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Abstract

In this paper, we formalize an attack scheme using the key-dependent property, called key-dependent
attack. In this attack, the intermediate value, whose distribution is key-dependent, is considered. The
attack determines whether a key is right by conducting statistical hypothesis test of the intermediate
value. The time and data complexity of the key-dependent attack is also discussed.

We also apply key-dependent attack on reduced-round IDEA. This attack is based on the key-
dependent distribution of certain items in Biryukov-Demirci Equation. The attack on 5.5-round variant
of IDEA requires 221 chosen plaintexts and 2112.1 encryptions. The attack on 6-round variant requires
249 chosen plaintexts and 2112.1 encryptions. Compared with the previous attacks, the key-dependent
attacks on 5.5-round and 6-round IDEA have the lowest time and data complexity, respectively.
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1 Introduction

In current cryptanalysis on block ciphers, widespread attacks use special probability distributions of certain
intermediate values. These probability distributions are considered as invariant under different keys used.
For example, differential cryptanalysis [7] makes use of the probability of the intermediate differential with
high probability. Its value is assumed not to vary remarkably with different keys. Linear cryptanalysis [23]
is based on the bias of the linear approximation, which is also generally constant for different keys.

Instead of concentrating on the probability distribution which is invariant for different keys, Ben-Aroya
and Biham first proposed the key-dependent property in [2]. Key-dependent property means that the prob-
ability distribution of intermediate value varies for different keys. In [2], an attack on Lucifer using key-
dependent differential was presented. Knudsen and Rijmen also used similar idea to attack DFC in [20].

In this paper, we consider the key-dependent property. The distribution of intermediate value which
is key-dependent is called key-dependent distribution. Assume that there are some randomly chosen en-
cryptions. For the intermediate values calculated from these encryptions with the actual key, they should
conform the key-dependent distribution. On the other hand, if we use a wrong key to calculate the interme-
diate values, they are assumed to conform random distribution. Basing on key-dependent distribution, we
formalize a scheme of discovering the actual key by performing statistical hypothesis test[17] on possible
keys, and we call this scheme key-dependent attack. For a given key, the null hypothesis of the test is that
the intermediate value conforms the key-dependent distribution determined by the key. The samples of the
test are the intermediate values calculated from a few encryptions. If the test is passed, the given key is
concluded to be the actual key, otherwise it is discarded. For the keys that share the same key-dependent
distribution and the same intermediate value calculation, the corresponding hypothesis tests can be merged
to reduce the time needed. By this criterion, the key space is divided into several key-dependent subsets.

Due to the scheme of the key-dependent attack, the time complexity of the attack is determined by the
time for distinguishing between random distribution and key-dependent distribution. The time needed relies
on the entropy of the key-dependent distribution: the closer the key-dependent distribution is to the uniform
distribution, the more encryptions are needed. For each key-dependent subset, the number of encryptions
and the criteria of rejecting hypothesis can be chosen so that the attack on this subset is optimized. The
expected time of the attack on each subset is also obtained.

Total expected time complexity can be calculated from the expected time on each key-dependent subset.
Different orders of the key-dependent subsets attacked have different expected time complexities. The order
with minimal expected time complexity is presented. The total expected time complexity is also minimized
in this way if the actual key is supposed to be chosen uniformly from the whole key space.

This paper also presents a key-dependent attack on block cipher IDEA. The block cipher IDEA (Inter-
national Data Encryption Algorithm) was proposed in [21, 22]. The cryptanalysis of IDEA was discussed
in [1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 24, 25], and no attack on full version IDEA is faster
than exhaustive search so far. We investigate the Biryukov-Demirci Equation, which is widely used in re-
cent attacks on IDEA[1, 5, 6, 13, 16, 18]. We find that particular items of Biryukov-Demirci Equation
satisfy key-dependent distribution under some specific constraints. This makes it possible to perform the
key-dependent attack on IDEA. Biryukov-Demirci Equation is used to recover the intermediate values from
encryptions.

Our key-dependent attack on 5.5-round variant of IDEA requires 221 chosen plaintexts and has a time
complexity of 2112.1 encryptions. Our key-dependent attack on the 6-round variant of IDEA requires 249

chosen plaintexts and has a time complexity of 2112.1 encryptions. These attacks use both fewer chosen
plaintexts and less time than all the previous corresponding attacks. We summarize our attacks and pre-
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vious attacks in Table 1, where the data complexity is measured in the number of plaintexts and the time
complexity is measured in the number of encryptions needed in the attack.

Rounds Attack type Data Time Ref.
4.5 Impossible Differential 264 CP 2112 [3]
4.5 Linear 16 CP 2103 [5]
5∗ Meet-in-the-Middle 224 CP 2126 [13]
5∗ Meet-in-the-Middle 224.6 CP 2124 [1]
5 Linear 218.5 KP 2103 [6]
5 Linear 219 KP 2103 [5]
5 Linear 16 KP 2114 [6]

5.5 Higher-Order Differential-Linear 232 CP 2126.85 [6]
6 Higher-Order Differential-Linear 264 − 252 KP 2126.8 [6]

5.5 Key-Dependent 221 CP 2112.1 Section 5.1
6 Key-Dependent 249 CP 2112.1 Section 5.2

CP - Chosen Plaintext, KP - Known Plaintext
∗ Attack on IDEA starting from the first round

Table 1: Selected Results of attacks on IDEA

The paper is organized as follows: In Section 2 we give a general view of the key-dependent attack.
In Section 4 we show that the probability distribution of some items of the Biryukov-Demirci Equation is
a key-dependent distribution. In Section 5 we present two key-dependent attacks on reduced-round IDEA.
Section 6 concludes this paper.

2 Key-Dependent Attack

In [2], Ben-Aroya and Biham first proposed the key-dependent property and implemented a key-dependent
differential attack on Lucifer. Knudsen and Rijmen also used similar idea to attack DFC in [20].

In this section, we formalize a scheme of identifying the actual key using the following key-dependent
property(with high success probability).

Definition 2.1. For a block cipher, if the probability distribution of an intermediate value varies for dif-
ferent keys under some specific constraints, then this probability distribution is defined as key-dependent
distribution.

Consider some randomly chosen encryptions satisfying the specific constraints. If one uses the actual
key to calculate the intermediate value, it should conform key-dependent distribution. If one uses a wrong
key to calculate the intermediate value, it is assumed to be randomly distributed. With such a property,
determining whether a given key is right can be done by distinguishing which distribution the intermediate
value conforms, key-dependent distribution or random distribution.

We propose an attack scheme, called key-dependent attack, using key-dependent distribution. The attack
uses statistical hypothesis test, whose idea is also used in differential and linear attack [17], to distinguish
between key-dependent distribution and random distribution. For a key, the null hypothesis of the test is that
the intermediate value conforms the key-dependent distribution determined by the key. Then the attack uses
some samples to determine whether the hypothesis is right. The samples of the statistical hypothesis test are
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the intermediate values obtained from the encryptions satisfying the specific constraints. If the key passes
the hypothesis test, the attack concludes that the key is right, otherwise the key is judged to be wrong.

For the keys that share the same key-dependent distribution and the same intermediate value calculation,
the corresponding hypothesis tests can be merged. Hence the whole key space is divided into several key-
dependent subsets. (Similar idea is proposed in [2].)

Definition 2.2. A key-dependent subset is a tuple (P,U), where P is a fixed key-dependent distribution of
intermediate value, and U is a set of keys that share the same key-dependent distribution P and the same
intermediate value calculation.

Definition 2.3. The key fraction (f ) of a key-dependent subset is the ratio between the size of U and the size
of the whole key space.

The key-dependent attack determines which key-dependent subset the actual key is in by conducting
hypothesis tests on each key-dependent subset. Such process on a key-dependent subset (P,U), called
individual attack, can be described as the following four phases:

1. Parameter Determining Phase Determine the size of the samples and the criteria of rejecting the
hypothesis that the intermediate values conform P .

2. Data Collecting Phase Randomly choose some encryptions according to the specific constraints. 1

3. Judgement Phase Calculate the intermediate values from the collected encryptions. If the results
satisfy the criteria of rejection, then discard this key-dependent subset, otherwise enter the next phase.

4. Remaining Key Bits Search Phase Exhaustively search remaining key bits to find the whole key. If
the exhaustive search does not find the whole actual key, then start another individual attack on the
next key-dependent subset.

The time complexity of the key-dependent attack is determined by the time complexity of each individual
attack and the order of performing these individual attacks.

For a key-dependent subset (P,U), the time needed for individual attacks relies on the entropy of P :
the closer P is to the random distribution, the more difficult the attack is—to ensure the same probability
of making the right judgement, the attack needs more encryptions. This indicates that individual attacks for
different keys have different time complexities. The time complexity of each individual attack is determined
by corresponding key-dependent distribution P . For each key-dependent subset, the number of encryptions
and the criteria of rejecting hypothesis are then chosen to minimize the time complexity of this individual
attack.

To minimize the time complexity of an individual attack, the attack should consider the probability of
committing two types of errors: Type I error and Type II error. Type I error occurs when the hypothesis is
rejected for a key-dependent subset while in fact the actual key is in U , and the attack will fail to find the
actual key in this case. The probability of Type I error is also defined as significant level, denoted as α.
Type II error occurs when the test is passed while in fact it is not right, and in this case the attack will come
into the remaining key bits search phase, but will not find the actual key. The probability of Type II error
is denoted as β. With a fixed size of samples (denoted as N ) and the significance level α, the criteria of
rejecting the hypothesis is determined, and the probability of Type II error β is also fixed. For a fixed size of

1 Though each individual attack chooses encryptions randomly, one encryption can be used for many individual attacks thus to
reduces the total data complexity.

3



samples, it is impossible to reduce both α and β simultaneously. In order to reduce both α and β, the attack
has to use a larger size of samples, but time and data complexity will increase. Hence, an individual attack
needs to balance between the size of samples, and the probability of making wrong judgement.

For a key-dependent subset (P,U), if the actual key is not in this subset, the expected time complexity
(measured by the number of encryptions) of the individual attack on this subset is

W = N + β|U | (1)

If the actual key is in this subset, the expected time of the individual attack on this subset is

R = N + (1− α)
|U |
2

(2)

Since the time complexity is dominated by attacking on wrong key-dependent subsets (there is only one
key-dependent subset containing the actual key), the attack only needs to minimize the time complexity of
the individual attack for each wrong key-dependent subset to minimize the total time complexity. Although
α does not appear in Equation (1), α affects the success probability of the attack, so α should also be
considered. We set one upper bound of α to ensure that the success probability is above a fixed value, and
then choose such size of samples that Equation (1) is minimized, in order to minimize the time complexity
of individual attacks.

In addition, it is entirely possible that some key-dependent distributions is so close to random distribution
that the expected time for performing hypothesis tests is longer than directly searching the subsets. For
these key-dependent subsets, the attack exhaustively searches the subset directly instead of using statistical
hypothesis test method.

On the other hand, the time complexity of the key-dependent attack is also affected by the order of
performing individual attacks on different key-dependent subsets. Because the expected time complexities
of individual attacks are different, different sequences of performing individual attacks result in different
total expected time complexity. Assume that a key-dependent attack performs individual attacks on n key-
dependent subsets in the order of (P1, U1), . . . , (Pn, Un). Let Ri denote the expected time for (Pi, Ui) if the
actual key is in Ui, and Wi denote the expected time if the actual key is not in Ui. We have following result:

Theorem 2.4. The expected time for the whole key-dependent attack is minimal if the following condition is
satisfied

f1
W1
≥ f2
W2
≥ · · · ≥ fn

Wn
(3)

Proof. The expected time of the attack in the order of (P1, U1), . . . , (Pn, Un) is

Φ =f1[R1 + α(W2 +W3 + · · ·+Wn)] + f2[W1 +R2 + α(W3 + · · ·+Wn))]

+ f3[W1 +W2 +R3 + α(W4 + . . .Wn)] + · · ·+ fn(W1 +W2 + . . .Wn−1 +Rn)

=
n∑

i=1

fiRi +
n∑

i=1

(fi

i−1∑
j=1

Wj) + α
n∑

i=1

(fi

n∑
j=i+1

Wj)

(4)

If the attack is performed in the order of (Ps1 , Us1), (Ps2 , Us2), . . . , (Psn , Usn), where s1, s2, . . . , sn is
a permutation of 1, 2, . . . , n. The expected time is

Φ′ =

n∑
i=1

fsiRsi +

n∑
i=1

(fsi

i−1∑
j=1

Wsj ) + α

n∑
i=1

(fsi

n∑
j=i+1

Wsj ) (5)
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Figure 1: Round i of IDEA

fiWj + αfjWi occurs in Φ if and only if j < i and occurs in Φ′ if and only if j′ < i′ where si′ = i and
sj′ = j. Hence

Φ− Φ′ =
∑

j<i and j′>i′

(fiWj + αfjWi − fjWi − αfiWj) (6)

Since fiWj − fjWi ≤ 0 for j < i, Φ− Φ′ ≤ 0 for any permutation s1, s2, . . . sn.

In the following sections of this paper, we present a concrete key-dependent attack on the block cipher
IDEA.

3 IDEA Block Cipher

In this section, we give a brief introduction of IDEA and notations used later in this paper.
IDEA block cipher encrypts a 64-bit plaintext with a 128-bit key by an 8.5-round encryption. The

fifty-two 16-bit subkeys are generated from the 128-bit key Z by key-schedule algorithm. The subkeys are
generated in the order Z1

1 ,Z1
2 ,...,Z1

6 ,Z2
1 ,...,Z8

6 , Z9
1 ,...,Z9

4 . The key Z is partitioned into eight 16-bit words
which are used as the first eight subkeys. The key Z is then cyclically shifted to the left by 25 bits, and then
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Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

1 0-15 16-31 32-47 48-63 64-79 80-95
2 96-111 112-127 25-40 41-56 57-72 73-88
3 89-104 105-120 121-8 9-24 50-65 66-81
4 82-97 98-113 114-1 2-17 18-33 34-49
5 75-90 91-106 107-122 123-10 11-26 27-42
6 43-58 59-74 100-115 116-3 4-19 20-35
7 36-51 52-67 68-83 84-99 125-12 13-28
8 29-44 45-60 61-76 77-92 93-108 109-124
9 22-37 38-53 54-69 70-85

Table 2: The Key-Schedule of IDEA

generate the following eight subkeys. This process is repeated until all the subkeys are obtained. In Table 3,
the correspondence between the subkeys and the key Z is directly given.

The block cipher partitions the 64-bit plaintext into four 16-bit words and uses three different group
operations on pairs of 16-bit words: exclusive OR, denoted by ⊕; modular addition 216, denoted by � and
modular multiplication 216 + 1(0 is treated as 216), denoted by �.

As Figure 1, each round of IDEA contains three layers: KA layer, MA layer and Permutation layer. We
denote the 64-bit input of round i by Xi = (Xi

1, X
i
2, X

i
3, X

i
4) . In the KA layer, the first and the fourth

words are modular multiplied with Zi
1 and Zi

4 respectively. The second and the third words are modular
added with Zi

2 and Zi
3 respectively. The output of the KA layer is denoted by Y i = (Y i

1 , Y
i
2 , Y

i
3 , Y

i
4 ).

In the MA layer, two intermediate values pi = Y i
1 ⊕ Y i

3 and qi = Y i
2 ⊕ Y i

4 are computed first. These
two values are processed to give ui and ti,

ui = (pi � Zi
5) � ti

ti = ((pi � Zi
5) � qi)� Zi

6

We denote si the intermediate value pi ⊕ Zi
5 for convenience. The output of the MA layer is then per-

mutated to give the output of this round (Y i
1 ⊕ ui, Y i

3 ⊕ ui, Y i
2 ⊕ ti, Y i

4 ⊕ ti), which is also the input of
round i + 1, denoted by (Xi+1

1 , Xi+1
2 , Xi+1

3 , Xi+1
4 ). The complete diffusion, which means every bit of

(Xi+1
1 , Xi+1

2 , Xi+1
3 , Xi+1

4 ) is affected by every bit of (Y i
1 , Y

i
2 , Y

i
3 , Y

i
4 ), is obtained in the MA layer.

In this paper, we will use P = (P1, P2, P3, P4) and P ′ = (P ′1, P
′
2, P

′
3, P

′
4) to denote a pair of plaintexts,

where Pi and P ′i are 16-bit words. C = (C1, C2, C3, C4) and C ′ = (C ′1, C
′
2, C

′
3, C

′
4) are their ciphertexts

respectively. We also use the symbol ’ to distinguish the intermediate values corresponding to P ′ from to P .
For example, si is obtained from plaintext P and P ′ will generate s′i. The notation ∆ will denote the XOR
difference, for instance, ∆si is equal to si ⊕ s′i.

4 Key-Dependent Distribution on IDEA

In this section, we propose a key-dependent distribution on the block cipher IDEA. The description of IDEA
is omitted here. Notions used is same to [6].
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The Biryukov-Demirci relation was first proposed by Biryukov [16] and Demirci [13]. Many papers
have discussed attacking on IDEA using this relation, such as [1, 5, 6, 13, 16, 18]. The relation can be
written in following form:

LSB(C2 ⊕ C3) =LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2

⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4 ⊕ Z5
2 ⊕ Z5

3 ⊕ s5

⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8

⊕ Z9
2 ⊕ Z9

3 )

(7)

It is shown in [5] that, for two pairs of plaintext and ciphertext (P,C) and (P ′, C ′), XOR their corresponding
Biryukov-Demirci relation, we will obtain from Equation (7)

LSB(C2 ⊕ C3 ⊕ C ′2 ⊕ C ′3) =LSB(P2 ⊕ P3 ⊕ P ′2 ⊕ P ′3 ⊕∆s1 ⊕∆s2

⊕∆s3 ⊕∆s4 ⊕∆s5 ⊕∆s6 ⊕∆s7 ⊕∆s8)
(8)

We call Equation (8) Biryukov-Demirci Equation.
The following theorem shows that the probability distribution of LSB(∆si) in Biryukov-Demirci Equa-

tion is a key-dependent distribution.

Theorem 4.1. Consider round i of IDEA. If one pair of intermediate values (pi, p′i) satisfies ∆pi = 8000x,
then the probability of LSB(∆si) = LSB(8000x � Zi

5) is

Prob(LSB(∆si) = LSB(8000x � Zi
5)) =

#W

215
(9)

where W is the set of all such 16-bit words w that 1 ≤ w ≤ 8000x and that

(w ∗ Zi
5) + (8000x ∗ Zi

5) < 216 + 1 (10)

where * is defined as

a ∗ b =

{
a� b if a� b 6= 0
216 if a� b = 0

Proof. Consider every intermediate pair (pi, p′i) which satisfies ∆pi = 8000x, excluding (0, 8000x). We
have p′i = pi + 8000x or pi = p′i + 8000x. Without losing generality, assume p′i = pi + 8000x, where
1 ≤ pi < 8000x and 8000x < p′i < 216.

If we consider only the least significant bit, LSB(si) = LSB(pi ∗ Zi
5). The following equations also

hold

LSB(s′i) =LSB(p′i � Zi
5)

=LSB(p′i ∗ Zi
5)

=LSB((pi + 8000x) ∗ Zi
5)

=LSB(((pi ∗ Zi
5) + (8000x ∗ Zi

5)) (mod 216 + 1))

(11)

In the special case when (pi, p′i) is (0, 8000x), let pi = 8000x, and p′i = 0. The Equations (11) also
holds, because p′i = 0 is actually treated as 216 for inputs of � and ∗.
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If (pi ∗ Zi
5) + (8000x ∗ Zi

5) is smaller than 216 + 1, then LSB(s′i) = LSB(si) ⊕ LSB(8000x ∗ Zi
5)

holds because of the equivalence of XOR and modular addition for the least significant bit. Moreover,
LSB(∆si) = LSB(8000x ∗ Zi

5) is satisfied, which means LSB(∆si) = LSB(8000x � Zi
5)

Otherwise, LSB(s′i) is equal to LSB(si)⊕LSB(8000x ∗Zi
5)⊕ 1 because of the carry. So LSB(∆si)

equals to LSB(8000x � Zi
5)⊕ 1.

Therefore, we may conclude that LSB(∆si) = LSB(8000x � Zi
5) if and only if the pair (pi, p′i)

satisfies (w ∗ Zi
5) + (8000x ∗ Zi

5) < 216 + 1, where w is either pi or p′i, whichever between 1 and 8000x.
And there are at most 215 such w, hence Equation (11) holds. This completes the proof.

Remark 4.2. Figure 4.2 plots the relation between subkey Zi
5 and the probability of LSB(∆si) = 1. As

shown in Figure 4.2, for most Zi
5, the probability of LSB(∆si) = 1 is different from uniform distribution.

Hence, it is possible to perform key-dependent attack on IDEA using this key-dependent distribution.
There are four cases for the probability of LSB(∆si) = 1 as Zi

5 grows from 0 to 216 − 1, which can be
generally approximated as following:

Prob(LSB(∆si) = 1) ≈



Zi
5

217
last two bits of Zi

5 = 0

0.5− Zi
5

217
last two bits of Zi

5 = 1

1.0− Zi
5

217
last two bits of Zi

5 = 2

0.5 +
Zi
5

217
last two bits of Zi

5 = 3

(12)

From Equation (12), following approximation also holds for most Zi
5.

min{Prob(LSB(∆si) = 0), P rob(LSB(∆si) = 1)} ≈

{
Zi
5

217
, LSB(Zi

5) = 0

0.5− Zi
5

217
, LSB(Zi

5) = 1
(13)

This fact indicates that we can approximate left hand side of Equation (13) by fixing several most significant
bits and the least significant bit.

In following sections, we will show that we only need to distinguish this approximate probability dis-
tribution from uniform distribution. Calculation shows that, for only 219 out of all 216 possible Zi

5, the
difference between this approximation and accurate provability is larger than 0.01. Hence, for most Zi

5, this
approximation is close to the accurate value. For Zi

5 that can be not approximated in this way, we use other
methods to deal with this situation.

5 Key-Dependent Attack on IDEA

In this section, we will present two key-dependent attacks on reduced-round IDEA. In Section 5.1, we will
give a basic attack on the 5.5-round variant of IDEA and then extend it to 6-round variant in Section 5.2.

5.1 Attack on 5.5-Round Variant of IDEA

We first present one key-dependent attack on the 5.5-round variant of IDEA. The attack starts from the
third round and ends before the MA layer of the eighth round. The main idea of this attack is to perform
key-dependent attack based on the key-dependent distribution of ∆s4 described in Theorem 4.1.
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Consider the 5.5-round variant of IDEA starting from the third round, the Biryukov-Demirci Equation
can be rewritten as

LSB(∆s4) = LSB(P2 ⊕ P3 ⊕ P ′2 ⊕ P ′3 ⊕ C2 ⊕ C3 ⊕ C ′2 ⊕ C ′3 ⊕∆s3 ⊕∆s5 ⊕∆s6 ⊕∆s7) (14)

Where P and P ′ are equivalent to X3 and X ′3, C and C ′ are equivalent to Y 8 and Y ′8 by the variant of
IDEA.

We first construct a pair of plaintexts satisfying the specific constraint ∆p4 = 8000x. The construction
is based on the following lemma.

Lemma 5.1. For any α, if two 16-bit words x and x′ have the same least 15 significant bits, then

• x⊕ α and x′ ⊕ α have the same least 15 significant bits,

• x� α and x′ � α have the same least 15 significant bits.

Based on Lemma 5.1, the following proposition can be obtained.

Proposition 5.2. If a pair of intermediate values Y 3 and Y ′3 satisfy the following conditions:

a. ∆Y 3
1 = ∆Y 3

3 = 0

b. ∆Y 3
2 = 8000x

c. Y 3
2 ⊕ Y 3

4 = Y ′32 ⊕ Y ′34

then ∆s3 = 0 and the probability of LSB(∆s4) = 0 can be determined by Equation(9).

Proof. From Condition a, ∆Y 1
1 = ∆Y 1

3 = 0, p1 is equal to p′1. Then ∆s1 = 0 is quite straightforward.
From Condition b, q1 is equal to q′1. If pi and qi are fixed, ui and ti are also fixed with respect to any Zi

5

and Zi
6. It indicates that X2

1 = Y 1
1 ⊕u1 = X ′21 . Note that Y 2

1 and Y ′21 are the results of modular-multiplying
X2

1 and X ′21 with the same Z2
1 , hence Y 2

1 is equal to Y ′21 .
On the other hand, ∆Y 1

2 = 8000x means that the least significant 15 bits of Y 1
2 are equal to those of Y ′12

and the most significant bit of Y 1
2 and that of Y ′12 are different. Because u1 is fixed, by Lemma 5.1, the

least significant 15 bits of X2
3 are equal to those of X ′23 . Then ∆X2

3 is equal to 8000x and ∆Y 2
3 = 8000x

is obtained by modular addition with the same Z2
3 . From ∆Y 2

1 = 0 and ∆Y 2
3 = 8000x, ∆p2 is 8000x. By

Theorem 4.1, the conclusion is obtained.

In our attack, we use the plaintext pairs satisfying Proposition 5.2. We obtain Condition (a) by letting
∆P1 = ∆P3 = 0. By Lemma 4.1, P2 and P ′2 are fixed to have the same least significant 15 bits, and hence
∆Y 1

2 = 8000x. In order to fulfill Condition (c), we have to guess and then according to this guess, to choose
P4 and P ′4 which satisfy ∆Y 3

4 = 8000x.
By Proposition 5.2, ∆s3 is equal to zero. In order to get the right hand side of Equation (14), we still

need to get ∆s5, ∆s6, ∆s7. We need to guess Z5
5 , Z6

1 , Z6
2 , Z6

5 , Z6
6 , Z7

1 , Z7
2 , Z7

3 , Z7
4 Z

7
5 , Z7

6 , Z8
1 , Z8

2 , Z8
3 ,

Z8
4 . As shown in [6], one can partially decrypt one pair of encryptions using these 15 subkeys to calculate

the values of ∆s5, ∆s6, ∆s7. These 15 subkeys only take key bits 125-99 and also cover the subkey Z3
4 .

Hence, for one guessed 103 key bits, we can calculate the value of ∆s4 from a special pair of encryptions.
We also note that these 103 bits also cover the key Z4

5 , which determine the key-dependent distribution
on ∆s4 according to Theorem 4.1. Therefore, we can perform the key-dependent attack on 5.5-round variant
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of IDEA. As described in Section 2, the key space can be divided into 2103 key-dependent subsets by the
103 key bits, each contains 225 keys.

For a key-dependent subset (P,U), let p denote the probability of LSB(∆s4) = 0. For simplicity, in
the following analysis, we assume that p ≤ 0.5, the case when p > 0.5 is similar. Assume the size of the
samples is n pairs of encryptions that satisfy the specific constraint on this key-dependent subset, and t of
them satisfy LSB(∆s4) = 0. The criteria for not rejecting the hypothesis is that t is smaller or equal to a
fixed value k. The probability of Type I error is

α =
n∑

i=k+1

(
n

i

)
pi(1− p)n−i

Type II error is

β =
k∑

i=0

(
n

i

)
0.5n

If (P,U) is a wrong key-dependent subset, the expected time complexity of checking this subset is

W = 2n+ 225β (15)

As shown in Section 2, the attack sets α smaller than or equal to 0.01 to ensure that the probability of the
false rejection will not exceed 0.01. Under this precondition, the attack chooses n and β so that α < 0.01
and minimizes Equation (15) to minimize the time complexity on the key-dependent subset (P,U). By
Section 2, we minimize the total expected time complexity with this method. Because this choice is related
only to the key Z4

5 , so we only need to get n and k for 216 different values.
Since all key-dependent subsets have the same key fraction, the order of performing individual attacks

with minimal expected time complexity becomes the ascending order of W for all key-dependent subsets
due to Theorem 2.4.

Our experiment shows that the total expected time complexity of our attack is 2112.1 with 99% success
probability. The number of pairs needed in one test is about 219 in the worst case. The attack uses a set
of 221 plaintexts, which can provide 220 plaintext pairs satisfying the structure in Proposition 1 for each
key-dependent subset.

The attack is summarized as follows:

1. For every possible Z4
5 , calculate the corresponding number of plaintext pairs needed n and the criteria

of not rejecting the hypothesis k.

2. Suppose S is an empty set. Randomly enumerate a 16-bit word s, insert s and s⊕ 8000x into the set
S. Repeat this enumeration until set S contains 25 different words. Ask for the encryption of all the
plaintexts of the form (A,B,C,D), where A and C are fixed to two arbitrary constants, B takes all
the values in S and D takes all the 16-bit possible values.

3. Enumerate the key-dependent sets in ascending order of W :

(a) Randomly choose a set of plaintext pairs with cardinality n from the known encryptions. The
plaintext pairs must satisfy the requirements of Proposition 5.2.

(b) Partially decrypt all the selected encryption pairs and count the occurrence of LSB(∆s4) = 0.
(c) Test the hypothesis. If the hypothesis is not rejected, perform exhaustive search for the remaining

25 key bits.

10



5.2 Attack on 6-Round Variant of IDEA

We now extend the 5.5-round attack to an attack on the 6-round variant of IDEA starting before the MA
layer of the second round. The data complexity of the attack is 249 and the time complexity is 2112.1.

As shown in [6], Z2
5 and Z2

6 are included in the 103 key bits in the 5.5-round attack. Hence, we can add
this half round to the 5.5-round attack without enlarging the time complexity.

It is more difficult to construct right structures satisfying Proposition 5.2. Consider a pair of intermediate
values X3 and X ′3 before the third round, which satisfy Proposition 1. If we partially decrypt X3 and X ′3

using any possible Z2
5 and Z2

6 , the only fact we know is that all the results have the same XOR of the first
and third words. The attack hence selects all the plaintexts P where the least 15 significant bits of P1 ⊕ P3

are fixed to an arbitrary 15-bit constant. The total number of selected plaintexts is 249. It is possible to
provide 248 plaintext pairs in the test for any Z2

5 , Z2
6 and Z3

4 . This number is sufficient in any situation.

5.3 Attack on 5-Round IDEA

We now apply the similar technique to the 5-round IDEA starting from the first round. Biryukov-Demirci
Equation is reduced to

LSB(∆s2) = LSB(P2 ⊕ P3 ⊕ P ′2 ⊕ P ′3 ⊕ C2

⊕C3 ⊕ C ′2 ⊕ C ′3 ⊕∆s1 ⊕∆s3 ⊕∆s4 ⊕∆s5)
(16)

We choose the plaintext pairs to satisfy Proposition 5.2 before the first round by guessing Z1
4 , and then ∆s1

is equal to 0 as shown in Section 5.1. In order to determine the right hand side of Equation (16), we need
to know Z3

5 , Z4
1 , Z4

2 , Z4
5 , Z4

6 , Z5
1 , Z5

2 , Z5
3 , Z5

4 , Z5
5 , Z5

6 . These 12 subkeys take the bits 75-65 from key Z.
These 119 bits only cover the most significant nine bits of Z2

5 , which determines the probability distribution
of LSB(∆s2). It is not necessary to guess the complete subkey Z2

5 . The attack continues to guess the
least significant bit of Z2

5 (72-nd bit of Z), and estimates the probability of LSB(∆s2) = 0 by Remark 4.2
instead. Hence, the attack guesses 120 key bits, and performs the individual attack on each guess. For the
key bits of which the probability can not be approximated by Remark 4.2 as shown in Section 4, the attack
exhaustively searches the remaining key bits. For other guesses, the attack uses statistical hypothesis test
method to determine the remaining eight key bits.

In this attack, it is possible that the expected time of individual attacks may be larger than exhaustively
search directly for some guessed key bits, which means

2n+ β · 28 ≥ 28 (17)

Under this condition, the attack also uses exhaustive key search to determine the remaining eight key bits to
make sure the time needed not exceed exhaustive search.

This attack also choose α ≤ 0.01 to ensure that the attack successes with 99% probability. In this case,
the expected time is 2125.5 encryptions.

Our experiment shows that the attack needs at most 75 pairs of encryptions for one test. We ask for
217 encryptions which can provide 216 pairs of encryptions, which is sufficient for the test. This data
complexity(217) is the least out of all the known attacks on the 5-round IDEA starting from the first round.

In the second attack, we try to obtain the plaintext pairs satisfying the Proposition 5.2 before the second
round. In order to determine LSB(∆s3), we need to know the least significant bits of ∆s1, ∆s2, ∆s4 and
∆s5. Hence, the subkeys we need to know are Z1

1 , Z1
2 , Z1

3 , Z1
4 , Z1

5 , Z1
6 , Z2

4 , Z3
5 . Z4

5 , Z5
1 , Z5

2 , Z5
5 and
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Z5
6 . These 13 subkeys only cover 107 bits of key Z(0-106). For every guessed 107 key bits, we use similar

technique as before. The expected time complexity is 2115.3, which is the least time complexity out of all
the known attacks on the 5-round IDEA starting from the first round.

Because it is not possible to predict the plaintext pair which produces the intermediate values satisfying
Theorem 4.1 before the second round, the encryptions of all the 264 plaintexts are required.

6 Conclusion

In this paper, we formalized a scheme of identifying the actual key using the key-dependent distribution,
called key-dependent attack. How to minimize the time complexity of the key-dependent attack was also
discussed. With the key-dependent attack, we could improve known cryptanalysis results and obtain more
powerful attacks. We presented two key-dependent attacks on IDEA. Our attack on 5.5-round and 6-round
variant of IDEA has the least time and data complexities compared with other attacks.

We only implemented a tentative exploration of the key-dependent distribution. How to make full use
of the key-dependent distribution, especially how to use the key-dependent distribution to improve existing
attacks, is worth further studying.

The attack on IDEA makes use of the relation between XOR, modular addition and modular multipli-
cation. We believe that the operation XOR and modular multiplication have more properties that can be
explored further [10]. Similar relations among other operations are also valuable to research. The way of
making full use of the Biryukov-Demirci Equation to improve attacks on IDEA is also interesting.
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Figure 2: The key-dependent distribution of Prob(LSB(∆s) = 1) on the value of Zi
5

15


	Introduction
	Key-Dependent Attack
	IDEA Block Cipher
	Key-Dependent Distribution on IDEA
	Key-Dependent Attack on IDEA
	Attack on 5.5-Round Variant of IDEA
	Attack on 6-Round Variant of IDEA
	Attack on 5-Round IDEA

	Conclusion

