provable approximation ratios on social cost. A mechanism is called γ-approximate,
if for every input instance, the social cost for the outcome is no more than γ times that of an optimal
assignment. We are interested in studying both upper and lower bounds of the approximation ratios for
possibly randomized strategy-proof mechanisms. We note that here the lower bound is due to the cost of
strategy-proofness rather than the computational complexity. Same type of lower bounds were proved for
mechanisms (with payment) for scheduling unrelated machines [7, 13, 18, 16].

For the two-facility game on a line, Procaccia and Tennenholtz [21] gave an upper bound of n − 2 and
a lower bound of 1.5 for deterministic strategy-proof mechanisms. The lower bound was later improved to
2 [17]. In addition, Lu, Wang and Zhou [17] obtained an upper bound of n/2 and a lower bound of 1.045 for
randomized strategy-proof mechanisms. To close the huge gaps for both deterministic and randomized cases
is an important open problem in this direction. Our work resolves this problem by proving asymptotically
tight bounds for both cases.
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Besides, Alon et al. [1] studied the facility game in a general metric space rather than a line. They
gave an almost complete characterization of the feasible strategy-proof approximation ratios, but under the
condition that there is solely one facility. In this paper, we analyze the game with two facilities, and prove
our results in any general metric space. Notice that this generalization is non-trivial and our work is a joint
extension of the work by Procaccia and Tennenholtz [21] and the work by Alon et al. [1].

1.1 Our Results

We study the approximation ratios of strategy-proof mechanisms for two-facility games in generalmetric
spaces. It is the first time that facility games with more than one facility are considered in general metric
spaces. We obtain three main results.

Our first result is a linear lower bound of the approximation ratio for deterministic strategy-proof mech-
anisms. This is noticeably the first super constant lower bound for the two-facility game, and even holds in
the line metric space. It confirms one conjecture in [21]. Moreover, the proof idea is new, and we highlight
two key concepts we employ and may be of independent interest.

• Partial group strategy-proofness. In a partial group strategy-proof mechanism, a group of agents
at the same location cannot benefit even if they misreport their locations simultaneously. As noted
in [21], there is a lower bound of Ω(n) for group strategy-proof mechanisms of the two-facility game.
However, a strategy-proof mechanism may not be group strategy-proof. To overcome such obstacle,
we introduce the concept of partial group strategy-proofness and prove that it can be implied from the
strategy-proofness. Our lower bound is benefited from this observation.

• Image set 1. This is defined as the set of possible facility locations when a group of agents varies their
reported locations within the entire space, fixing the locations of other agents. This concept allows an
investigation of infinite number of location profiles simultaneously, while previous lower bounds are
obtained by analyzing only constant many profiles.

We remark here that the above two concepts are defined for general facility games in an arbitrary metric
space.

Our second result is a randomized strategy-proof mechanism with a constant approximation ratio for
the two-facility game, working in general metric spaces. In comparison, the previous best known upper
bound is O(n) and works only in the line metric space. Together with our first result, this mechanism
indicates that randomness is indeed an essential power in (money-less) strategy-proof mechanism design.
This new mechanism is very intuitive. The first facility is allocated uniformly over all reported locations;
the second facility is assigned to another reported location with probability proportional to its distance to
the first facility. We call it the Proportional Mechanism. Although the mechanism seems natural, the proof
of its strategy-proofness and the analysis of its approximation ratio are both involved.

Our third result is a deterministic mechanism with an O(n) approximation ratio for the circle metric
space. A circle is S1 ⊂ R2, and the distance of two points on S1 is the length of the minor arc between
them. This is noticeably the first bounded deterministic mechanism for two-facility games over metric
spaces other than the line. It is also worth pointing out that this mechanism is group strategy-proof.

We summarize our results and the state of the art in the following table.
We recall that even for the line metric space, the previous best upper and lower bounds are O(n) and

Ω(1) respectively, in both deterministic and randomized settings. This work significantly improves our

1An anonymous reviewer pointed out that a similar idea is used in [5].
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Deterministic Randomized
Line UB : (n− 2 [21]) UB : 4 (n2 [17])

LB : n−1
2 (2 [17]) LB : (1.045 [17])

Circle UB : n− 1 (N/A) UB : 4 (N/A)
LB : n−1

2 (2 [17]) LB : (1.045 [17])
General UB : N/A UB : 4 (N/A)

LB : n−1
2 (2 [17]) LB : (1.045 [17])

Table 1: Our results are in bold. The expressions in brackets are previous results (N/A means no previous
known bound).

understanding of: 1) the power of (money-less) strategy-proof mechanism for facility games; 2) the power
of randomness in (money-less) strategy-proof mechanism design.

1.2 Related Work

The facility game problem has a rich history in social science literatures. Consider the case that we are
building one facility in a discrete set of locations (alternatives). Agents are reporting their preferences for
the alternatives. The renowned Gibbard-Satterthwaite theorem [11, 22] showed that if the preferences on the
alternatives for agents are arbitrary, the only strategy-proof mechanism is the dictatorship when the number
of alternatives are greater than two.

In real life, agent preferences on the locations are not arbitrary. In particular for the facility game over a
real line, agents should have single-peaked preferences, where peaks are at agents’ own locations. This kind
of admissible preference was first discussed by Black [6]. Later, Moulin [19], Barberà and Jakson [4], and
Sprumont [25] characterized the class of all strategy-proof mechanisms for the one-facility game in the real
line. Interested readers may refer to the detailed survey by Barberà [3]. Notably, the characterization for the
strategy-proof mechanisms with two or more facilities (even over a line) is wide open.

In additional to the social cost, Procaccia and Tennenholtz [21] and Alon et al. [1] also considered an-
other optimization target, the maximum cost. They obtained lower and upper bounds for the approximation
ratios of strategy-proof mechanisms for this target. Another extension of the facility games was studied
in [21] and [17]. In this game, an agent may have more than one location and is aiming to minimize the
overall cost of all the locations she have.

2 Preliminaries

Let (Ω, d) be a metric space where d : Ω × Ω → R is the metric. The distance between any two points
x, y ∈ Ω is d(x, y). Recall that for all x ∈ Ω, d(x, x) = 0.

Let N = {1, 2, . . . , n} be the set of agents. The location reported by agent i is xi ∈ Ω. We denote
x = (x1, x2, . . . , xn) a location profile.

In the k-facility game, a deterministic mechanism outputs k facility locations according to a given
location profile x, and thus is a function f : Ωn → Ωk. Assuming the set of facility locations to be
f(x) = {l1, l2, ...lk}, the cost of agent i is her distance to the nearest facility:

cost(f(x), xi) = min
j=1,··· ,k

{d(lj , xi)}.

A randomized mechanism is a function f : Ωn → ∆(Ωk), where ∆(Ωk) is the set of distributions over
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Ωk. The cost of agent i is now her expected cost over such distribution:

cost(f(x), xi) = El∼f(x)

[
min

j=1,··· ,k
{d(lj , xi)}

]
.

Let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the location profile without agent i. We write x = 〈xi,x−i〉.
Similarly, when S ⊂ N is a set of agents, we denote x−S the location profile of agents outside S. We write
x = 〈xS ,x−S〉, the location profile satisfying that agents in S report locations xS while other agents report
locations x−S . For simplicity, we denote f(xi,x−i) = f(〈xi,x−i〉) and f(xS ,x−S) = f(〈xS ,x−S〉).

The social cost of a mechanism f on a location profile x is defined as the total cost of all n agents:

SC(f,x) =
n∑
i=1

cost(f(x), xi)

We note that in the randomized case, this social cost is an expected value. For a location profile x, denote
OPT(x) the optimal social cost. We say that a mechanism f has an approximation ratio γ, if for all profile
x ∈ Ωn,

SC(f,x) ≤ γOPT(x).

In this paper, we stick to the case of k = 2 which we name it the two-facility game. Besides the general
metric space, we also study two special cases: the line metric space and the circle metric space. The line
metric is simply the Euclidean metric on the real line; the circle metric is defined as the length of the minor
arc between any two points on S1 ⊂ R2. Our definitions of line and circle are consistent with that in [1].

Now, we give formal definitions of strategy-proofness and group strategy-proofness.

Definition 2.1. A mechanism is strategy-proof if no agent can benefit from misreporting her location. For-
mally, given agent i, profile x = 〈xi,x−i〉 ∈ Ωn, and a misreported location x′i ∈ Ω, it holds that

cost(f(xi,x−i), xi) ≤ cost(f(x′i,x−i), xi).

Definition 2.2. 2 A mechanism is group strategy-proof if for any group of agents, at least one of them cannot
benefit if they misreport simultaneously.

Formally, given a non-empty set S ⊂ N , profile x = 〈xS ,x−S〉 ∈ Ωn, and the misreported locations
x′S ∈ Ω|S|, there exists i ∈ S, satisfying

cost(f(xS ,x−S), xi) ≤ cost(f(x′S ,x−S), xi).

2.1 Partial Group Strategy-Proofness

Inspired by the group strategy-proofness, we define the partial group strategy-proofness:

Definition 2.3. A mechanism is partial group strategy-proof if for any group of agents at the same location,
each individual cannot benefit if they misreport simultaneously.

Formally, given a non-empty set S ⊂ N , profile x = 〈xS ,x−S〉 ∈ Ωn where xS = (x, ..., x) for some
x ∈ Ω, and the misreported locations x′S ∈ Ω|S|, we have:

cost(f(xS ,x−S), x) ≤ cost(f(x′S ,x−S), x)

2Here we use the weak notion of group strategy-proofness which follows the definitions in [21, 1]. Some other work defines the
strong group strategy-proofness by asking that it cannot be the case that all the deviating agents do not lose and at least one strictly
gains.
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Intuitively, the definition says that a group of overlapping agents cannot “group-misreport” and benefit.
By definition, we have the following:

group strategy-proofness

⇒ partial group strategy-proofness

⇒ strategy-proofness.

In the following, we show that one reversal direction also holds:

Lemma 2.4. In a k-facility game, a strategy-proof mechanism is also partial group strategy-proof.

Proof. We embrace the same notations as in Definition 2.3. In addition, we let S = {s1, s2, . . . , sl}, and
x′si be the misreported location for agent si in x′S . Consider the following sequence of profiles :

Pi(0 ≤ i ≤ l) : sj reports x for 1 ≤ j ≤ i;
sj reports x′si for i < j ≤ l;
other agents report x−S .

By definition, we have
cost(f(P0), x) = cost(f((x, ..., x),x−S), x)

and
cost(f(Pl), x) = cost(f(x′S ,x−S), x).

We are to prove that cost(f(P0), x) ≤ cost(f(Pl), x).
In profile Pi where 1 ≤ i ≤ l, agent si is at location x. We consider the scenario that agent si misreports

to x′si , and this is exactly Pi−1. By the strategy-proofness of f , agent si cannot benefit from this misreport:
cost(f(Pi), x)) ≤ cost(f(Pi−1), x). Summing up these inequalities for all i = 1, 2, ..., l, we complete the
proof.

We remark that our lower bound result in the next section will be proved with the aid of the notion
of partial group strategy-proofness. The definition of partial group strategy-proof is not restricted to the
two-facility game; or rather it also works for k-facility games for any k. This fact may be of independent
interest.

3 Linear Lower Bound for Deterministic Mechanisms

In this section, we give a linear lower bound of n−1
2 on the approximation ratio for deterministic strategy-

proof mechanisms. This bound is constructed in the line metric space, which naturally extends to other more
general metric spaces. The previous known lower bounds are only constants [21, 17].

For the two-facility game on the real line, choosing the leftmost and the rightmost points in the location
profile is a deterministic strategy-proof mechanism with an approximation ratio of n − 2 [21]. Therefore,
our lower bound implies that this simple mechanism is asymptotically optimal.
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3.1 Image Set

We first explore some properties of the k-facility game. These properties will be used for our two-facility
case, but may be of independent interest for further studies.

We define the concept of image set. For a given mechanism f , the image set of agent i with respect to a
location profile x−i is the set of all possible facility locations when agent i varies her reported location:

Ii(x−i) = ∪xi∈Ωf(xi,x−i).

The following lemma states that a strategy-proof mechanism f always outputs some location in Ii(x−i)
that is closest to agent i. Intuitively, the image set represents agent i’s power. If f outputs the best solution
for agent i within her power, agent i does not have the incentive to lie.

Lemma 3.1. Let f be a strategy-proof mechanism for the k-facility game, 〈xi,x−i〉 ∈ Ωn. We have:

cost(f(xi,x−i), xi) = inf
y∈Ii(x−i)

d(y, xi).

Proof. We assume for contradiction that there exists y∗ ∈ Ii(x−i) such that d(y∗, xi) < cost(f(xi,x−i), xi).
By the definition of image set, there exists x∗i satisfying y∗ ∈ f(x∗i ,x−i). Consider the scenario that

agent i is at xi. She can misreport to x∗i , experiencing a lower cost of d(y∗, xi) than her current cost of
cost(f(xi,x−i), xi). This contradicts the assumption that f is strategy-proof.

This lemma implies that if an agent misreports to one of the current facilities, this facility will stay at
the same location. Formally, we have:

Corollary 3.2. Let f be a strategy-proof mechanism for the k-facility game. Let x = 〈xi,x−i〉 be a location
profile. If z ∈ f(x), we must have z ∈ f(z,x−i).

Proof. By the definition of image set, z ∈ Ii(x−i) because z ∈ f(x) = f(xi,x−i). According to Lemma
3.1, cost(f(z,x−i), z) = infy∈Ii(x−i) d(y, z). But the right hand side is 0 since z ∈ Ii(x−i). This implies
z ∈ f(z,x−i).

The following result is another direct corollary of Lemma 3.1.

Corollary 3.3. Let Ii(x−i) be an image set of a strategy-proof mechanism for the k-facility game in metric
space (Ω, d). Then Ii(x−i) is a closed set of Ω under the topology induced by the metric d(·).

Now we extend the definition of image set from single agent to the multi agent. Given mechanism f ,
we define the image set of S with respect to x−S as follows:

JS(x−S) =
⋃

xS∈Ω|S|

f(xS ,x−S).

Using partial group strategy-proofness, Lemma 3.1, Corollary 3.2 and Corollary 3.3 have the corre-
sponding multi-agent counterparts.

Lemma 3.4 (Extending 3.1). Let f be a strategy-proof mechanism for the k-facility game. Let S ⊂ N be a
non-empty set of agents, xS = (x, ..., x), and x−S ∈ Ωn−|S|. We have:

cost(f(xS ,x−S), x) = inf
y∈JS(x−S)

d(y, x).
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Proof. Assume the statement is false, there exists y∗ ∈ JS(x−S) such that d(y∗, xi) < cost(f(xS ,x−S), x).
By the definition of image set, there exists x′S satisfying y∗ ∈ f(x′S ,x−S). By the partial group strategy-

proofness (Lemma 2.4) of f , agents in S for profile 〈xS ,x−S〉 cannot “group-misreport” to x′S and benefit.
Therefore, we have

cost(f(xS ,x−S), x) ≤ cost(f(x′S ,x−S), x) ≤ d(y∗, xi),

resulting in a contradiction.

Similarly, we have the following two corollaries.

Corollary 3.5 (Extending 3.2). Let f be a strategy-proof mechanism for the k-facility game. Let S ⊂ N be
a set of agents, and x−S ∈ Ωn−|S|, we have:

∀x ∈ JS(x−S), x ∈ f((x, ..., x),x−S).

Corollary 3.6 (Extending 3.3). JS(x−S) is closed in Ω.

3.2 Proof of the Lower Bound

In this section we state and prove our main lower bound theorem.

Theorem 3.7. Any deterministic strategy-proof mechanism for the two-facility game in the line metric space
has an approximation ratio of at least n−1

2 .

Our lower bound is obtained by a careful study of the behavior of any mechanism on the following set
of profiles

x(a, b) = (a, a, . . . , a︸ ︷︷ ︸
(n−1)/2

, b, b, . . . , b︸ ︷︷ ︸
(n−1)/2

, 1),

where a ≤ b ≤ 1 are two parameters. Intuitively, when a = −1 and b = 0, a mechanism with a good
approximation ratio should allocate one facility near a and the other facility near b; when the distance
between a and b is very small, it should allocate one facility near a (and hence b) and the other near 1.
However, we will show that a strategy-proof mechanism cannot do well in both cases.

We notice that in x(a, b), n−1
2 agents are at a same location a and another n−1

2 agents are at a same
location b. This configuration enables us to adopt the partial group strategy-proofness.

Let Sa (resp. Sb) be the n−1
2 agents at location a (resp. b). Then x−Sa (resp. x−Sb

) is the location profile
that agents in Sb (resp. Sa) report b (resp. a) and the last agent reports 1. We define:

Ia(b) = JSa(x−Sa) = JSa((b, ..., b, 1));

Ib(a) = JSb
(x−Sb

) = JSb
((a, ..., a, 1)).

Lemma 3.8. Let f be a deterministic strategy-proof mechanism for a line metric space with an approxima-
tion ratio smaller than n−1

2 . Then a ∈ f(x(a, b)) for all a ≤ b ≤ 1.

Proof. The lemma is obvious when b = 1. Consider Ia(b) for b < 1. We first show that Ia(b) ∩ (−∞, b) =
(−∞, b), by assuming for contradiction that there exists some c < b satisfying c /∈ Ia(b).

Notice that when a → −∞, any mechanism with a bounded approximation ratio will place a facility
close to a and hence on the left side of c. This indicates that Ia(b) ∩ (−∞, c) 6= ∅. Therefore a∗ =
supx∈Ia(b){x < c} is well defined. Since Ia(b) is closed according to Corollary 3.6, we have a∗ ∈ Ia(b).
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Figure 1: The definition of c, a∗ and a∗ + ε
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Now we have a∗ < c < b, as shown in Figure 1. According to definitions above, we have (a∗, c]∩Ia(b) =
∅. For any 0 ≤ ε < (c− a∗)/2, the closest point to a∗ + ε in the image set Ia(b) is a∗ (this point is unique).
Thus by Lemma 3.4, a∗ ∈ f(x(a∗ + ε, b)). We fix ε = c−a∗

3 ≤ b−a∗
3 , and consider the following profile:

x′ = (a∗ + ε, a∗ + ε, . . . , a∗ + ε︸ ︷︷ ︸
(n−1)/2

, b, b, . . . , b︸ ︷︷ ︸
(n−1)/2

, a∗).

Using the fact that a∗ ∈ f(x(a∗ + ε, b)) and Corollary 3.2, we know a∗ ∈ f(x′). However, no matter
where the second facility is placed by f , the social cost is at least (n−1)ε

2 . This contradicts that f has an
approximation ratio smaller than (n − 1)/2, because the optimal social cost in profile x′ is only ε. In sum,
we must have Ia(b) ∩ (−∞, b) = (−∞, b).

Finally, using Corollary 3.5, it is clear that for any a < b, a ∈ f(x(a, b)). For the case of a = b the
result is trivial.

Using analogous techniques we can prove the following lemma, whose proof is omitted here due to
space limitation.

Lemma 3.9. Let f be a deterministic strategy-proof mechanism for the line metric space with an approxi-
mation ratio smaller than n−1

2 . We have b ∈ f(x(a, b)) for all a ≤ b ≤ 1.

of Theorem 3.7. We consider profile

x̃ = (0, 0, . . . , 0︸ ︷︷ ︸
(n−1)/2

,
1

n2
,

1

n2
, . . . ,

1

n2︸ ︷︷ ︸
(n−1)/2

, 1).

By Lemma 3.8 and 3.9, any strategy-proof mechanism f with an approximation ratio smaller than n−1
2 will

place facilities at 1
n2 and 0, achieving a social cost of 1. However, the optimal social cost for x̃ is only 1

2n by
placing facilities at 0 and 1. This contradicts the assumption that f has an approximation ratio smaller than
n−1

2 .

3.3 Discussions

Our lower bound is constructed in the line metric space, which directly applies to other general metric
spaces. It also holds for any metric space which can be locally viewed as a line, such as the circle. On
the line, there is an upper bound of n − 2, which asymptotically matches our lower bound. However, this
lower bound may not be tight for more general metrics. For example, there is no known upper bound for
deterministic mechanisms in metric spaces other than line and circle (to be shown in Section 5). It could be
the case that the approximation ratio is actually unbounded for general metric spaces.

Our technique can be extended to show a linear lower bound for the k-facility game when k > 2. It is
unknown whether this bound is tight even on the line. In particular, it remains an open question that whether
a deterministic mechanism exists for three-facility games with any bounded approximation ratio even in the
line metric space.

4 Proportional Mechanism

In the previous section, we proved that there is no deterministic strategy-proof mechanism with a good (sub-
linear) approximation ratio. In this section, we propose the first randomized mechanism with a constant
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approximation ratio. Notice that the best known randomized mechanism [17] has an approximation ratio of
n/2, and works only in the line metric space. Our mechanism works for general metric spaces.

Proportional Mechanism.
Given a profile x = (x1, x2, ...xn), the locations of the two facilities are decided by the following random
process:

Round 1: Choose agent i uniformly at random from N . The first facility l1 is placed at xi.

Round 2: Let dj = d(l1, xj) be the distance from agent j to the first facility l1. Choose agent j with
probability dj∑

k∈N dk
. The second facility is then placed at xj .3

The Proportional Mechanism always allocates facilities on the reported locations. The probability of the
placement of the second facility is proportional to its distances to the first facility. This is where the name
“Proportional” comes from.

The Proportional Mechanism has the following nice property. Every term in the expected cost has a
form of X

Y Z, where X,Y, Z are some distances. X
Y is a ratio which indicates a probability, and Z is a cost.

However, we can also view Z
Y as a ratio, and X as a cost. This small observation is used extensively both in

the proof of strategy-proofness and the analysis of the approximation ratio.

4.1 Strategy-Proofness

Theorem 4.1. The Proportional Mechanism for the two-facility game is strategy-proof.

Proof. We use costk(f(x), xi) to denote the expected cost of the agent i conditional on that the first facility
is at xk. It is clear that costi(f(x), xi) = 0. The total cost for agent i is

cost(f(x), xi) =
1

n

n∑
k=1

costk(f(x), xi) =
1

n

∑
k 6=i

costk(f(x), xi).

Consider profile x′ = 〈x′i,x−i〉, in which agent i misreports her location from xi to x′i. To prove the
strategy-proofness, it is sufficient to prove that for all k 6= i,

costk(f(x′), xi) ≥ costk(f(x), xi).

Now we fix the first facility on xk. We recall that di = d(l1, xi) = d(xk, xi) and costk(f(x), xi) is∑n
j=1 dj min{di, d(xi, xj)}∑n

j=1 dj
=

∑
j 6=i dj min{di, d(xi, xj)}∑n

j=1 dj
.

Let d′i = d(l1, x
′
i). The cost of agent i if she misreports, i.e. costk(f(x′), xi) is∑

j 6=i dj min{di, d(xi, xj)}∑n
j=1 dj + (d′i − di)

+
d′i min{di, d(xi, x

′
i)}∑n

j=1 dj + (d′i − di)
.

Comparing the above two expressions, we have the following relation:

costk(f(x′), xi) =
costk(f(x), xi)

∑n
j=1 dj∑n

j=1 dj + (d′i − di)
+
d′i min{di, d(xi, x

′
i)}∑n

j=1 dj + (d′i − di)
.

3If all the agents report the same location, our mechanism places the second facility also on this location.
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If d′i ≤ di, the first term on the right hand side is already greater than costk(f(x), xi), while the second term
is non-negative. Therefore we only need to consider the case that d′i > di. We have,

costk(f(x′), xi)− costk(f(x), xi)

=
−(d′i − di)costk(f(x), xi)∑n

j=1 dj + (d′i − di)
+
d′i min{di, d(xi, x

′
i)}∑n

j=1 dj + (d′i − di)
.

So it is sufficient to show that

d′i min{di, d(xi, x
′
i)} − (d′i − di)costk(f(x), xi) ≥ 0. (1)

We prove this for two cases.

• If min{di, d(xi, x
′
i)} = di, inequality (1) holds because d′i ≥ d′i − di and di ≥ costk(f(x), xi). Here

the latter holds because agent i can at least choose the first facility, which is at xk, to serve him with
cost d(xi, xk) = di.

• If min{di, d(xi, x
′
i)} = d(xi, x

′
i), inequality (1) holds because d′i ≥ di ≥ costk(f(x), xi) and

d(xi, x
′
i) ≥ d′i − di. Here the latter is due to the triangle inequality in the metric space (Ω, d) since

d′i = d(l1, x
′
i) and di = d(l1, xi).

This completes the proof.

From the above proof, we can see that our Proportional Mechanism is strategy-proof even in a slightly
stronger sense. An agent does not have the incentive to lie even if she has seen the random bits in the first
round of the mechanism.

4.2 Approximation Ratio for Social Cost

In this section, we estimate the approximation ratio of our Proportional Mechanism in general metric spaces
and prove the following theorem.

Theorem 4.2. The approximation ratio of the Proportional Mechanism for the two-facility game is at most
4 for any metric space.

For a location profile x, let fα and fβ be the locations of the two facilities in one optimal solution.
Let α be the set of agents that are strictly closer to fα than to fβ , and β be the rest. We use OPTα to
denote the summation of costs of agents in α and OPTβ the summation of costs of agents in β. Clearly,
OPT = OPTα + OPTβ .

Similarly, let costα (resp. costβ) be the total costs of agents in α (resp. β), assuming facilities are
chosen according to our Proportional Mechanism. Let Fα (resp. Fβ) be the event that the agent chosen by
the mechanism at the first round is in α (resp. β). Since our mechanism is randomized, both costα and costβ
are random variables. We need to bound the expected cost of our mechanism, which is E[costα+costβ]. Fα
and Fβ are two exclusive random events, which form a partition of the whole probabilistic space. Therefore,
the cost E[costα + costβ] is equal to

Pr(Fα)E[(costα + costβ)|Fα] + Pr(Fβ)E[(costα + costβ)|Fβ].

Next two lemmas bound the expected values E[(costα + costβ)|Fα] = E[costα|Fα] + E[costβ|Fα].
Similar results can be deduced for E[(costα + costβ)|Fβ].
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Lemma 4.3. E[costα|Fα] ≤ 2OPTα

Proof. Note that E[costα|Fα] ≤ 1
|α|
∑

i∈α
∑

j∈α d(xi, xj) if we completely ignore the second facility.
Since OPTα =

∑
i∈α d(xi, fα), by triangle inequality, we have |α| · OPTα =

∑
i∈α |α| · d(xi, fα) =

1
2

∑
i∈α
∑

j∈α(d(xi, fα) + d(xj , fα)) ≥ 1
2

∑
i∈α
∑

j∈α d(xi, xj). The lemma follows.

Lemma 4.4. E[costβ|Fα] ≤ 2OPTα + 4OPTβ.

Proof. We define
costk,iβ =

∑
j∈β

min{d(xk, xj), d(xi, xj)}

to be the cost of the agents in β given the condition that the first chosen agent is k and the second one is
i in the Proportional Mechanism. We denote P (i|k) as the probability that the second chosen agent is i
conditional on that the first chosen one is k. Then we have,

E[costβ|Fα] =
∑
k∈α

1

|α|
∑
i∈α

costk,iβ · P (i|k)+

∑
k∈α

1

|α|
∑
i∈β

costk,iβ · P (i|k).
(2)

For first term in Eq.(2), we ignore the second facility and bound the total costs of agents in β using their
distances to l1(= xk). ∑

k∈α

1

|α|
∑
i∈α

costk,iβ P (i|k)

≤
∑
i∈α

1

|α|
∑
k∈α

∑
j∈β

d(xk, xj)

 d(xk, xi)∑
j∈N d(xk, xj)

≤
∑
i∈α

1

|α|
∑
k∈α

d(xk, xi) ≤ 2OPTα

(3)

where the last inequality is due to Lemma 4.3.
For the second term in Eq.(2), we will bound the internal summation for any fixed k ∈ α. So we fixed

the first facility l1(= xk) and denote dj = d(l1, xj). As shown in Figure 2, we define D = d(l1, fβ) to be
the distance between l1 and the optimal facility in β. Furthermore, for agent j in β, let ej = d(fβ, xj) be the
distance from agent j to the optimal facility in β, and denote sj = dj−ej . It is clear that OPTβ =

∑
j∈β ej .

Notice that sj can be negative by our definition. However, we always have
∑

j∈β sj ≥ 0, since otherwise
l1 is a strictly better facility location for agents in β than fβ , contradicting the optimality of fβ .

Now we calculate the total costs for agents in β:∑
i∈β

costk,iβ P (i|k)

=
∑
i∈β

∑
j∈β

min{dj , d(xi, xj)}

 di∑
j∈N dj

=
∑
i∈β

ei + si∑
j∈β ej + sj

∑
j∈β

min{ej + sj , d(xi, xj)}

 .

(4)
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By triangle inequality, we have d(xi, xj) ≤ ej + ei, and we continue to bound the above equation:∑
i∈β

costk,iβ P (i|k)

≤
∑
i∈β

ei + si∑
j∈β ej + sj

∑
j∈β

min{ej + sj , ej + ei})

=
∑
i∈β

ei + si∑
j∈β ej + sj

∑
j∈β

ej

+
∑
i∈β

ei∑
j∈β ej + sj

∑
j∈β

min{sj , ei}

+
∑
i∈β

si∑
j∈β ej + sj

∑
j∈β

min{sj , ei}.

(5)

The first term of the last summation is exactly
∑

j∈β ej = OPTβ . For the second term, we relax
min{sj , ei} to sj . Because

∑
j∈β ej + sj ≥

∑
j∈β sj , the second term is bounded by

∑
j∈β ej = OPTβ .

For the third term, we relax min{sj , ei} to ei. By triangle inequality, we have ej +D ≥ dj ⇒ sj ≤ D
and dj + ej ≥ D. Therefore, ∑

i∈β

si∑
j∈β ej + sj

∑
j∈β

min{sj , ei}

≤
∑
i∈β

si|β|ei∑
j∈β ej + sj

≤
∑
i∈β

ei
|β| ·D∑
j∈β ej + sj

≤ 2OPTβ,

(6)

where the last inequality is because (using the fact that
∑

j∈β sj ≥ 0)∑
j∈β

2ej + 2sj ≥
∑
j∈β

2ej + sj =
∑
j∈β

dj + ej ≥ |β| ·D.

To put things together, we have ∑
i∈β

costk,iβ P (i|k) ≤ 4OPTβ. (7)

Substituting Eq. (3) and Eq. (7) to Eq. (2), we have E[costβ|Fα] ≤ 2OPTα + 4OPTβ. This completes
the proof.

We are ready to prove the main theorem of this section.

of Theorem 4.2. The theorem follows by the following chain of inequalities.

E[costα + costβ]

≤ max{E[(costα + costβ)|Fα],E[(costα + costβ)|Fβ]}
= max{E[costα|Fα] + E[costβ|Fα],E[costα|Fβ] + E[costβ|Fβ]}
≤ max{2OPTα + 2OPTα + 4OPTβ,

2OPTβ + 4OPTα + 2OPTβ}
= 4(OPTα + OPTβ) = 4OPT.
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in which the bounds of E[costα|Fβ] and E[costβ|Fβ] are due to the symmetric versions of Lemma 4.3 and
Lemma 4.4.

4.3 Discussion

It is worth noting that this upper bound of 4 is tight for our Proportional Mechanism even for the line metric
space. Consider the location profile x = (ε, 0, 0, ...0, 1), it can be shown that its approximation ratio tends
to 4 as the number of agents is sufficiently large and ε→ 0.

We note that the Proportional Mechanism is not group strategy-proof. It would be interesting if one can
find a group strategy-proof mechanism with a constant approximation ratio.

We also examine two possible extensions of our Proportional Mechanism to the three-facility game.
The first is to allocate the first two facilities the same as this section, but the third one in some agent w.p.
proportional to her minimal distance to the first two facilities. Unfortunately we have found a non-trivial
counter-example and shown that this mechanism is not strategy-proof. 4

Another extension is a strategy-proof three-facility mechanism on the real line. The first two facilities
are located at the leftmost and the rightmost reported locations. For the third facility, it is randomly chosen
among the rest of the agents w.p. proportional to their minimal distances to the first two facilities. This
mechanism guarantees a linear approximation ratio.

5 Mechanism for Circle

In this section, we consider the circle metric space (S1, d), where S1 ⊂ R2 is a circle in the two dimensional
Euclidean space and the distance d(x, y) for x, y ∈ S1 is the length of the minor arc spanned by x and y.
We can normalize the circle so that its circumference is 1. Notice that the n−1

2 deterministic lower bound
in Section 3 can still be applied here, because a circle can be locally viewed as a line. Now we give a
deterministic group strategy-proof mechanism with an approximation ratio of n − 1. This is tight up to a
constant factor of 2.

Circle Mechanism.
Given profile x = (x1, x2, ...xn), the first facility is allocated at x1, the location of the first agent. As
shown in Figure 3 (a), we denote x̂1 the antipodal of x1, and there form two semi-circles with x1 and x̂1 as
endpoints. We call one of the semi-circle the left circle L and the other the right circle R 5. Let A and B be
the set of agents on L and R respectively. We assume agents at location x1 and x̂1 (if any) appear in only
A, and thus A ∩ B = ∅. Define dA = maxi∈A d(x1, xi) and dB = maxi∈B d(x1, xi) (if B is empty, let
dB = 0). We allocate the second facility as follows:

• If dA < dB , facility l2 is placed on R with distance min{max{dB, 2dA}, 1/2} to l1.

• If dA ≥ dB , facility l2 is placed on L with distance min{max{dA, 2dB}, 1/2} to l1.

In this mechanism, the first facility is always allocated at the location of the first agent as a dictator. Let
us break the circle at point x̂1 to make it a straight line and think the location of first agent as the origin. In
this way, we can understand the intuition of the mechanism more clearly.

4This counter-example is as follows: there exist n0 agents at location 0, n1 agents at location 1, n2 agents at location 1+ x and
1 agent at location 1 + x + y. Here n0 is sufficiently large such that we can assume the first facility l1 to be always located at 0.
In this configuration, let y = 100, x = 10100, n1 = 50 and n2 = 4. After a careful calculation one may find out that the agent at
location 1 may have the incentive to misreport to location 1 + x.

5x1 and x̂1 are assumed to be in both L and R.
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After breaking the circle into a line, the coordinate of the rightmost (resp. leftmost) agent is dB(resp.
−dA). If the distance from the rightmost agent to the origin is larger (dB > dA), we put the second facility
on the right side at location max{dB, 2dA}. Otherwise, we put the second facility on the left side at location
−max{dA, 2dB}. We can verify that the this line mechanism is group strategy-proof and has a linear
approximation ratio.

However, when we transfer it back to the circle case, the location max{dB, 2dA} (resp. −max{dA, 2dB})
may go across x̂1 to the left circle L (resp. right circle R), which breaks the strategy-proofness. Therefore
we put a cutoff at x̂1 for the circle mechanism, which means that we allocate the second facility at exactly
x̂1 if max{dB, 2dA} is greater than 1

2 (resp. if −max{dA, 2dB} is smaller than −1/2).
In the following proof, we shall keep this line interpretation in mind. For example, we call the agent

farthest from l1 in A the leftmost agent and the agent farthest from l1 in B the rightmost agent.

5.1 Group Strategy-Proofness

Theorem 5.1. The Circle Mechanism is group strategy-proof.

Proof. We assume for contradiction that the Circle Mechanism f is not group strategy-proof. Then there
exists a profile x = (x1, x2, ...xn), a group of agents S ⊂ N and their misreported locations x′S such that
for every agent i ∈ S, it is better off by the collusion, i.e.

cost(f(x′S ,x−S), xi) < cost(f(x), xi).

Without loss of generality, we assume dA ≥ dB for the given profile x, and the case dA < dB is similar. So
l2 lies on L in f(x).

The cost for the first agent is 0 in f(x), so she cannot reduce her cost by any means and hence 1 6∈ S.
This tells us that l1 is still located as x1 in f(x′S ,x−S), and we assume f(x′S ,x−S) = {l1, l′2}. We denote
by C1 the arc from l1 to l2 in an anti clockwise direction and by C2 the arc from l1 to l2 in an clockwise
direction. Then all agents in A are on C1 and all agents in B are on C2.

Obviously, l′2 can not be at l1 or l2 because otherwise no agent is better off. Therefore we have the
following two cases:

Case 1: l′2 ∈ C1. We first see that no agent in B can benefit from this misreport, because for an agent in
B, either l1 or l2 will be her closer facility than the new l′2. Therefore we have S ⊂ A and d′B ≥ dB .

Now, the colluded agents are all on C1, and to benefit themselves, l′2 must still lie on C1 with d(l1, l
′
2)

strictly smaller than d(l1, l2). This happens only when d′A < dA according to our mechanism because
agents in B do not lie. To have this, the leftmost agent in A must be in S and lie. Call this agent xp.
We cannot have l2 = xp because otherwise agent p has already experienced a zero cost and has no
incentive to lie. So we have l2 6= xp. In this case, we have

d(l1, l
′
2) ≥ min {2d′B, 1/2} ≥ min {2dB, 1/2} = d(l1, l2),

contradicting our assumption that d(l1, l
′
2) < d(l1, l2).

Case 2: l′2 ∈ C2. For similar reason as Case 1, no agent in A can benefit from the misreport, and thus
S ⊂ B. As a result, d′A ≥ dA. We further discuss three subcases regarding the location of l2 and l′2.

Subcase 2.1: l2 = x̂1. To result in l2 = x̂1, either dA = 1
2 or dB ≥ 1

4 .
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If dA = 1
2 , we must have l′2 = l2 because agents in A do not lie. No agent can benefit in this

scenario. If dB ≥ 1
4 , we have d′A ≥ dA ≥ dB ≥ 1

4 . To benefit themselves, l′2 must lie on the
right circle R because all the colluded agents are in B. But this cannot be the case since

min{max{d′B, 2d′A}, 1/2} ≥ min{2d′A, 1/2} =
1

2
.

Subcase 2.2: l2 6= x̂1 and l′2 is on L (including x̂1). Since l2 6= x̂1, we have dB < 1
4 . So the dis-

tance from any agent j ∈ B to l′2 is at least d(xj , l1) because l′2 ∈ L. It is clear that any agent in
B cannot thus benefit because her closest facility is still l1.

Subcase 2.3: l2 6= x̂1 and l′2 is on R (excluding x̂1). Then we have dB < 1
4 and dA ≤ d′A < 1

4 . So
for any agent k ∈ B, d(xk, l

′
2) is at least 2d′A − dB , which is at least dB since dB ≤ dA ≤ d′A.

This is already larger than or equal to its distance to the first facility which is dB . This is a
contradiction.

The theorem follows.

5.2 Approximation Ratio for Social Cost

Theorem 5.2. The approximation ratio of the Circle Mechanism is at most n− 1.

Proof. For a given profile x, consider the optimal solution using notations α and β defined in Section 4.2.
We denote Iα the minimal arc covering all agents in α, and Iβ the minimal arc covering all agents in β. It
can be easily verified that Iα ∩ Iβ = ∅. Let |Iα| be the length of Iα and |Iβ| be the length of Iβ . Obviously
OPT ≥ |Iα|+ |Iβ|.

Without loss of generality, we assume l1 = x1 ∈ Iα and dA ≥ dB , so the second facility l2 ∈ L
according to our mechanism.

Similar to Section 4.2, we let costα =
∑

i∈α cost(f(x), xi) be the summation of costs of agents in α,
and costβ =

∑
i∈β cost(f(x), xi). It is clear that costα ≤ (|α| − 1)OPT, because l1 ∈ Iα and any agent

in α is at most |Iα| ≤ OPT far from l1, except x1 = l1 itself who has zero cost. Next we are to prove
that costβ ≤ |β|OPT, which is enough to show our n − 1 upper bound because cost = costα + costβ ≤
(n− 1)OPT.

If l2 ∈ Iβ , the distance from each agent in β to its closest facility is at most |Iβ|. Thus, costβ ≤ |β||Iβ| ≤
|β|OPT.

If l2 6∈ Iβ , let p be the leftmost agent on L, and q be the rightmost agent on R. We know that d(l1, xp) =
dA and d(l1, xq) = dB . If both xp, xq are in Iβ (Figure 3 (b)), we will have a contradiction: according to the
mechanism, l1 and l2 are on different arcs with xp and xq as endpoints, but Iβ which contains both xp and xq
must contain either l1 or l2. This contradicts the assumption of l1 ∈ Iα or l2 6∈ Iβ respectively. Therefore,
at least one of xp ∈ Iα and xq ∈ Iα hold.

• If xp ∈ Iα (Figure 3 (c)), |Iα| ≥ dA because both x1 and xp are in. But each agent in β is at most
dB ≤ dA far from l1. This implies

costβ ≤ |β|dA ≤ |β||Iα| ≤ |β|OPT

• If xp 6∈ Iα, we have xq ∈ Iα (Figure 3 (d)). We have |Iα| ≥ dB because both x1 and xq are in. So
all agents in β are located on L, and thus each agent in β is no more than d(l1, l2)/2 far from either

16



l1 or l2. Furthermore, based on the facts of l2 6∈ Iβ and xp ∈ Iβ , we deduce that l2 6= xp. In this case,
d(l1, l2) ≤ 2dB according to the mechanism. In sum, we still have

costβ ≤ |β|
d(l1, l2)

2
≤ |β|dB

≤ |β||Iα| ≤ |β|OPT.

This completes the proof.

5.3 Discussion

We remark here that the approximation ratio of the Circle Mechanism cannot be improved. Consider the
profile x = (x1, x2, ..., xn), where d(x1, x2) = d(x1, x3) = 0.1 and x3 = x4 = ... = xn. But x2 and x3 are
on different sides of x1. In this case, OPT = 0.1 but the mechanism will give cost = 0.1(n− 1).

As noted, the mechanism here is motivated by the mechanism on a line. We do not know a mechanism
with a bounded ratio for any slightly more complicated metric space. For example, for a star with three
branches, we do not know how to extend our Circle Mechanism to this case. Furthermore, we can prove that
if we fix the first facility as a dictator, no mechanism has a bounded ratio.

6 Open Problems and Discussion

In this section, we summarize some open problems related to this work.

1. The first remaining problem is to close the constant gaps both for deterministic (between n − 2 and
n−1

2 ) and randomized (between 4 and 1.045) mechanisms in the line metric space.

2. It is interesting to explore deterministic mechanisms for the general metric spaces or the special metric
spaces other than line or circle. To design a deterministic mechanism with any bounded ratio would
be instructive. It is also possible that one can show that the approximation ratio is actually unbounded.

3. As noted in the paper, our Proportional Mechanism is not group strategy-proof. It remains open to
provide a group strategy-proof randomized mechanism with a constant approximation ratio.

4. Another natural extension is to consider the game with three or more facilities. Our linear lower bound
for deterministic mechanisms can be easily extended to more facilities. However, no deterministic
mechanism with any bounded ratio has been known yet even for the line. It is significant if one can
provide such a mechanism or prove that it does not exist. For a randomized setting, we can give a
mechanism with a linear approximation ratio for the three-facility game in the line metric space. It
would be very interesting to explore whether we can still get mechanisms with constant approximation
ratio for games with more facilities.
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