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ABSTRACT
Wireless signals and networks are ubiquitous. Though more reli-
able than ever, wireless networks still struggle with weak cover-
age, blind spots, and interference. Having a strong understanding
of wireless signal propagation is essential for increasing coverage,
optimizing performance, and minimizing interference for wireless
networks. Extensive studies have analyzed the propagation of wire-
less signals and proposed theoretical models to simulate wireless
signal propagation. Unfortunately, models of signal propagation
are often not accurate in reality. Real-world signal measurements
are required for validation.

Existing methods for collecting wireless measurements either in-
volve researchers walking to each location of interest and manually
collecting measurements, or place sensors at each measurement lo-
cation. As such, they require large amounts of time and effort and
can be costly. We propose DroneSense, a system for measuring
wireless signals in the 3D space using autonomous drones. Drone-
Sense reduces the time and effort required for measurement col-
lection, and is affordable and accessible to all users. It provides
researchers with an efficient method to quickly analyze wireless
coverage and test their wireless propagation models.
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1. INTRODUCTION
Wireless signals and networks are ubiquitous today. Though

more reliable than ever, wireless networks still struggle with prob-
lems such as weak signals, blind spots, and interference. Key to
solving these problems is the understanding of wireless signal prop-
agation. Studies on wireless signal propagation often rely on theo-
retical models [3, 9, 12, 15, 16, 21, 27, 28]. Although these models
have improved our understanding of wireless signal propagation,
they often fall far short in accuracy. To gain accurate views of wire-
less signal distribution in the space, we need actual signal strength
measurements.

One method for collecting highly granular wireless measure-
ments is war driving/walking [5, 14, 26]. Researchers must col-
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Figure 1: DroneSense in action, collecting Wi-Fi signals in a
hallway using its built-in Wi-Fi radio. Paper marks on the floor
indicate the target measurement locations.

lect measurements at every point of interest by driving or walking
to each location. War driving/walking is extremely troublesome,
because it requires constant human interaction. Moreover, human
interaction can affect the signal propagation and interfere with the
wireless measurement results [13, 30]. Another method for col-
lecting wireless measurements is to place sensors at every location
of interest, and then repeatedly read measurements from those sen-
sors. However, the granularity of measurements is limited by the
number of deployed sensors. It can also entail a high cost for a
large number of measurement locations.

We propose DroneSense, a system for automatically collecting
wireless signal measurements in the 3D space using drones. To
meet our objective, we program a drone to fly along a preset trajec-
tory and collect measurements along its path. The user inputs a list
of coordinates of where to collect measurements. Our system then
instruments the drone to navigate the 3D space and collect signal
measurements at specified 3D locations.

To utilize drone effectively for wireless measurements, we face
two challenges. First, it is difficult to track the precise 3D posi-
tion of the drone indoors. Thus, navigating the drone to collect
measurements at specified locations is challenging. Second, the
drone is extremely unstable during the flight. Without the proper
control, it can frequently undershoot or overshoot a target loca-
tion. As a result, it spends much time on adjusting its position
before reaching the target location, making the measurement time-
consuming and inefficient. To address these challenges, we im-
prove the navigation accuracy by leveraging reference points in
the environment. We instrument the drone to detect these refer-
ence points and then apply Extended Kalman Filter to estimate the
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drone’s position. To improve the drone’s flight stability, we ap-
ply the Proportional-Integral-Derivative Controller to dynamically
control the drone’s trajectory and improve the flight efficiency.

We implement DroneSense using the Parrot AR Drone 2.0 [23]
for its low cost, abundance of open-source APIs, and durability
while flying indoors. We implement the navigation and measure-
ment program in JavaScript on the Node.js platform, which is com-
patible with all operating systems. Our system can ensure 13-cm
mean error and 20-cm maximal error from the target location. With
this error tolerance, drone flight is efficient, with distance to the
target monotonically decreasing, no overshoot or adjustment. Fur-
thermore, our experiments demonstrate that measurement at each
location for three seconds is sufficient for accurate results.

We summarize the key contributions of DroneSense as follows:

1. DroneSense provides a fully autonomous process for collect-
ing wireless measurements, which eliminates the human in-
teractions, reduces the required human efforts, improves the
efficiency of measurement process, and is easily scalable to
a large experiment site.

2. DroneSense enables collecting signal strength measurements
in the 3D space, enriching the measurement data for analysis
and allowing more accurate understanding of wireless signal
propagation in a 3D environment.

3. We present the user an easy way to set the drone’s trajec-
tory, various options for collecting signal measurements, and
a suite of tools for automation and calibration.

In the rest of this paper, we discuss in detail the technical chal-
lenges of creating this system, DroneSense’s design, the methods
we utilize, the evaluation of our results, summarize DroneSense’s
effectiveness compared to related works, and discuss its impact and
how our work can be extended.

2. OVERVIEW AND CHALLENGES
Overview: DroneSense takes as input a flight path, which is a
list of locations for a drone to collect measurements. The user also
specifies options for collecting measurements, such as the number
of measurements at each point and the time duration between adja-
cent measurements. For each location of interest, the drone hovers
over it for a specified duration, and keeps recording the wireless
signal strength received from a given access point (AP) using its
built-in radio. When multiple APs are present, the drone’s built-in
radio can be configured to the monitor mode, where the radio scans
all wireless channels and collects received signal strength values
from each AP. By averaging the signal strength values at a given lo-
cation, we can smooth out signal fluctuation caused by fast fading
and gain a relatively stable view of the signal strength distribution
in the space.

DroneSense is divided into two modules: Navigation and Mea-
surement. The Navigation Module is responsible for moving the
drone to the desired locations. The Measurement module is re-
sponsible for collecting measurements at each desired location. In
creating an automated system for drones to collect wireless mea-
surements, we faced challenges in developing precise control over
the drone’s movement. Two notable challenges are accurate nav-
igation and efficient flight. Accurate navigation means accurately
determining the drone’s current location relative to the target’s lo-
cation in order to accurately navigate to the target. Efficient flight
means reaching the target location quickly without having to make
many large adjustments in flight trajectory.

Challenges: The navigation accuracy challenge arises because
currently there is no robust and accurate indoor drone localization
system available. It is difficult to leverage GPS to achieve centime-
ter localization accuracy indoor. Additionally, the characteristics
of the drone control API do not provide the ability of dead reckon-
ing. When communicating with the drone, control commands are
sent to the drone as a pair of direction and magnitude, such as “left
1.0” or “up 0.5”. The magnitude is most analogous to motor speed,
but does not map directly any physical unit of movement such as
velocity or acceleration. Though theoretically we can infer drone’s
velocity and heading direction from accelerometer and gyroscope
sensors, the sensor data are too noisy and errors accumulate over
time so that they could not be used directly.

These observations motivate us to leverage feedback from en-
vironment to account for noise from drone’s sensor readings and
track the its position precisely. We attempted to apply camera-
based navigation method [10]. This method investigates drone’s
front camera for pose estimation. It fuses visual information cap-
tured by the front camera with sensor data to infer the drone’s state.
However, it requires there exists distinct visual features in the im-
ages captured by the front camera. If there was only a white wall
in front the drone, the navigation would easily go wrong. So we
failed in leveraging this method to collect wireless measurements
among the entire room. Our solution to this challenge is using Ref-
erence Point Detection and an Extended Kalman Filter, discussed
in section 3.1 and 3.2.

The other main challenge is to ensure the drone flow in an effi-
cient path. The impact of this problem is not just that the drone will
take an indirect path to the target, but more importantly when the
drone is near its target, its position will fluctuate wildly as it tries
to adjust itself into the exact target position. Since the drone has a
limited battery life, it is important to ensure flights as efficient as
possible so that more flight time can be achieved. The efficiency
of the flight depends on the magnitude of the control commands
we send to the drone, which will determine how quickly the drone
reaches its target. The problem of efficient flight arises because we
do not have an effective method to determine the magnitude of the
command to send to the drone.

The shortcoming of setting the control magnitude as a constant
value is that it does not adjust its speed dynamically according to
the distance from a target. This is inefficient since drone has a
limited battery life. Thus we attempted to choose magnitudes pro-
portional to the distance to a target. However, this resulted in the
drone constantly undershooting or overshooting the target, as the
drone was unable to stop right over the target. To make the drone’s
flight more efficient, we must receive feedback about what is the
effect of the magnitude we used, and adjust the magnitude on a
continuous and non-linear scale in order to find the optimal mag-
nitude. Our solution to this challenge is the Proportional-Integral-
Derivative Controller, discussed in section 3.3.

3. SYSTEM DESIGN
We now describe in detail three key design components in Drone-

Sense to address the above challenges.

3.1 Reference Point Detection
We use reference point detection to help address the challenge

of navigation accuracy, by providing position calibrations for the
drone. When the drone detects a reference with its camera, we
can calculate the reference point’s relative position and orientation
to the drone in 3D space. We can also predefine each reference
point’s true position in 3D space so that the program knows the
the true position of the detected reference point. Thus, when a
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Figure 2: (a) Reference point. (b) Reference point detected by
OpenCV. A line between center of the circle and center of the
rounded rectangle is drawn to infer the angle of orientation.

marker is detected, we can use the its true position and its relative
position and orientation to the drone to calculate the drone’s own
position and orientation. We place multiple reference points into
the environment to so the drone can constantly have a source of
position calibration.

The drone has the capability to detect certain types of markers,
including the Oriented Roundel marker that we use. Figure 2(a)
shows the Oriented Roundel marker, and we see that it is not only
very easy to recognize, but also we can easily determine its orien-
tation. Once a marker is detected, we perform calculations to trans-
form its position in the camera image to its position in the drone’s
coordinate system, and also find its real position.

Computer Vision Process: First, we convert the image to grayscale.
Next, we run the OpenCV Canny Edge Detection algorithm to pro-
duce an image where only the edges pixels are turned on. Next, we
dilate the image to increase the size of the edges. Next, we use the
OpenCV Contour algorithm and find circles and rounded rectan-
gles in the image based on number of sides for each detected con-
tour. Finally, we process detected shapes to determine if a marker is
present in the image. If there exists simultaneously a rounded rect-
angle whose long side length is equal to the side length of a large
circle’s bounding rectangle, there is a marker in the image. After a
marker is detected, we set the center of the circle as the location of
the marker. We draw a line between the center of the circle, and the
center of the rounded rectangle, shown in Figure 2(b). The angle
between that line and the X axis is the angle of orientation. We
then send the coordinates and the orientation to be converted to 3D
coordinates.

Back Projection: The camera has a frame of 640 × 360 pixels.
We need to translate the location of the detected marker from these
640× 360 coordinates to 3D coordinates. In other words, we need
to translate the marker’s 2D position relative to the center of the
drone’s camera (in pixel units) to the marker’s 3D position relative
to the center of the drone itself (in meter units). Using the 3 × 3
back projection matrix P that has been calibrated for the drone’s
bottom camera [4], we can calculate the center of the mark’s circle
in drone’s coordinate space:

[x′c, y
′
c, z]

T = P−1[0.64 ∗ xc ∗ z, 0.36 ∗ yc ∗ z, z]T ,

where (x′c, y
′
c, z) is the coordinates of the center of the mark’s

circle in drone’s 3D space, (xc, yc) is the pixel coordinates of the
center of the mark’s circle in captured image, and z is the height
measured by drone’s ultrasonic sensor. We can calculate the co-
ordinates of the center of rounded rectangle (x′r, y

′
r, z) in drone’s

space as well. Finally, simple trigonometry allows us to determine
the orientation of the marker θ:

θ = arctan(
y′c − y′r
x′c − x′r

)

Thus, we are able to determine the marker’s 3D coordinates rel-
ative to the drone, as well as the orientation of the drone.

Reference Point Placement: We place markers in the environ-
ment 1 meter apart from each other. Fewer markers are needed
for the drone to sufficiently navigate, but for more accuracy we
try to use as many markers as possible. Because we know that
markers are placed at every meter, when a marker is detected, we
can assume that marker’s true position is the nearest whole-meter
coordinate from the drone’s current position. If multiple markers
are detected, their true positions are the nearest whole-meter coor-
dinates sorted by distance from the drone’s current position. For
instance, if the drone’s current position estimate is (1.7, 2.2), the
nearest marker from the drone detected by the camera should have
true position (2, 2). Knowing the marker’s true position and its rel-
ative position and orientation to the drone allows us to calculate the
position and orientation of the drone.

With markers placed every meter, locating each marker becomes
simpler. It also helps us visually inspect the navigation accuracy
of the drone. We can reduce the number of markers by placing
them with larger intervals (e.g., every two meters), and configure
the drone’s program to round its current coordinate to the near-
est location two meters away upon detecting a marker. To sup-
port irregularly spaced markers, we can indicate the position of the
marker on the marker itself with certain predefined special symbol.
The system can build a lookup table to map a symbol to a marker
location, so that the drone can search through the lookup table to
calibrate its location.

3.2 Extended Kalman Filter
We use the Extended Kalman Filter (EKF) [17] to address the

challenge of navigation accuracy, by using it to estimate the drone’s
position at all times. An Extended Kalman Filter is an algorithm
that uses a series of measurements over time, containing noise and
inaccuracies, and produces estimates of unknown variables that
tend to be more precise than those based on a single measurement
alone. This algorithm is frequently used for guidance and naviga-
tion of vehicles [2].

The EKF uses a two-step recursive process: predict and update.
The predict step uses a position estimate from a previous time as
well as sensor data to estimate the current position. Below, we give
a brief description of how we predict and update the position es-
timate. We denote the sensor readings as sensors, and the camera
reference point observations as the observations. We use the sen-
sors and past position estimates to estimate the current position,
in other words perform the predict step. We use the observations
and past position estimates to correct the model and improve the
position estimation, in other words perform the update step.

Predict Step: The predict step utilizes the last position estimate,
the velocity readings derived from the accelerometer, the yaw read-
ing derived from the gyroscope, and time interval since last esti-
mation to estimate the current position and orientation. Thus, our
position estimate vector x̂ contains the values of x, y, and yaw, and
our sensor vector u contains the values of x velocity and y velocity,
yaw, and time interval:

x̂ = [x̂, ŷ, θ̂],

u = [vx, vy, θu, dt]
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Using our model based on the laws of physics, we know that the
current position should be the past position plus the change in posi-
tion during the last time interval due to velocity, with a modification
for rotation. Our position transition functions f are shown:

f = [fx, fy, fθ]

fx(x̂k,uk) = x̂k + vx ∗ dt ∗ cos(θ̂)− vy ∗ dt ∗ sin(θ̂)

fy(x̂k,uk) = ŷk + vx ∗ dt ∗ sin(θ̂) + vy ∗ dt ∗ cos(θ̂)

fθ(x̂k,uk) = θu

Finally, having all of these variables and equations defined, the
predicted position x̂ at time k is calculated from the state at time
k − 1 as below:

x̂k|k−1 = f(x̂k−1|k−1,uk),

where the x̂k|k−1 denotes a priori state estimate at time k given
observations up to k−1, and x̂k−1|k−1 represents a posteriori state
estimate at time k−1 given observations up to and including at time
k − 1.

Update Step: The update step utilizes an observation of the
actual position to update, or correct, the model parameters. In
our case, when the drone camera detects a reference point, it ob-
serves the marker’s relative position and rotation, and it knows the
marker’s true position and rotation. Thus, we can infer the drone’s
true position based on the discrepancy between the marker’s true
and relative position. However, although the position estimate de-
rived directly from the reference point detection is likely to be quite
accurate, it still may not be perfectly accurate. The update step
combines the position estimated in the predict step and the position
calculated from the observation, balanced using a weighted average
based on uncertainty, to produce a position estimate likely more ac-
curate than both individual calculations.

The observed values will be contained by the true and relative
observation vectors t and z shown:

t = [xt, yt, θt]

z = [xz, yz, θz]

We use the true marker position and current drone position to
calculate what the marker’s true position should be relative to the
drone, or the marker’s theoretical relative position. We call the
equations for this calculation our observation transition functions.
Our observation transition functions h are shown as:

h = [hx, hy, hθ]

hx(x̂k, tk) = (xt − x̂) ∗ cos(θ̂) + (yt − ŷ) ∗ sin(θ̂)

hy(x̂k, tk) = −(xt − x̂) ∗ sin(θ̂) + (yt − ŷ) ∗ cos(θ̂)

hθ(x̂k, tk) = θt − θ̂

Next, we calculate the residual which is the difference between
the two relative positions: the relative position of the marker calcu-
lated from the camera back projection, and the theoretical relative
position of the marker’s true position.

PID Kp Ki Kd

X 0.5 0.1 0.35
Y 0.5 0.1 0.35
Z 0.8 0.2 0.25
Yaw 0.8 0.2 0.25

Table 1: PID Controller Coefficients

ỹk = zk − h(x̂k|k−1, tk|k−1)

Finally, having all of these variables and equations defined, we
can calculate the measurement residual covariance and the optimal
Kalman Gain with an assumption about the covariance of the ob-
servation noise, which in turn allows us to calculate the updated
position and the updated covariance.

3.3 Proportional-integral-derivative Controller
We use a Proportional-Integral-Derivative (PID) Controller to

address the problem of flight efficiency, by calculating appropriate
magnitudes for the control commands for the drone. We want to
send the drone control command magnitudes that efficiently move
the drone to the target quickly, with few large adjustments, and
minimizing overshoot. A PID Controller is suitable for our problem
because it allows us to dynamically adjust the command magnitude
in a non-linear fashion.

We use a PID Controller for each of the four directions of mo-
tion: front or back, left or right, up or down, clockwise or coun-
terclockwise. Our PID controller seeks to minimize distance in a
certain direction by setting the control command magnitude u, and
uses the feedback to continuously adjust the control variable until
a steady state is reached. The PID equation is shown as following:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
,

where u is the control variable, e is error from feedback, Kp

is proportional coefficient, Ki is integral coefficient, and Kd is
derivative coefficient. The proportional term accounts for the present
error. The integral term accounts for the total accumulated values
of the error, which accelerates the process to the desired level, and
eliminates steady state error. And the derivative term accounts for
the future values of the error, based on the rate of change of the er-
ror. The derivative term helps prevent overshoot by modulating the
magnitude. By modulating the derivative of the error rather than
the proportional error, the drone can move quickly in the beginning
and decelerate quickly as it approaches its target.

Table 1 lists the coefficients we use for each PID. For our sys-
tem, it is imperative that we avoid overshooting the target, because
if the drone moves on top of the wrong reference point, all future
flight will be wrong. We use medium or large proportional coeffi-
cient, small integral coefficient to eliminate steady state error, and
medium derivative coefficient to reduce overshoot. We use larger
values for the proportional coefficient of Z and yaw because move-
ment in those directions tend are slower (due to their motor power).
We also use smaller derivative terms for Z and yaw because their
movement is slower and their sensors are more accurate and thus
less prone to overshoot.

4. IMPLEMENTATION
DroneSense is designed to provide an easy-to-use, fast, and flex-

ible way of automatically measuring 3D wireless signals. It is writ-
ten in JavaScript on the Node.js platform. It is divided into two
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modules: navigation and measurement. The navigation module is
responsible for moving the drone to the desired locations, estimat-
ing its position at all times, and correcting errors in its trajectory.
The measurement module is responsible for collecting measure-
ments at each desired location, communicating with the drone to
tell it when and how to measure signal. It communicates to the
drone’s operating system via telnet. It waits for the navigation
module to broadcast that the drone has reached a target location,
collects the measurement, and informs the navigation module to
start moving the drone again.

4.1 Navigation Module
The navigation module is responsible for guiding the drone to

the desired locations. It parses the provided flight path for coor-
dinates to visit, and creates a queue of destinations to visit. Once
the system is ready, it sends the takeoff signal to the drone. It pro-
cesses information from the drone such as readings for velocity,
height, and marker detection, and sends control commands to the
drone. When it determines the drone has reached the target, it tells
the measurement module to begin measuring. The navigation mod-
ule uses a Reference Point Detection and Extended Kalman Filter
to estimate the coordinates of the drone, and uses a Proportional-
Integral-Derivative Controller to stabilize the flight.

The navigation module takes as an input the user’s desired flight
plan. The flight plan can be a text file where each line is a 3-
dimensional coordinate in meters, and the yaw of the drone is as-
sumed to be 0◦. We use a coordinate system with the drone’s take-
off position as the origin, initially with yaw of 0◦. For Z coordinate
simplicity, the user specifies a base level height and between-layer
height in meters.

4.2 Measurement Module
The measurement module is responsible for communicating with

the drone and collecting wireless signal measurements. When it
receives the signal that the drone has reached a target location to
collect measurement, it sends a message to the drone’s operating
system to begin measuring. It receives the response, parses it, and
saves it to a text file. We use the drone’s on-board wireless radio
to collect measurements and work within the constraints of that
system.

AR Drone 2.0 Wireless System: The Parrot AR Drone 2.0
uses the Atheros AR6000 mobile 802.11bg chipset for wireless net-
working. Its computer runs the BusyBox operating system, and
has about 10 megabytes of free space. Because of the system
constraints, we could not host the control software directly on the
drone, but instead must rely on communicating with the drone from
the computer program. Directly communicating with the drone re-
quires connecting to the same network as the drone and then using
telnet. The drone’s wireless driver lacks some important function-
ality such as monitor mode and accurate noise readings. By default,
the drone creates its own access point that computer programs can
connect to. However, the drone cannot scan other access points
when it is using its own access point. Thus, both the drone and
computer must connect to the network we would like to measure,
communicate over that network, and collect signals only from its
current network.

Measurement Script: We leverage the drone’s on-board wire-
less radio to collect wireless signal measurements. We use tel-
net to access the drone’s command line interface, and place shell
scripts for measuring signal on the drone’s operating system. The
scripts take as parameters the number of times to collect, and the
amount of time to wait between collecting. These scripts use iw-
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Figure 4: Comparing a naive controller with the PID controller
by flying the drone to a target location from 1 meter away. The
PID controller successfully reaches the target faster while the
naive controller suffers from overshooting.

config to measure the current network’s signal strength. iwconfig
uses driver meta information to interpret the raw value given by
/proc/net/wireless, displaying the result in units of dBm. We use
iwconfig because it can be executed quickly in rapid succession and
its output is easy to parse.

Measurement Program: The Measurement Program running
on the computer communicates with the drone and the navigation
module to collect measurements. It allows the user to specify op-
tions such as number of collections at each point and amount of
time to wait between collecting, as well as where to save the log
file. It listens to messages from the navigation module to see when
the drone is in the right position. It creates a telnet connection with
the drone via the node-telnet-client library [25], and then runs one
of the measurement scripts we previously placed on the drone. We
use a single continuous telnet connection with the drone and er-
ror catching mechanisms to restart the connection if it is broken.
The program listens to the navigation module to find out when to
measure, gets the current coordinates, runs the appropriate mea-
surement script, and writes the result to file.

5. EVALUATION
We evaluate the accuracy and efficiency of the drone’s naviga-

tion, as well as, the accuracy and speed of the drone’s measure-
ments. These evaluations can establish the effectiveness of our so-
lution, and to identify areas of improvement for future work.

5.1 Navigation Accuracy
Experimental Setup: Our test setup involves a 3×2 grid of refer-
ence points one meter apart from each other. A string and weight is
attached to the bottom of the drone, and while the drone is hovering
over a collection location, we mark the projection of the location of
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Location Duration RSS RSS Standard
ID (second) Mean (dBm) Deviation (dB)

a 1 -73.00 0.8165
3 -74.33 1.18
10 -74.35 2.34
30 -73.78 2.15

b 1 -52.00 1.49
3 -46.9 1.42
10 -46.64 3.64
30 -47.50 3.50

Table 2: Comparing RSS mean and standard deviation for dif-
ferent measurement time durations. We conclude that 3 sec-
onds is a sufficient time length for the drone to collect measure-
ments.

the drone on the ground indicated by the string. Afterwards, we
measure the distance between the marked locations and the center
of the reference point. The distance between the two points is the
navigation error. In the software, we set the accuracy tolerance of
the drone to 20 centimeters, which is an acceptable error tolerance
and does not cause the drone to spend too long to adjust to reach
the target position. We run this experiment 10 times, and find the
mean and standard deviation of the error over these 50 data points,
and plot the cumulative density function of the results.

Results: The mean error we found is 13 centimeters, and the
standard deviation is 4.3 centimeters. Additionally, the error is
never more than 20 centimeters, which is important because that
is the error tolerance we set in the software. This shows that the
drone’s navigation is accurate to its specifications. It also means
that stricter navigation accuracy standards can be applied, at the
expense of navigation time, if greater precision is needed. Figure 3
shows the CDF of the error values.

5.2 Flight Efficiency
Experimental Setup: To evaluate flight efficiency, we have the
drone takeoff from one reference point and travel to another refer-
ence point 1 meter away, and hover there before landing. We will
now work with the drone’s estimated coordinates, because it is pos-
sible to get multiple position estimates every second. We plot the
distance between the drone and the target as estimated by the drone
during this flight. We compare the plot of the error when the system
uses the current PID Controller implementation, with the plot of the
error when the system uses a naive controller, as we mentioned in
the flight efficiency challenge in section 2. It sets the magnitude
proportional to the error and then rounds the value to the nearest
0.05.

Results: Figure 4 shows the error plots for the naive controller
and PID Controller. The point where the drone determines it has
reached its target is marked. We see that the PID controller not
only helped the drone reach the target faster, but stopped the drone
successfully once the target was reached. For the inefficient con-
troller, overshoot is a problem because after the target is reached,
the drone does not quickly stop itself, overshoots, and has to adjust
back to the target. If all controls commands are decreased in mag-
nitude, then the overshoot problem is reduced, but then it will take
much longer to reach the target. Therefore, the PID Controller is a
superior controller, and significantly increases the efficiency of the
flight.

5.3 Measurement Duration
Experimental Setup: In order to determine an adequate amount
of time to collect measurements so that the effect of noise is negli-
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Figure 5: Comparing the signal measurements of DroneSense
and the walking sense (WS) approach at a given measurement
location. By involving human interactions in the measurement
collection, the measurements from WS are affected by the hu-
man body.

gible, we test collecting measurements at two locations for various
amounts of time. These two locations have significantly different
signal strength, and we test collecting measurements for 1, 3, 10,
and 30 seconds. Then we calculate the mean and standard devia-
tion of signal strength collected at each location for each duration
and see at which duration the results start to converge.

Results: In Table 2, we list the mean and standard deviation of
measurements with different duration at multiple locations. When
the drone is collecting measurements upon a location, the drone
shakes slightly due to the airflow disturbance, which leads to re-
ceived wireless signal strength variation. Therefore we need a pe-
riod of time is to average measurements and counteract signal noise.
In Table 2, we found that a minimal duration of three seconds is
sufficient for the drone to gain relatively stable measurements that
compensate signal fluctuations at each location.

5.4 Measurement Accuracy
We study two experiment settings to examine DroneSense’s ac-

curacy in comparison to the war walking method, and the variation
of the measurement results gathered by DroneSense across mul-
tiple flight trials. In the first setting, we present that DroneSense
improves the accuracy by removing signal variation caused by peo-
ple interference. The AR Drone 2.0 used in experiments are mostly
composed of plastic instead of metal, thus we believe the drone it-
self is unlikely to alter the signal strength. Then we use DroneSense
to collect signal strength along a flight path for multiple times and
measurements are quite stable even though during each flight the
actual flight path may differ a little due to the navigation error.

5.4.1 DroneSense VS. War Walking

Experimental Setup: Prior studies [13, 30] have shown that the
presence of people nearby the receiver interferes with the wireless
signal strength, which is the drawback of walk sensing method. To
compare our automatic wireless measurement approach with walk
sensing (WS) method, we instruct the drone to hover upon a loca-
tion at 1 meter height for 6 seconds to collect measurements. Then
we hold the drone at the exact location for 6 seconds to collect
wireless signal strength data, which is repeated for 4 times. Each
time the we stand at different orientations relative to the drone, i.e.,
west, south, east and north.

Results: Figure 5 shows the means and error bars of wireless sig-
nal strength measured in above experimental settings. The average
RSS is -80.48 dBm when using DroneSense, however, the average
RSS fluctuates a lot when we hold the drone toward different orien-
tations while the drone remains upon the location at 1 meter height.
It is -80.53 dBm when we stand on the west side of the drone and
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Figure 6: Repeating wireless measurements by DroneSense
along a flight path of 6 reference points for 10 times. The mea-
surement variation for a location is around 2dB and no more
than 3dB. We conclude that DroneSense is accurate enough for
wireless measurement.

-85.48 dBm when at north. According to our observation, when
we stand on the north side of the drone, we happen to block some
signals by being in a direct path from the transmitter to the drone.
The result demonstrates that DroneSense allows collecting more
accurate signal measurement by removing the artifacts caused by
human body.

5.4.2 Accuracy across Flight Trials

Experimental Setup: Since there has always been a few cen-
timeters navigation error when the drone is hovering upon a loca-
tion of interest, wireless measurement varies due to drone’s move-
ments under different experiment trials. To demonstrate Drone-
Sense is accurate and efficient in wireless measurements, we place
6 reference points with 1 meter interval on the ground, and cus-
tomize a measurement script to navigate the drone fly over the 6
reference points one by one. When the drone arrives at one refer-
ence point, the drone hovers for 3 seconds to collect wireless signal
strength data, and calculate the average value as the measurement
of the point, then fly to the next point according to the measurement
script. We repeat this measurement process for 10 times.

Results: Figure 6 shows the means and error bars of wireless
signal strength measured in above experimental settings. The mea-
surement variation of one reference point for 10 times is very small,
which is around 2dB and no more than 3dB, which proves for wire-
less measurement, DroneSense is stable and accurate enough.

6. RELATED WORK
Wireless Measurements: War driving and war walking are com-
mon ways to collect Wi-Fi signal data [5, 14, 26]. War driving is
to collect data by driving around while war walking is by walkers
rather than drivers, both of which are labor-intensive. As the off-
the-shelf mobile devices become ubiquitous in recent years, there
has been a growing interest in a inspiring method called participa-
tory sensing or crowdsourcing [18, 22, 24, 29]. Though crowd-
sourcing is in essence war walking, it leverages ubiquitous smart-
phones to passively collect wireless data and sensor data. Combin-
ing inertial sensors (e.g., accelerometer, compass, gyroscope) with
dead reckoning, wireless data is automatically labeled with location
information, thus no further user participation is required [24].Be-
sides smartphones and laptops, there are also many commercial
products that provide all-in-one solutions to facilitate the indoor
wireless measurement process, such as the Agilent E6474A [1] and
the Nemo Walker Air [20]. They are used to analyze network cover-
age and evaluate network performance while the user walks around.

Propagation Modeling: A rich set of wireless signal propagation
models have been well studied [3, 9, 12, 15, 16, 21, 27, 28]. Studies
on propagation modeling require actual signal collection for vali-
dation. The receiver is placed manually at a number of locations
to perform measurements in previous studies. Thus, research on
wireless propagation modeling and our work go hand in hand. For
instance, a study based on propagation modeling, WiPrint, tries to
shape the wireless coverage in the room [8]. One limitation of prop-
agation models is that they are not fully accurate, which is why our
system is complementary to these efforts.

Drone Control and Navigation: There have been extensive ef-
forts in developing reliable drone control and navigation systems [2,
6, 7, 10, 11, 19]. Extended Kalman Filter is also adopted to find the
position of a quadcopter by combining GPS and dead reckoning
[2]. There have been studies on visual navigation of drones [6,
10, 11]. A vision based drone navigation system leverages a down-
ward looking monocular camera and SLAM algorithm to track the
pose of the drone, where a more advanced LQG/LTR based con-
troller is introduced to handle discontinuities of the SLAM pose
estimate [6]. In our work, the standard PID controller is sufficient
to guarantee the flight efficiency. These methods rely on visual
tracking of objects to determine the drone’s position and guide the
drone to its target. However, these methods require there exist dis-
tinct visual features in the images captured by the camera. It suffers
from localization error when there is no distinct visual clue, such
as a white wall or floor.

7. CONCLUSION AND FUTURE WORK
This paper presents DroneSense, a system leveraging drones to

automate the collection of 3D wireless signal measurements. Our
system is able to reduce the amount of effort needed to collect
measurements, and can be easily adapted to a variety of environ-
ments. To achieve this, we address challenges of accurate drone
navigation and efficient flight trajectory, using methods of Refer-
ence Point Detection, Extended Kalman Filter, and Proportional-
Integral-Derivative Controller. Our system uses the Parrot AR Drone
2.0 for its hardware, and JavaScript on the Node.js platform for its
software. We summarize the limitations of our current system and
plans of future work as follows.

Navigation Accuracy: The current system works well for col-
lecting measurements at whole-meter intervals, with accurate navi-
gation and efficient flight with an error tolerance of 20 centimeters.
We plan to improve the accuracy of the system further to allow
for sub-meter intervals. This can be achieved through improving
the drone’s position estimation system, upgrading the model of the
drone to one with more accurate velocity readings, setting better
parameters for the PID controller. This will help achieve greater
resolutions in measurement collection.

Extending to Other Frequency Bands: The current system pro-
vides a way to measure Wi-Fi signal strength because of the avail-
ability of on-board Wi-Fi radio on the drone. We plan to adapt the
system to collect wireless signals in other frequency bands (e.g.,
visible light). To measure other frequency bands, we can attach ex-
ternal radio transceivers to the drone if the drone’s on-board radio
cannot measure the frequency band of interests.

Reducing or Eliminating Reference Points: One major limita-
tion of the current system is the need for placing reference points
throughout the environment. We will explore methods to reduce or
eliminate the need for reference points while maintaining accurate
position estimates. One option is placing cameras in the room and
using them to determine the drone’s location at all times. We will
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also study other methods for the drone to locate itself.

Handling Obstacles or Moving Users: The current system re-
lies on the user to input a flight path that does not collide with any
obstacles or moving users. Static obstacles cause the drone’s self-
adjustment of the height, as the drone considers the object as the
reference point for the ground. Moving users not only interfere
with wireless signals, but also disturb the airflow near the drone,
which can make the drone deviate from the planned flight path.
Thus, DroneSense is currently more suitable to controlled experi-
mental settings. We plan to develop mechanisms for the drone to
maintain certain distances from obstacles and users. Such mecha-
nisms can eliminate the need for the user to input a flight path and
allow the drone to continuously collect signal measurements as it
flies in an environment.

Multiple Drones: While our current design and experiments con-
sider a single drone, we will extend the functionality of our system
to work with multiple drones and speed up the measurement col-
lection process. We will start with running the current program
simultaneously in multiple separate processes and instrumenting
the drones to cover different parts of the room. We will then further
optimize each drone’s flight path and coordinate their measurement
collection to shorten overall measurement duration.
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