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ABSTRACT
Can a smartphone learn our eating habits without the user
being in the loop? Clearly, the phone could use checkins
based on location to infer that if you are in a cafe, for ex-
ample, there is a good possibility you might eat or drink
something. In this paper, we use inferred behavioral data
and location history to predict if you are going to eat or
not in the near future. These predictors could serve as a
basis for future eating trackers that work unobtrusively in
the background of your phone rather than relying on bur-
densome user input. We report on a simple model that
predicts the food purchases of a group of undergraduate
college students (N=25) using inferred behavioral and lo-
cation data from smartphones. The 10-week study uses
the dining related purchase records from student college
cards as ground-truth to validate our prediction model. Ini-
tial results show that we can predict food and drink pur-
chases with an accuracy of 74% using three weeks of train-
ing data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
College students typically do not have healthy eating

habits and as a result are at higher-risk of weight gain [5].
The basis of our work is to develop a predictive model ca-
pable of inferring the food buying habits of a student pop-
ulation. If we can build such a predictive model based on
smartphone sensing data then we can provide just-in-time
feedback to students about healthy food and drink choices.
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Location (e.g., at cafe) is typically an excellent predic-
tor of eating or drinking. However, many locations on a
campus are multi-purpose and include restaurants, class-
rooms and arts facilities such as the Hopkins Center at
Dartmouth College. We show that simply by using location
you cannot easily infer eating from other activities without
false positives or negatives. In addition, simply using the
near instantaneous location label (e.g., Ramunto’s Pizza) is
too little too late in terms of potentially guiding a user to a
better choice (e.g., Gym, followed by the Salad Hut). If we
have predictive power to gain knowledge of what people
might do in the near future based on the behavioral data
and past location history we might be able to intervene be-
fore the user hits the bad food choice (e.g., fast food) in
the first place.
In this paper, we propose a simple predictive model based

on automatically inferred behavioral and location data from
smartphones. The idea is that the phone is smart enough
to determine if a user might eat or not in the near future
without any burdensome input from the user. Such a pre-
dictive model could serve as a basis for novel interventions
in the future or as a basis for implementing eating track-
ers.
We conduct a study of 25 undergraduate students at

Dartmouth College over a single 10 week academic term.
All the students live, eat and drink on campus. The stu-
dents in the study ran the StudentLife app on their An-
droid phones which inferred everyday activity (e.g., walk-
ing, stationary), sociability based on conversational data,
and sleep, location, co-location, etc. To capture the par-
ticipants food buying behavior, we collected the purchase
history from their Dartmouth food cards at the end of the
term. We use the sensing data on the phone to build a
model that predicts the food buying habits captured by the
Dartmouth food card. Our Initial results show that we can
predict food and drink purchases with an accuracy of 74%
using three weeks of training data. Note, our study only
considers undergraduate purchasing behavior in a campus
environment. We make no claims that our results present
generalized behavior for a general population. We con-
sider this future work.

2. RELATED WORK
There is little work on the prediction of eating habits us-

ing smartphone sensing data. In the participatory sensing
community, researchers track users’ eating behavior auto-
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matically using cameras [11] or on-body sensors [2] with
the goal of developing reliable dietary logging. Our work
differs in that we focus on user’s food purchasing behavior
before the user actually eats. This enables early interven-
tions in the future to ensure user’s healthy food choice.
In the public health community, Hebden et al. [6] have

developed applications that provide feedback based on pop-
ulation health guidelines including physical activity, intake
of fruit and vegetables, and energy-dense takeouts. Un-
like these applications that rely on the user to record their
food intake, our system focuses on automating the process
of tracking eating.

3. DATA COLLECTION
We collected a 10-week behavioral dataset for 25 par-

ticipants from the StudentLife [12] study. The Institutional
Review Board for the Dartmouth College approves this study.
All participants are undergraduate students who live on
Dartmouth College campus. Each student was given an
unlocked Nexus 4 phone that runs the StudentLife app
throughout the whole study. The app collects two types of
data for our use: (i) inferred behavioral data from smart-
phones; and (ii) personal purchase history. The resulting
dataset provides the basis for us to build and evaluate our
prediction model.

3.1 Behavioral Data
The StudentLife app automatically infers user activity

(e.g., stationary, walking, running, driving, cycling), sleep
duration, and sociability (i.e., the number of independent
conservations and their durations). It continuously runs
as a background service on Android. The app also col-
lects accelerometer, proximity, audio, light sensor read-
ings, location, colocation (i.e., the number of co-located
Bluetooth devices), and application usage. The inferences
and other sensor data are temporarily stored on the phone
and then uploaded to our server when the user recharges
their phone under WiFi.
The activity classifier [8] in the StudentLife app extracts

features from the preprocessed accelerometer stream, then
applies a decision tree to infer activity using a set of fea-
tures. For each 10-min period, we calculate the ratio of
non-stationary inferences. If the ratio is greater than a
threshold, we consider the period active, meaning that the
user is moving. We add up all 10-min active periods as the
daily activity duration.
We consider the frequency and duration of conversations

around a user as a measure of sociability. We infer that the
user is “around conversation” using the privacy-sensitive
audio and conversation classifiers [10]. The output of the
classification pipeline captures the number of independent
conversations and their durations.
Dartmouth College deploys WiFi APs across campus. We

use the Wi-Fi scan logs (SSIDs, BSSIDs and RSSIs) on
smartphones to locate the user. We obtain the detailed
AP deployment information from Dartmouth network ser-
vices. This allows us to associate a Wi-Fi scan log with
a specific building. We then merge consecutive locations
and partition a day into chunks, where the user stays in
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Figure 1: Time of day buying probability for the most reg-
ular student and most irregular student across 70 days.

the same building during each chunk. We assign a unique
ID to each building for the classifier to process.

3.2 Purchase History
Each participant submitted their purchasing history cap-

tured by their Dartmouth card from early January to late
May 2013. We only use the part of the history related
to the StudentLife study. The Dartmouth card [1] is ac-
cepted at all college businesses for dining (soda, snacks
and meals), entertainment (canoe, cabin rentals, ski, con-
cert tickets, etc.) and services (printing, parking, laun-
dry, etc.). We remove 8.65% of the original purchase his-
tory not related to our study, such as, for laundry, printing,
mail, etc.
We use the rest of purchase history for the training and

testing sets of the model. Each purchase record contains
a corresponding location, cost and time stamp. Because
all the undergraduate students are required to have a din-
ing plan if they are enrolled in classes or living in campus
housing, they use their Dartmouth card for most of their
living expenses. Participants spent $6.89 per purchase on
average and made 2.81 purchases per day on average. We
found 32 unique purchasing locations across Dartmouth
campus in the purchase history for all the students.

4. PREDICTING FOOD PURCHASES
In what follows, we discuss a number of design chal-

lenges in building models for predicting food purchases for
an undergraduate student body in a campus environment.
We then present our model.

4.1 Design Challenges
Intuitively, location (e.g., cafe) and time (e.g., breakfast,

lunch and dinner times) are excellent indicators of eating
or drinking events. However, simply using these features
is insufficient to predict food purchases for two reasons.
First, many buildings on a campus are multipurpose and
include restaurants, classrooms, and other facilities (e.g.,
arts, entertainment, sports). Students can simply pass
through or dwell a while in these buildings without making
any purchases, or stay for longer periods of time to study
or socialize for example. We study how likely a student
might buy food when they are at one of these multipur-
pose building during meal time. Dartmouth dining defines
meal times as follows: breakfast time during weekdays is
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Features Description

bld(c) current building ID
bld(p) last building ID
time(c)arr time of day upon arrival at the current building
time(p)arr time of day upon arrival at the last building
time(p)dept time of day upon departure at the last building
dur(p)conv total duration of all the conversations at the last building
freq(p)conv number of distinct conversation instances at the last building
ratio(p)act the percentage of time of non-stationary states in the last building

Table 1: List of candidate features.

from 7:30-10:30 am, lunch 11 am-3:00 pm and dinner 5-
8:30 pm. We find that buying happens in only 26.7% of
all the cases where students are at one of these multipur-
pose buildings during meal time. Clearly location and time
alone can lead to significant prediction errors.
Second, most college students have irregular eating sched-

ules. They often do not purchase food during meal time,
and do not visit a routine cafeteria for meals. As shown
in our dataset, only 24.9% of the participants purchased
food during meal times. We plot the food purchase prob-
ability of the most regular student and the most irregular
student in terms of their eating habits averaged over 10
weeks, as shown in in Figure 1. We see that the irreg-
ular student’s food purchase behaviors are almost evenly
distributed during an average day. The regular student is
more predictable during breakfast, but not for lunch and
dinner. Only in 10% and 30% of the cases does the stu-
dent buy lunch or dinner during common meal time peri-
ods. Therefore, time-based prediction will not work nei-
ther. We need a prediction model that addresses the time
and location variability of food purchase.

4.2 Approach
To address these challenges, we identify characteristics

from inferred behavioral data that are linked with user’s
dining purchases. We extract features from these behav-
ioral data and build a prediction model. Our goal is to
predict if a student is going to purchase food at build-
ings where they can use their Dartmouth card. We refer
to these buildings as "candidate buildings".
Specifically, our method consists of three steps: collect-

ing training data, training the prediction model, and on-
line prediction. In the training data collection stage, we
collect features associated with the buying behavior, and
purchase history as ground truth. In the training stage, we
train a classification model that identifies predictive rela-
tions between the collected features and the purchase his-
tory. Finally, we use the prediction model obtained from
the training phase to predict if the user is going to buy
food after arriving at a candidate building. We formalize
the prediction as a simple binary classification problem;
that is, buying and not buying. We use classification and
regression trees (CART) [3] as our classifier.
Table 1 summarizes a provisional set of features to pre-

dict food purchasing behaviors. We can divide these fea-
tures into two categories: previous state features and cur-
rent state features. Previous state features are calculated

using the behavioral data collected at the last building
visited by a student. We propose these features because
we hypothesize previous behavior states of students have
causal effects on their choice of buying food. For example,
after an workout at gym, students are more likely to buy a
drink. Researchers in public health found that both phys-
ical activity and social behavior have influences on food
choices [4, 7]. To capture physical activity (i.e., how much
students were physically active), we calculate the ratio of
non-stationary labels during the time when a student vis-
ited the last building. To infer sociability, we use dur(p)conv
and freq(p)conv to represent the conversation durations and
the number of conversation instances at the last building,
respectively. The current state features contain only the
current building ID and the arrival time. Our model uses
these features as input to compute online prediction re-
sults.

4.3 Prediction Model
In what follows, we discuss our prediction model, and

the need for personalization and adaptation of the model.
We personalize the model because of the diversity of pur-
chasing behavior across students. We adapt the model be-
cause student’s purchasing behavior changes over the 10
week term.

4.3.1 Prediction Model
We use classification and regression trees (CART) [3] as

the classifier. CART is able to handle both numerical and
categorical data. In our case, the building name is cat-
egorical data that cannot be used directly in other clas-
sifiers. As a non-parametric decision tree, CART is com-
monly used to create a model that predicts the class based
on the value of several features. We create the prediction
model in the training phase, and use the model to predict
food purchase.
The model is a set of prediction rules in the form of a

tree. Each non-leaf node in the tree is a decision node
which decides which node should go to next based on the
value of a single feature. The algorithm traverse the tree
from root to leaf based on feature values and each passing
node’s rule until it reaches a leaf node. The leaf node gives
the prediction label for the given feature input.
To build such a decision tree, we start with a single root

node which contains all the training data instances. We
recursively either divide the data at current node into sub-
regions (i.e., child nodes), or declare the node a leaf (i.e.,
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assign a label). This process partitions the training data
into sub data regions. Instances in each region shares the
same label as well as similar feature values.
To split a node, the algorithm minimizes the impurity of

data at child nodes. CART uses Gini [9] as the impurity
measure. We choose Gini [9] because it measures feature
importance in a decision tree. The Gini measure is defined
as i(t) = 1−

∑
i p

2
i , where pi is the ratio of instances which

have label i among all instances at the current node. The
splitting stops when the impurity improvement of splitting
is less than a threshold. At each node, the algorithm split
the data in two based on a single feature that decreases
the impurity. A feature’s Gini importance value is the sum
of impurity decreases for all nodes that split based on this
feature.

4.3.2 Personalization
We train a prediction model for each individual because

different people have different buying behavior and loca-
tion patterns. For example, different students may take dif-
ferent classes. The classes they take have different class-
rooms and schedules. Also, different students may choose
to buy food at different campus stores. Thus, the location
feature is not generic for all the students. A personalized
model can accurately capture the characteristic of each
student’s buying behavior. A generic model, however, is
limited by the diversity of different students’ behavior.

4.3.3 Adaptation
A student’s buying behavior may change overtime. For

example, as the term progresses, class workload increases.
For example, some students may choose to stay longer at
the library to study. To capture behavior change, we de-
sign a “dynamic adaptation mechanism”, where we use
the most recent sensor data and purchase history to train
a model that can reflect the most recent buying behavior,
and recursively updated the prediction model over a fixed
time interval.
We define a training period as a period of time in which

the data collected will be used to train the prediction model.
As we discussed in Section 4.2, there are two stages to pro-
duce the predictor: training data collection and prediction
model training. The training data collection stage lasts for
the length of a training period. At the end of the training
period, a predictive model is trained using the data col-
lected. Then, we use the model to predict the student’s
buying behavior. At the same time, their sensing data and
purchase history is collected. This prediction model ex-
pires after a period of time (e.g., 1 or 2 weeks) that is
the same in length as a training period. A new prediction
model is trained using the fresh data.

5. RESULTS
In what follows, we discuss the importance of different

features, then present the performance of the classifica-
tion model.
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Figure 2: Ranking of feature importance.

5.1 Feature Importance
As discussed in Section 4.2, we use 8 features to predict

if a student is going to buy food when they arrive at a build-
ing. Figure 2 shows the Gini importance for each feature.
The top six important features are current building ID, ar-
rival time at the current building, the departure time at the
previous building, the activity ratio of the last building, ar-
rival time at the previous building and the conversation
duration at the previous building. Current states are more
important than previous states. We also observe there are
individual differences in term of feature importance. The
variance of feature importance indicates if different users
show similar behavioral patterns toward buying behavior.
Within the top six important features, conversation dura-
tion at the previous building shows the most variance in-
dicating that sociability is an important predictor for some
individuals but not for others. Arrival time at the current
location has the least variance, which indicates that it is a
more generic predictor for the buying behavior.

5.2 Prediction Performance

5.2.1 Evaluation Method and Metrics
We identify 12260 cases where students arrive at one of

the multipurpose buildings. In each case, we extract fea-
tures describe in Section 4.2 as well as the ground truth
which is a boolean value indicating if the student bought
food during the visit to the building. Among all the cases,
3050 of them are related to buying. We evaluate and com-
pare the prediction performance under three different model
settings: generic model, personalized without adaptation
and personalized with adaptation, as described in Section 5.2.2.
We use accuracy, precision and recall to evaluate the

performance of the prediction model. Accuracy measures
how well a binary classification test correctly identifies la-
bels. It equals to (tp+tn)/(tp+tn+fp+fn) where tp is the
number of true positives, tn is the number of true neg-
atives, fp is the number of false positives and fn is the
number of false negatives. Precision measures the proba-
bility that a test case given positive label is truly positive.
It is derived by tp/(tp+fp). Recall measures the probability
that a positive case can be identified by the classifier. It is
derived by tp/(tp+fn).

12



 0

 0.25

 0.5

 0.75

1 week 2 weeks 3 weeks 4 weeks 5 weeks baseline

pe
rfo

rm
an

ce

length of period

Accuracy
Precision

Recall

Figure 3: Prediction performance for the static training
set.

5.2.2 Prediction Result
Using the above metrics, we now evaluate the perfor-

mance of the different prediction model designs, including
random labeling, a generic model without personalization,
and a personalized model with and without adaptation.

Prediction Baseline. We use random guessing as the
prediction baseline method, which guess if a user would
buy or not buy food for a giving case. We run the base-
line method on all 12260 cases in the dataset to get the
prediction performance measured by accuracy, precision
and recall. The results shows the accuracy of the baseline
method is 50.5%, precision is 26.6% and recall is 50.4%.

Generic Model. In this setting, the dataset is randomly
partitioned into a training set and test set. We use 10-fold
cross validation to evaluate the prediction performance.
The accuracy is 68.6%, precision is 42.1% and recall is
49.3%. The generic model outperforms the baseline in
terms of prediction accuracy and precision. But it is 1.1%
worse than the baseline in terms of recall. This indicates
that the model can predict the label of each case more
accurately than random guessing, and the predicted posi-
tive cases are much more likely to be correct. However, it
cannot identify positive cases from negative cases as effi-
ciently as random guessing.

Personalized Model without Adaptation. In this set-
ting, we partition the dataset by student. We segment a
student’s data into training set and test set according to
time. We determine how much data to use as the training
set and how much for the test data, then segment the data
by time. For example we use the first 2 weeks data as our
training set and the rest as our test set. This setting mod-
els a real life scenario in which the prediction model learns
user’s buying behavior first, then we use the learned model
to predict future buying behaviors.
We calculate the mean and standard deviation of the

evaluation metrics for each student’s test set. Figure 3
shows the performance for different sizes of the training
set in terms of time. We observe the overall performance
is significantly better than the baseline. As the size of the
training set increases, the performance in term of accu-
racy, precision and recall also increase. We achieve the
best performance when the first 5 weeks of data is used
for training. The accuracy for this setting is 73.9%, preci-
sion is 49.5% and recall is 53.6%.
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Figure 4: Prediction performance for different adaption
periods.

We can see from the results shown in that the model can
identify positive cases from negative cases more efficiently
compared to the generic model and random guessing. Pre-
diction accuracy and precision is further improved.

Personalized Model with Adaptation. We test the
model with five adaptation periods. The results inform
us about the optimal adaptation period for the dataset.
Each student’s data is partitioned into segments. Each
segment’s length in term of time is the length of a train-
ing period. We recursively use one data segment as the
training set to predict the consecutive segment’s buying
behavior. The results are shown in Figure 4. It shows the
classifier significantly outperforms the baseline in term of
accuracy and precision. The recall rate is 3.1% higher than
the baseline. It indicates that when the model predicts a
student is going to buy food, it is more likely that it is true
compared to random guessing.
In terms of the performance of the different adaption

periods, the prediction performance improves as the pe-
riod increases to 3 weeks, the accuracy increases from
69.1% to 74.2%, precision from 45.2% to 52.7%, recall
from 53.2% to 55.1%, then drops for 4 and 5 week periods,
accuracy drops to 73.8%, precision to 48.9% and recall to
52.1%. The change of performance is more significant in
term of precision and recall.

Summary. We can see from the results shown in Fig-
ure 4 that personalization significantly improves the pre-
diction performance as one would expect; the accuracy,
precision and recall improves by 5.3%, 7.4%, 4.3% respec-
tively. The precision and recall further improve by 4.2%
in precision and 1.5% in recall by using adaptation. This
results confirm our hypothesis discussed in Section 4.3
that different students have different buying behavior pat-
terns that change overtime. Our personalized and dynam-
ically adapting model can capture individual differences
and changing buy behavior over time.

6. CONCLUSION
In this paper, we started by asking if smartphones can

predict our food purchase behaviors. We reported on a
simple predictive model of food purchases. Specifically,
we design this model to predict whether a smartphone
user would choose to buy food in a near future or not. We
studied a group of undergraduate students (N=25) who
collected inferred behavioral and location data from their
smartphones over 10 weeks. Our initial results show that

13



we can predict food purchases with an accuracy of 74%
using three weeks of training data. Because of the unique
characteristic this college student dataset, this model can
form the basis of new interventions and trackers that can
help reduce unhealthy eating behavior among college stu-
dents. In order to generalize our work, we intend to ex-
plore more features for prediction of more types of food
purchases including purchase costs, purchase type, total
number of daily purchase instances. Also, we will look at
the food purchase behavior of the office workers because
they shared similar life pattern with students.
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