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Reconstructing Hand Poses Using Visible Light
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Free-hand gestural input is essential for emerging user interactions. We present Aili, a table lamp reconstructing a 3D hand
skeleton in real time, requiring neither cameras nor on-body sensing devices. Aili consists of an LED panel in a lampshade and
a few low-cost photodiodes embedded in the lamp base. To reconstruct a hand skeleton, Aili combines 2D binary blockage
maps from vantage points of di�erent photodiodes, which describe whether a hand blocks light rays from individual LEDs
to all photodiodes. Empowering a table lamp with sensing capability, Aili can be seamlessly integrated into the existing
environment. Relying on such low-level cues, Aili entails lightweight computation and is inherently privacy-preserving. We
build and evaluate an Aili prototype. Results show that Aili’s algorithm reconstructs a hand pose within 7.2 ms on average,
with 10.2◦ mean angular deviation and 2.5-mm mean translation deviation in comparison to Leap Motion. We also conduct
user studies to examine the privacy issues of Leap Motion and solicit feedback on Aili’s privacy protection. We conclude by
demonstrating various interaction applications Aili enables.
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1 INTRODUCTION
Recent advances in smart home appliances have drastically enriched user experiences in indoor environments
such as homes and o�ces. However, interacting with smart appliances, either on the appliances themselves
or through the use of a smartphone, is still quite cumbersome. As demonstrated by smart TVs [7] and smoke
alarms [8], free-hand gestural input has great potential for relieving the interaction burden. It suggests that precise,
arbitrary hand gestures may soon become the primary input modality for interacting with smart appliances.

To sense free-hand gestures, existing approaches have examined the use of cameras (e.g., RGB or infrared
cameras), on-body sensors (e.g., capacitive sensors, pressure sensors), ambient radio frequency (e.g., Wi-Fi,
GSM) signals, and acoustic signals. Most approaches focus on di�erentiating a small set of pre-de�ned gestures,
thus limiting the range of user input and achieving a coarse sensing granularity. �e approaches capable of
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Fig. 1. Aili looks like a regular lamp, but it also reconstructs arbitrary hand poses in real time, with neither cameras nor
on-body sensors.

reconstructing arbitrary hand poses commonly rely on cameras, which o�en entail non-trivial computational
overhead in dealing with a large number of gray/RGB-scale pixels in camera images.

In this work, we propose a lightweight alternative approach that reconstructs hand poses purely based on a set
of binary blockage information sensed by a few low-cost photodiodes, requiring neither cameras nor on-body
sensors. Realized as a table lamp, our system Aili consists of a customized LED panel (with arrays of LEDs) in a
lampshade, and a few small (the sensing area is 10 mm × 7 mm in size) photodiodes embedded in the lamp base.
A user performs free-form hand gestures in the air above the lamp base, while each photodiode senses, from its
vantage point, whether the hand is blocking the light ray emi�ed by each individual LED on the LED panel. By
aggregating the binary blockage information/maps observed from multiple viewpoints (i.e., photodiodes), the
system seeks the best-�t 3D hand skeleton in real time using a robust and lightweight reconstruction algorithm.

To realize our approach, we overcome two technical challenges: 1) each photodiode senses only the combined
light intensity from all LEDs and ambient light. For a photodiode to recover the blockage information related to
individual LEDs, we embed a unique frequency and temporal pa�ern to the light ray emi�ed from each LED.
Such pa�erns are imperceptible to human eyes and yet detectable by photodiodes, so that a photodiode can
separate light rays and acquire the binary blockage information related to each LED; 2) the search space of 3D
hand poses is large, given the high degrees of freedom of the hand. To seek the best-�t hand pose e�ciently and
robustly, we apply a quasi-random search method [21, 22] to sample the search space. Furthermore, we maintain
a window of top candidate poses and infer the �nal pose as a weighted average of these candidates to achieve
robust inference.

We demonstrate the feasibility of our approach by building a proof-of-concept prototype of Aili (Figure 1).
�e Aili lamp is fabricated following the size of a commercial table lamp [5]. �e LED panel comprises 24 ×
12 white LEDs and the lamp base is embedded with 16 low-cost photodiodes as a 4 × 4 grid. As a result, each
photodiode captures a 2D blockage map with 288 binary pixels (each pixel corresponding to the binary blockage
information with respect to one LED). �e set of 16 blockage maps are used to identify a 3D hand skeleton pose
in real time. With Aili, the user can freely gesture under the lamp to navigate and edit virtual 3D objects. Our
system evaluation shows that the reconstruction algorithm infers a hand pose within 7.2 ms on average, and
achieves an average angular deviation of 10.2◦ and translation deviation of 2.5 mm in comparison to Leap Motion,
a popular commercial hand-tracking system.

Our approach exempli�es the vision that ubiquitous light can be reused as a passive sensing medium to
reconstruct gestural input in the 3D space. By augmenting a table lamp with sensing capability, our system reuses
existing lighting infrastructure as part of the sensing system at homes and o�ces, and thus can be seamlessly
integrated into the environment, weaving sensing into the fabric of everyday life [63]. Additionally, by relying on
such a small number of low-level visual cues (binary blockage pixels), our approach not only entails lightweight
computation, but also is inherently privacy-preserving in comparison to camera-based approaches.
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Our contributions of this work are: (1) the design and implementation of an Aili prototype that augments
a table lamp with the ability to reconstruct hand poses; (2) a real-time reconstruction algorithm that reliably
and e�ciently reconstructs a hand skeleton using binary blockage maps; (3) a system evaluation of Aili’s
reconstruction performance across users; (4) user studies to examine the privacy issues of Leap Motion and solicit
feedbacks on Aili’s privacy protection; and (5) demonstrations of usage scenarios of Aili.

2 RELATED WORK
We categorize existing work on hand gesture sensing based on the sensing medium.
Cameras. Many works use cameras to sense hand poses. We categorize them based on their methodology. �e
�rst category of works relies on pre-computed databases and machine learning techniques to �nd the best-�t
hand pose. As examples, 6D Hands [59] uses two web cameras to capture hand images, queries a database of pre-
computed 3D hand models to �nd the pose that best matches hand silhoue�es in hand images. It recognizes hand
poses at 20 Hz. Hand silhoue�es are similar to the blockage maps used in Aili, yet Aili di�ers in that it does not
require any pre-trained databases. With a lightweight pose reconstruction algorithm, Aili’s mean reconstruction
latency is only 7.2 ms. Similarly in [9], captured hand images are compared to synthetic hand images in a database.
In [47], Sridhar, et al. use RGB cameras to capture hand images from di�erent angles and combine databases and
machine learning techniques. Depth cameras have also been o�en used. With hand’s depth images, Sharp, et
al. build a classi�er to recognize hand poses [45], while Keskin, et al. apply multi-layered randomized decision
forests [25]. In [52, 53], Tang, et al. further explore variants of regression forest. RetroDepth [27] senses 3D
silhoue�es of hands using a retro-re�ector to separate hands from the background.

A common issue of these systems is the need of a large training dataset and the associated computation
overhead. Aili di�ers in that it recovers the coordinates of hand joints without requiring any database of pre-
computed 3D hand models. Instead of directly handling a large number of gray/RGB pixels, Aili captures only
hundreds of binary pixels to reconstruct hand poses and entails a lightweight computation.

�e second category of works directly computes 3D coordinates of hand joints [10, 13, 15, 26, 37, 38, 41, 48, 51,
54, 56, 61, 64, 70]. �ese methods commonly represent hand as a 3D hand model and identify the hand pose that
best matches hand images by optimizing an objective function. In particular, La Gorce et al. propose an objective
function that explicitly uses temporal texture continuity and shading information of the hand [15]. In [10],
Ballan, et al. consider hand edges, optical �ow, and collisions in the objective function to reconstruct two-hand
interactions. Digits [26] uses a wrist-worn optical depth camera to detect how much �ngers are bent and applies
a kinematic hand model to aid pose prediction. Gradient-based optimization also has been explored for faster
convergence. Tagliasacchi, et al. apply a single gradient-based optimization and achieve real-time tracking at 120
Hz [51]. Taylor, et al. construct a smooth-surface model and formulate the problem as gradient-based non-linear
optimization [54]. Qian, et al. simplify the hand model using spheres to construct a cost function that combines
gradient-based and stochastic optimization [41]. In addition, Oikonomidis, et al. [37] minimize the discrepancy
between the hand model projection and the hand image using a variant of particle swarm optimization (PSO).
�ey later introduce an evolutionary quasi-random sampling strategy [38] that speeds up the tracking by 4 times.
We are inspired by this work and also apply quasi-random sampling. Our work di�ers in that with only binary
pixels as input, we minimize a di�erent objective function. We also remove the evolutionary part and directly
apply quasi-random sampling search, which runs su�ciently well in our system.

Unlike the above works, Aili enables 3D hand reconstruction without cameras, relying on only binary blockage
information. Similar to our work, ZeroTouch [34] considers the use of infrared LEDs and sensors for hand poses
sensing. However, ZeroTouch only tracks �ngers in a 2D plane, while Aili reconstructs 3D hand poses.
Radio Frequency or Acoustic Signals Prior works have also studied the use of radio frequency (RF) or
acoustic signals to sense hand gestures. �e focus has been on di�erentiating a small set of pre-de�ned hand
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Fig. 2. Binary blockage maps from our Aili prototype for two hand poses. Each pose leads to 16 blockage maps, where each
map consists of 288 binary pixels, indicating the blockage information observed by a photodiode in the lamp base.

gestures or tracking a single �nger, using Wi-Fi [24, 29, 50], GSM [69], and acoustic signals [18, 43]. In particular,
[24] analyzes re�ected RF signals to classify eight gestures; [50] tracks the Wi-Fi signal strength and its angle of
arrival to track a single �nger; [18] leverages the Doppler e�ect of acoustic signals to identify gestures. Google’s
recent project Soli leverages 60 GHz signals [2, 60, 67] to recognize subtle �nger movements. Aili di�ers in that it
is free from electromagnetic interference and ambient sound interference. Furthermore, it reconstructs arbitrary
hand poses and enables �ne-grained sensing.
On-Body Sensors Another related line of works relies on sensors worn on user’s wrist or �ngers to di�erentiate
hand gestures. For wrist-worn sensors, to detect user’s forearm shape, prior studies explored the use of capacitive
sensors [42], infrared photo re�ectors [39, 49], force resistors [16], electrical impedance tomography (EIT)
sensors [68], the accelerometer and gyroscope sensors on a smartwatch [65], pressure sensors [33]. Finger-worn
sensors include RFID tags [57], a �sh-eye imaging device [14], and a ring embedded with an accelerometer and
microphone [17]. �ese systems are limited in the sensing resolution and detect a small set of hand poses (e.g.,
pinch). In contrast, Aili is device-free and recovers any hand poses.

3 AILI: SYSTEM OVERVIEW
At the high level, Aili reconstructs a 3D hand skeleton based on how the hand blocks light rays emi�ed by LED
chips in the lamp. It captures the blockage information using an array of photodiodes (each 10 mm × 7 mm in
size) embedded in the lamp base. Each LED is a point light source emi�ing light in a cone shape. When the user
performs hand gestures under the light, the hand blocks certain LEDs at each given time from each photodiode’s
point of view. Combining blockage maps collected by di�erent photodiodes, Aili identi�es the 3D hand pose that
best matches observed blockage maps.

Realizing Aili faces a set of unique challenges. First, detecting the light blockage information is non-trivial
using low-cost, o�-the-shelf photodiodes. �e photodiodes are exposed to multiple light sources including the
LEDs in the lamp and the ambient light. Each photodiode perceives only a combined light intensity within its
viewing angle. �us, it is unable to detect which LEDs are blocked by the hand.

Second, our hands are extremely dexterous and �exible. With 23 degrees of freedom, hands can freely move
and rotate, generating more complex and subtle hand poses than whole-body postures. Furthermore, �ngers
are thin and close to one another. �us they are vulnerable to the occlusion problem. Because of these hand
properties, directly applying prior methods [31, 32] on whole-body reconstruction fails to converge at a single
hand pose, entails a long reconstruction delay (supporting only 10 FPS), and leads to a poor accuracy.

Finally, each pixel of a blockage map is binary, unlike the RGB/gray-scale pixels in camera images. �e
number of pixels is small, limited by the LED density and photodiode’s limited viewing angle. Furthermore, each
blockage map (see Figure 2 for examples) contains only a partial hand projection because of the limited size of the
LED panel. All above factors make the pose reconstruction particularly challenging. Most prior reconstruction
algorithms using cameras [10, 13, 15, 26, 41, 48, 56, 61, 64, 70] are not directly applicable.

Aili addresses these challenges via two components: acquiring hand blockage information, and reconstructing
hand poses using blockage maps. We next describe them in detail.

4 ACQUIRING HAND BLOCKAGE INFORMATION
Aili’s �rst component is to identify the LEDs blocked by user’s hand from each photodiode i’s perspective at any
given time t . Recovering blockage maps is challenging because photodiode i perceives only the light intensity
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combining all light rays within its viewing angle. �us, its light intensity value alone does not suggest which
LEDs are blocked.

Aili applies a prior method [31, 32] to embed a unique pa�ern into the light rays from each LED. In particular,
the unique pa�ern refers to a unique high �ashing frequency (20.8 kHz – 40 kHz) imperceptible to human eyes.
To support many LEDs with a limited number of �ashing frequencies, we further reuse the �ashing frequencies
across LEDs over time based on the design in [32]. As the photodiode perceives the incoming light intensity over
time, it projects the light intensity values within a time window (20 ms) into the frequency domain using FFT.
�e resulting frequency power at each �ashing frequency k is directly proportional to the intensity of the light
ray emi�ed from the LED �ashing at frequency k . �us a signi�cant frequency power reduction indicates the
blockage of the corresponding LED. By monitoring the frequency power changes, the photodiode can identify
the blockage of each LED separately.

Speci�cally, given LED j’s current frequency power Pi j (t ) observed by photodiode i , we calculate LED j’s

frequency power change as ∆Pi j (t ) = |
PnonBlock
i j −Pi j (t )

PnonBlock
i j

|, where PnonBlock
i j is the average frequency power of LED j

when no hand is below the lamp1. If ∆Pi j (t ) is above a threshold δi j , LED j is considered to be blocked from
photodiode i at time t . Similar to the prior design [32], Aili adapts δi j based on the light intensity Ii j normalized
to the maximal light intensity Imax among all light rays. �us, we set δi j as:

δi j = Pmin + (Pmax − Pmin ) ·
Ii j

Imax
, (1)

where Pmin and Pmax are the minimal and maximal ∆Pi j (t ) (0.7 and 0.4 in Aili). Aggregating the blockage
detection results for N LEDs leads to the blockage map Si (t ) at photodiode i as: Si (t ) = {si j (t ) |0 < j ≤ N ]}, where
si j (t ) indicates whether the light ray fro LED j to photodiode i is blocked. We have si j (t ) = 1 when ∆Pi j (t ) > δi j
and si j (t ) = 0, otherwise. Figure 2 shows example blockage maps recovered at 16 photodiodes for two hand
poses. In the next section, we describe how to leverage these blockage maps to reconstruct 3D hand poses.

5 RECONSTRUCTING HAND POSES
As the main technical contribution of our work, the second component of Aili reconstructs �ne-grained 3D hand
poses using only 2D hand blockage maps with binary pixels. We break down the reconstruction into two steps:

(1) We �rst locate the hand in the 2D plane based on coarse hand features extracted from the current set of
blockage maps. We consider the wrist center and the �rst dorsal interossei (FDI) next to the thumb as
reference points indicating hand’s coordinates in X and Y axis (Figure 3(a)).

(2) We then search for the hand pose (described by a 3D hand model, Figure 3(a)) and hand height (Z-axis
coordinate) that best match the blockage maps. We formalize it as an optimization problem, seeking to
minimize the mismatch between the candidate hand pose and the blockage/non-blockage information
revealed by blockage maps.

Since the 2D tracking (Step 1) does not leverage the prior 3D reconstruction result, it is not a�ected by
reconstruction errors and avoids errors to be accumulated. Furthermore, by only relying on the current blockage
maps to conduct the 2D tracking, Aili also prevents prior tracking errors from propagating to the current
reconstruction result. Next, we �rst present a hand kinematic model that characterizes the dependency of �nger
joints and biomechanical constraints of human hands. �e model reduces the number of �nger joints to track.
We then describe the two steps in detail.

1We measure PnonBlock
i j in the beginning of each experiment.
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5.1 Hand Kinematic Model
As illustrated in Figure 3(a), we represent a hand pose using a set B of 19 segments. �ey include 1) a set BF of 15
�nger segments, where each �nger contains three segments connected by �nger joints, and 2) a set BP of 4 palm
segments that describe the palm contour (a rectangle). Our current design assumes that user’s hand is measured
beforehand and hand parameters (e.g., �nger length, palm width) are known. Aili’s reconstruction algorithm then
is to search for the set of �nger and palm segments that best match the blockage maps observed by all photodiodes.
Given the large space of possible �nger and palm con�gurations, we apply a hand kinematic model to reduce the

(a) Hand skeleton in Aili (b) Kinematic model

Fig. 3. Hand skeleton model in Aili. (a) We represent a hand
pose using 15 finger segments (3 segments per finger) and 4
palm segments outlining the palm contour. (b) Finger joints
on the same finger are interdependent during movement.

computational complexity in searching. �e kinematic
model de�nes the natural interdependency of the �n-
ger joints, allowing us to use one of the joint’s �ex
angle to extrapolate how much the other joints are
naturally bent on the same �nger [11]. Figure 3(b)
marks the three joints of the index �nger (e.g. the
metacarpophalangeal joint (MCP), proximal interpha-
langeal joint (PIP), and distal interphalangeal joint
(DIP)). Among these joints, if we know the �ex angle
of the MCP, we can infer the �ex angles of the PIP
and DIP by using the following equations [11, 23, 26]:
θP I P =

θMCP
0.54 , θDIP = θMCP×0.84

0.54 , where θMCP , θP I P ,
and θDIP are the �ex angles of the MCP, PIP, and DIP,
respectively. By leveraging this simple kinematic model, we are able to reduce the degrees of freedom of the
hand from 23 to 15 without a�ecting the reconstruction accuracy. Furthermore, this kinematic model also helps
produce hand poses that are natural and subject to human hand’s biomechanical constraints. Figure 3(a) is a
hand pose reconstructed by Aili when the user is naturally opening the �st.

5.2 Tracking Hand’s 2D Location
Tracking the hand position in a 2D plane can be done by tracking a number of distinguishable hand features that
are insusceptible to the change of hand poses. Our current implementation uses two hand features: the center of
the wrist and the �rst dorsal interossei (FDI), marked in Figure 3(a).
Aggregating Blockage Maps Feature extraction is particularly challenging because of pixel’s binary nature
and the low resolution of blockage maps (24 × 12 pixels). Additionally, blockage maps contain only a partial
hand given the relatively small �eld-of-view of photodiodes. To solve the problem, we aggregated all 16 blockage
maps at a given time to obtain a complete image of the hand. Speci�cally, since black dots in blockage maps
represent blocked light rays, we leverage a horizontal plane at the hand height of the last reconstruction result to
locate the intersections of blocked light rays on the plane. �ese intersection points represent the projection of
the hand shape. By aggregating all intersection points into a blockage map, we can acquire more information
on the hand shape and extract coarse hand features. Note that the initial height of the hand is unknown when
the hand is �rst registered to the system (e.g. at the beginning of a gesture). We require users to start with an
open-�st pose as a gesture delimiter. �e system can then discover the hand position by permuting all possible
positions in a 3D space. �is process takes roughly 30 ms on a Dell T5500 server. Figure 4(a) shows an example
of the aggregated blockage map.
Extracting Hand Features We detect the wrist center by �rst scanning the hand contour from the bo�om
to halfway towards the upper bound of the contour (the scanned contour is marked as red lines in Figure 4(a)).
We identify the wrist by seeking a pair of in�ection points with the greatest curvatures, the center of which is
considered to be the wrist center.
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Fig. 4. Extracting two hand features (wrist center and the FDI)
from the aggregated blockage map.

Next, the FDI can be identi�ed by �rst counting the
number of the blockage pixels in each column of the
aggregated blockage map. In the resulting histogram
(see Figure 4(b)), we then identify the FDI by looking
for the �rst point with a �rst-order derivative greater
than a threshold value (e.g. 20). It is worth mentioning
that the FDI is more accurate in tracking the hand posi-
tion in the Y axis. However, this feature may disappear
when the thumb is bent towards the palm. �erefore,
we use the wrist center as the primary feature in track-
ing the hand position while the FDI is only used a
secondary feature to assist the tracking in the Y axis (marked in Figure 3(a)). With this simple method, the 2D
tracking error is within a few millimeters. Such high 2D tracking accuracy is essential to the later reconstruction.

5.3 Determining Hand Pose and Height
Given the hand’s coordinates in the 2D plane, we now seek the best-�t hand pose and hand height. For a candidate
hand height, we solve the hand pose reconstruction as an optimization problem. We de�ne the objective function
E (B) to evaluate the mismatch between a candidate hand pose and the set of blockage maps at time t . In particular,
a candidate pose is represented by the 3D hand skeleton model B (Figure 3(a)) and we calculate E (B) as:

E (B) =
√
a · E2

block (B) + b · E
2
unBlock (B), (2)

where Eblock (B) is a penalty count for blocked light rays. It increases when a candidate hand pose fails to block
a light ray that is supposed to be blocked according to the blockage maps. EunBlock (B) is the penalty count
for unblocked light rays. It increases when a candidate hand pose blocks a light ray that is not supposed to be
blocked according to the blockage maps. �e coe�cients a and b represents the ratio between the blocked and
unblocked light rays in the current blockage maps. We aim to minimize both Eblock (B) and EunBlock (B) so that
the user’s hand poses can be best recovered. Ideally, both Eblock (B) and EunBlock (B) are close to 0 when the best
match is found. Combining both the blockage and non-blockage constraints enhances Aili’s ability to �lter out
ambiguous candidate hand poses caused by the �nger occlusion. It also helps the search algorithm converge at
the best-�t hand pose more quickly.

Computing Eblock (B) and EunBlock (B) takes three steps:
(1) We �rst gather blockage maps from all photodiodes at time t and identify all blocked light rays, denoted by

the set L1. �e remaining light rays are unblocked, denoted by L2.
(2) Next, we examine how light rays intersect a candidate hand pose. We consider that a light ray is blocked if

it intersects any �nger BF or the palm BP in the 3D hand model. To determine the intersection with a �nger
segment bm ∈ BF , we compute the perpendicular distance between the light ray and bm . We examine whether
the distance is shorter than the radius of the �nger segment cylinder. To determine the intersection with a palm
BP , we examine whether the light ray passes the rectangle area de�ned by the four palm segments.

(3) Finally for each blocked light ray l ∈ L1 that does not intersect any �nger segments or the palm rectangle,
we determine its penalty as its distance to the closest �nger or palm segment. We set the penalty as the minimal
distance to a segment because the blocked light ray does not need to block all �nger segments and the palm. l ’s
penalty is zero if it does intersect any �nger segment or the palm. �erefore, we can write Eblock (B) as:

Eblock (B) =
∑
l ∈L1

min
bm ∈BF ⊂B
BP ⊂B

(d (l ,bm ),d (l ,BP )),
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where

d (l ,bm ) =



dist (l ,bm ) − rm if dist (l ,bm ) > rm

0 otherwise

d (l ,BP ) =



0 if l intersects palm BP

minpn ∈BP (dist (l ,pn )) otherwise

in which, bm and pn is a �nger and palm segment of a candidate hand pose B (Figure 3(b)), respectively, dist (l ,x )
is the distance between light ray l and a (�nger/palm) segment x , and rm is the radius of the �nger segment
cylinder bm .

Similarly, for each unblocked light ray l ′ ∈ L2 that intersects either a �nger segment or the palm rectangle,
its penalty is its maximal distance to escape all �nger segment cylinders or the palm that it intersects. We take
the maximal distance as the penalty here because the unlocked light ray is not supposed to intersect any �nger
segments or the palm. It also ensures that the penalty of l ′ is zero only if l ′ intersects neither �nger segments nor
the palm. �us, EunBlock (B) is wri�en as:

EunBlock (B) =
∑
l ′∈L2

max
bm ∈BF ⊂B
BP ⊂B

(d ′(l ′,bm ),d ′(l ′,BP )),

where

d ′(l ′,bm ) =



rm − dist (l
′,bm ) if dist (l ′,bm ) < rm

0 otherwise

d ′(l ′,BP ) =



minpn ∈BP (dist (l ′,pn )) if l ′ intersects palm BP

0 otherwise

�erefore, our goal is to �nd the best-�t B? that minimizes the objective function (Eq. (2)) for the current
candidate hand height: B? = argminB∈B E (B), where B denotes the search space of all possible hand poses.
�e challenge lies in dealing with the large search space and the discontinuity of our objective function E (B),
which renders gradient-based optimization [41, 51, 54] not applicable. �us, we have focused on exploring
sampling-based methods, including a sequential search method with a �xed step size, heuristic sampling methods
such as particle swarm optimization (PSO) [37], as well as quasi-random sampling methods [38, 40]. We decide
to choose quasi-random sampling as our �nal method because it entails the lowest computational overhead and
does not require a large number of samples to achieve high accuracy. In comparison, PSO’s e�cacy heavily
depends on the number of particles and evolutionary generations. Later in Section 7.2, we will also compare the
performance of these algorithms. We next describe our search algorithm in detail.
�asi-Random Search for Hand Poses �asi-random sampling constructs sequences of D-dimensional
points that are almost uniformly distributed in the hypercube [0, 1]D [46]. �ese sequences are also called
low-discrepancy sequences, because for any subset of the hypercube, the number of sampling points it contains is
nearly proportional to its volume [36]. Because of this property, quasi-random sampling covers a high-dimensional
space more uniformly and quickly than pseudo-random sampling. It has been used in Monte Carlo integration [40]
and to speed up hand tracking [38]. �ere are several methods to construct quasi-random sequences, such as
Sobol, Halton, Faure and Niederreiter family of sequences [35]. We adopt Sobol’s sequence since it performs well
in moderate dimension space [12]. We construct the Sobol sequence in gray code order, following the method
in [21, 22]. We apply di�erent scales to di�erent parameter dimensions of a Sobol point, because Sobol sequence
is in [0, 1]D space and di�erent parameter tends to have di�erent change rate during an inference (i.e., a frame).
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ALGORITHM 1: �asi-Random Search for Hand Poses
input : Inferred hand pose B?t−1 of t − 1-th frame
output : Inferred hand pose B?t of t-th frame
begin

Q ←− ∅

insert MT arbitrary hand poses with key of INFINITY into Q

for Bc ∈ SobolPoints (B?t−1,M ) do
q ←− Top (Q )

if E (Bc ) ≤ q.key then
Remove (Q,q)

Insert (Q, {E (Bc ),Bc })

end
end
B?t ←−WeiдhtedMean(Q ) (Eq.( 5))

end

To infer the hand pose B?
t for the t-th frame,

we generate M candidate poses around the pose
B?
t−1 of the previous frame based on the Sobol

sequence. Among the M candidates, instead of
simply picking the pose with the minimal E (B)
value, we compute a weighted average of the
top MT (< M ) candidates (ranked in ascending
order of their E (B) values). �e averaging makes
the pose inference more robust against noises
and multiple local minimums. Algorithm 1 lists
the outline of our algorithm, where we maintain
MT candidates along with their E (B) values in a
priority queue Q . We implement Q as max heap
to facilitate the tracking of top-MT candidates
during the search. Finally, we infer B?

t as the
weighted mean of the MT candidates in Q :

B?
t =

1∑
Bc ∈Q

1
log E (Bc )

∑
Bc ∈Q

Bc
logE (Bc )

. (5)

We further accelerate the quasi-random search by reducing the search space. We infer �rst the hand position2

and then �nger joints. We partition �ve �ngers into two groups (thumb and index �ngers in a group, while others
in another group) and optimize only one group in an inference. Speci�cally, a�er applying the hand kinematic
model, we optimize thumb and index �ngers (5 degrees of freedom) in odd frames and other three �ngers (6
degrees of freedom) in even frames.
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�e e�cacy of our algorithm relies on proper con�guration of several
key parameters: the scaling vector of hand pose parameters, the averaging
window size MT , the total number Mp of sampled Sobol points for a hand
position, and the number Mf of sampled Sobol points for �nger joints.
A�er testing di�erent scaling vectors, we divide the scaling vector of
hand pose parameters into four types: the positional scale (1 cm), the
thumb joint angle scale (10◦), the MCP pitch angle scale (25◦), and the
MCP yaw angle scale (1◦) of the remaining �ngers. We test di�erent
MT and set it as 5. To con�gure Mp ,Mf , we compare the distribution of
angular errors under di�erent Mp ,Mf using simulations and plot results
in Figure 5. We observe that once Mf ≥ 32, the improvement of accuracy
becomes marginal in both the mean and the tail. Since larger Mp and Mf entail longer latencies, we choose
Mp = 8,Mf = 32 to achieve the best tradeo�.

6 AILI PROTOTYPE
We build an Aili prototype using o�-the-shelf LEDs, low-cost photodiodes (<$12), and micro-controllers (e.g.,
Arduino Due). While aiming for the optimal reconstruction performance, we also bear in mind design considera-
tions for Aili to look and function like a regular lamp. Next, we elaborate on the physical design and hardware
implementation.

2�e hand position has only 2 degrees of freedom since the position on the Y axis has already been decided in Section 5.2.
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Fig. 6. Examining the impact of LED panel size on reconstruction accuracy and sensing area size, using the Aili emulator.

6.1 Physical Design of Aili
�e following choices are key to Aili’s physical design: the LED panel size and height, the density of LED chips,
and the panel shape. We aim to seek the con�guration optimizing sensing performance while ensuring Aili’s
original function as a lamp.
Aili Emulator in Unity To avoid experimenting numerous possibilities of hardware con�gurations, we build
an Aili emulator using Unity5, a popular game engine that can precisely simulate light ray propagation using
ray casting. We set up a virtual scene with a virtual LED panel, containing a con�gurable number of point light
sources (i.e., LEDs), a 3D hand model from [1], and a horizontal surface representing a tabletop. On the table, we
place 16 virtual photodiodes as a 4 × 4 grid in a 21 cm × 16.5 cm area.

We write a Unity program that controls the virtual hand to perform a set of gestures in Figure 8 and their
combinations (e.g., a combined gesture of Figure 8(a) and Figure 8(i)) at three height levels (15 cm, 20 cm, and 25
cm) above the virtual tabletop. For a given con�guration, our program uses a ray-casting algorithm to cast a light
ray from an LED to a photodiode. It then detects light rays that are blocked by the virtual hand and estimates the
blockage map observed by each photodiode. We then run our reconstruction algorithm with these estimated
blockage maps to generate a hand pose, based on which we compute the angular error of each �nger segment.

We validate the accuracy of our emulator by comparing it to the Aili prototype (§ 6.2). We 3D print the virtual
hand, place it at 9 locations in Aili’s sensing area, and compare estimated blockage maps and reconstructed hand
poses to that from the emulator. From our results, estimated blockage maps closely match actual maps (di�ering
in 4.5% of pixels), and the mean angular deviation of the reconstructed skeletons is 0.2◦. �e results justify our
use of the emulator to examine the impact of Aili’s design parameters summarized as below.
LED Panel Size and Height We start with testing the LED panel size and height. Simulating Aili with 288
LEDs, we vary the panel size and height within the range of normal table lamps. Figure 6(a) compares the angular
error of reconstruction results when the hand moves within Aili’s sensing area. We also include 90% con�dence
intervals as error bars. We de�ne the sensing area as the 3D space where the mean angular error is no larger
than 12◦ (the threshold we identi�ed in a pilot study). We observe that Aili’s accuracy is relatively stable across
panel sizes and heights. �e reason is that with a �xed number of LEDs and photodiodes, panel size and height
do not a�ect the number of light paths used by Aili to recover blockage maps, as long as the hand moves within
the sensing area. As a result, the reconstruction accuracy is similar across these height and size con�gurations.

We further examine the impact of the LED panel size and height on the sensing area size, which largely a�ects
the system usability. Figure 6(b) compares the sensing area size under various LED panel con�gurations. We
also plot Leap Motion’s sensing area size for reference. We measure Leap Motion’s sensing area by eyeballing
whether there is any visual di�erence between the actual and reconstructed hand poses using the default Leap
visualizer application [3]. We make two observations. First, as expected, a higher or larger LED panel results into
a larger sensing area. It is because a larger and higher LED panel spreads light rays in a larger space, enlarging
the area where hand blockage can be captured. Second, Aili outperforms Leap Motion in sensing area size when
the panel is su�ciently large and high (e.g., a 48 × 24 cm panel at the height of 45 cm). In particular, a 54 × 27 cm
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panel at 50-cm height achieves a sensing area 50% larger than that of Leap Motion. We choose this con�guration
to build the prototype for the maximal �exibility and ease to test a variety of hand poses.
LED/Photodiode Density and Panel Shape We move on to testing LED density and panel shape. Figure 7(a)
plots the accuracy when we �x the panel size (54 cm × 27 cm) and vary the number of LEDs. As expected,
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Fig. 7. The impact of LED/Photodiode density and panel shape on reconstruction accuracy,
evaluated by the Aili emulator.

denser LEDs reduce the
angular error because block-
age maps contain more
pixels, which lead to more
detailed hand contour. �e
caveat of a high LED den-
sity is that to keep the
overall lamp illumination
within a usable range (be-
low 2000 lx [4, 6]), each
LED’s illumination needs to be su�ciently low, which makes it hard for the photodiode to detect light change
from individual LEDs. To strike a be�er balance, we choose 288 LEDs. We then vary the photodiode density.
Figure 7(b) plots the accuracy when we �x the LED density (288 LEDs on 54 cm × 27 cm panel) and vary the
number of photodiodes. We observe that as the number photodiodes increases, they provide more diverse
blockage maps to represent a 3D hand pose and improve the reconstruction accuracy. �e downside is the
increase in reconstruction latency to deal with more blockage maps. We choose 16 photodiodes that achieve a
good tradeo�. Finally, we vary panel shape while �xing the panel size, density of LEDs and photodiodes. We
observe negligible di�erences across shapes (Figure 7(c)). We choose to build the prototype in a rectangular shape
for the ease of fabrication.

6.2 Aili Hardware Component

LED Panel We build a customized LED panel 54 cm × 27 cm in size and mount it inside a customized lampshade
at 50-cm height (Figure 1). �e panel consists of 12 Printed Circuit Boards (PCBs) pieced together using 3D-printed
plastic connectors. Each PCB board contains 6 × 4 LED chips (Cree U2) with a 2.25-cm interval, MOSFET, resistors,
and capacitors. �e PCB is made of aluminum to dissipate the heat generated by LED chips. When all the LEDs
are on, the temperature is 56◦C at the panel surface and 37◦C at 1 cm away from the panel surface. �us, the
hand does not experience heat from the panel once it is a few centimeters away. Each PCB board is connected to
an FPGA (Digilent Basys 3) and driven by an individual power supply (4.5 V). �e 12 FPGA boards are arranged
in two layers on the panel back. We implement the prior design [32] on FPGA boards to modulate LED’s �ashing
rates, which range from 20.8 KHz to 40 KHz to avoid any �ickering e�ect [28, 30]. �e panel’s illumination is
measured as 1900 lx on the table right below the panel center.
Photodiodes We arrange 16 photodiodes (OPT101) in a 4 × 4 grid in a 21 cm × 16.5 m area in the lamp base
(Figure 1). We select OPT101 for three reasons. First, it is highly responsive to small light changes (0.45 A/V for
650-nm wavelength). Second, its bandwidth (e.g. 56 KHz) is su�cient to support the highest LED �ashing rate
(40 KHz). �ird, it has a relatively wide viewing angle (140◦ on x-axis and 100◦ on y-axis) ensuring that all LEDs
are visible to the sensor. �e resulting sensing space is 51 dm3 in volume above the table.

We connect each photodiode to a 50-KΩ resistor and 56-pF capacitor in series on a customized PCB board to
avoid sensor saturation. Each photodiode is driven by an Arduino DUE board, which measures the resistor’s
voltage to infer the light intensity at the photodiode. 16 Arduino boards are connected to a server (a Macbook Pro
13-inch laptop) through serial ports, where the server then generates blockage maps and runs our reconstruction
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 8. The eleven test gestures in the experiment: (a) bending the index finger, (b) bending the middle, ring, and li�le fingers
simultaneously, (c) closing the fist, (d) – (g) pinching the thumb with the index, the middle, the ring, and the li�le finger,
respectively, (h) waving palm around the wrist, (i) moving the hand horizontally, (j) moving the hand vertically, and (k)
rotating the wrist in a circle.

algorithm to infer hand poses. To overcome Arduino’s limited processing power, we implement a processing
pipeline similar to [32], which allows blockage maps to be generated in 20 ms.

7 SYSTEM EVALUATION
We evaluate Aili by inviting another group of participants to test our Aili implementation. We aim to understand
both the system performance and user’s experiences of using Aili. To examine Aili’s system performance, we
compare Aili to Leap Motion because of its accuracy and popularity. We understand that Leap Motion’s sensing
performance is not perfect (as shown in our later study). We thus treat it as a benchmark rather than ground
truth. We examine Aili’s reconstruction accuracy, latency, and the impact of lighting condition.

7.1 Experimental Setup

Participants We recruited 10 participants (3 females and 7 males) between ages of 20 and 30. �ey are
right-handed and daily computer users. �eir hand size varies from 7 cm to 9 cm in width, 7 cm to 8.5 cm in
length.
Apparatus Apparatuses include the Aili prototype and a Leap Motion sensor. We place the Aili lamp on a
regular computer desk. Given Leap Motion’s limited working range, we place it in the center of the lamp base
for Leap Motion to perform the best, where the participant’s hand hovers above the Leap Motion. Leap Motion
sensor emits strong infrared signals that interfere with the photodiodes in Aili. �us, we cover the photodiodes
with infrared �lter lens, which help largely remove the infrared noise.
Task and Procedure Prior to the study, we inform each participant of the study purpose. �e participant has
the opportunity to ask questions about Aili. We then measure the participant’s right hand and feed their hand
parameters (e.g., palm width, �nger length) into the system. During the study, we instruct each participant to use
the right hand to perform 11 hand gestures, which include bending the index �nger, bending the middle, ring,
and li�le �nger together, making a �st, pinching the thumb with the index �nger, pinching the thumb with the
middle �nger, pinching the thumb with the ring �nger, and pinching the thumb with the li�le �nger, followed
by waving the hand in four di�erent ways, including ulnar/radial deviations, le� and right horizontally, up and
down virtually, and drawing a circle in the virtual plane. Figure 8 illustrates all test gestures. Participants perform
these gestures with hands at their comfortable heights, ranging from 8 cm to 34 cm above the table.

Each participant performs these gestures continuously without any break. �is is to emulate the real-world
usage scenario, where the user may want to perform a series of continuous gestures. Participants are not asked
to rigidly hold the hand in parallel to the table, their �ngers can tremble, and they can move their hand anywhere
within the sensing area. During the study, the participant can either sit on a chair and place the elbow on the
desk to gesture or stand up with arms dangling under the lamp. �e participants perform all gestures following
the order in Figure 8. we repeat this process three times and record hand motion data for analysis. For each
repetition, we examine one of these ambient light conditions: 1) Dark condition (0 lx – 20 lx) emulating the night
or a dark room where we turn o� all lights and close the window blinds; 2) Medium-light condition (80 lx – 120 lx)
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emulating a cloudy day, where we open the window blinds to allow natural sunlight in; 3) Bright condition (200 lx
– 300 lx) emulating a sunny day, where we turn on the indoor lighting and open the window blinds. Finally, we
simulate the walk-up-and-use condition by asking the participants to perform the gestures without any training.

A�er the study, participants are invited to test two demo applications: 1) controlling the pose of a 3D hand
model (Figure 1); and 2) navigating Google Earth using double-click to zoom in and a close-hand to rotate the
earth (Figure 14(a)). At the end of the study, participants complete a questionnaire for subjective feedbacks.

7.2 Results
We report Aili’s accuracy and latency. Statistical analysis is conducted using Repeated Measures ANOVA.
Reconstruction Accuracy We evaluate the reconstruction accuracy using two metrics: angular deviation and
translation deviation. �e angular deviation measures the angular di�erence between the 14 �nger segments
(represented as 3D vectors) generated by Aili and that by Leap Motion. �e angular deviation of the palm is
measured based on the palm vector, which starts from the wrist center to the palm center. Translation deviation
measures the di�erence in the hand model’s movement trajectories (represented by the wrist’s coordinates in x, y,
and z axis), reconstructed by Aili and Leap Motion. Figure 9(a) and (b) plot the cumulative distribution functions
(CDF) of the angular and translation deviation under the three ambient light conditions.
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Fig. 9. Aili’s performance under varying ambient light conditions. We also analyze the accuracy across fingers and the palm.

Overall, the average angular deviation between Aili and Leap Motion is 10.2◦ with the 95th-percentile at
24◦. �e average translation deviation is 2.5 mm with the 95th-percentile at 6.2 mm. We observe that gestures
that involve small �nger movement (e.g., li�le �nger movement in Figure 8(g)) cause high deviation errors.
Smaller �ngers (e.g., li�le �nger) introduce less blockage information than larger �ngers (e.g., index �nger). �us,
reconstructing smaller �nger movement is more challenging given the limited LED/photodiode density. We also
observe that some large angular and translation deviations are due to the imperfections of Leap Motion, where
the hand pose reconstructed by Aili is actually closer to the actual pose. Figure 10 lists two examples.

Fig. 10. Examples where Aili outper-
forms LeapMotion in reconstructing
hand poses.

We also analyze Aili’s accuracy across �ngers and the palm. Figure 9 (c)
shows the angular deviations of �ngers and the palm. A repeated measures
ANOVA reveals a signi�cant e�ect of �nger (F5,45 = 25.9,p < 0.001). A post-
hoc analysis with Bonferroni corrections shows that the palm vector has
the lowest angular deviation (5.3◦, all p < 0.05), because palm is the largest
part of the hand and easier to track. �e li�le �nger (13.3 ◦, sd = 2.7) has
the highest angular deviations (all p < 0.05), mainly because of its smallest
size, making it less identi�able in blockage maps. We �nd no signi�cance
between thumb and li�le �ngers (p = 1) and between the index (8.4◦, sd =
2.4), middle (8.5◦, sd = 1.6), and ring �nger (10.8◦, sd = 1.8) (all p > 0.2).
In�uence of Ambient Light As we compare the results across di�erent ambient light conditions, the ANOVA
shows no signi�cant e�ect of the lighting conditions on both angular deviation (F2,18 = 2.4,p = 0.12) and
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translation deviation (F2,18 = 0.05,p = 0.96). �is result is expected, because ambient light �uctuates randomly,
resulting in the frequency power close to the DC component, far outside the frequency range of the LED’s �ashing
rates (20 kHz – 40 kHz). By extracting the frequency powers only at LEDs’ �ashing frequencies, Aili automatically
�lters out the ambient light inference. �us Aili is robust against ambient light variations, supporting its practical
use in diverse scenarios.
Reconstruction Latency Next, we examine Aili’s reconstruction latency for generating a hand pose. We
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Fig. 11. The latency of re-
constructing a hand pose
in Aili.

measure the latency by logging the timestamp of the reconstruction algorithm and plot
the CDF of latency in Figure 11. �e latency varies from 3.6 ms to 16.7 ms, mainly
depending on the number of blocked light rays. For hand poses blocking more light rays
(e.g., open hand), the algorithm computes more distances between the hand model and
blocked rays to optimize B?, resulting into larger latencies. Overall, the reconstruction
latency is 7.15 ms (140 Hz) on average with 95th-percentile at 8.13 ms (120 Hz), thanks
to its lightweight search algorithm using a small number of binary pixels. Note that the
algorithm is run only on CPU. With GPU acceleration in the future, the reconstruction
latency can be further reduced. We also compare Aili’s running time to Leap Motion.
Aili takes about 40% CPU usage on a laptop, while Leap Motion takes roughly 50% CPU
usage even with its specialized hardware augmentation. Overall the result suggests that Aili can be used for
real-time interaction.
Comparison of Reconstruction Algorithms We also compare the accuracy and latency of our algorithm to
other sampling methods, i.e., �xed-step sequential search and particle swarm optimization (PSO). In particular,
the �xed-step method sequentially infers parameters of hand’s position, the thumb, index, and other �ngers,
rather than examining all possible combinations. It examines candidate poses only within a small range (i.e.,
at most ±20◦ for �nger joints, ±1 cm for hand position) of the previous hand pose. To generate a candidate
pose, it adjusts a �nger joint or hand position by a �xed step at a time (5◦ for �nger joints, 0.25 cm for hand
position). To speed up the search, we also divide �ngers into two groups (e.g., thumb and index �ngers in one
group, while others in the other group), similarly to our algorithm. We update the groups at di�erent rates. For
the PSO method, we generate 15 particles by simultaneously perturbing �nger joints and hand position based on
the previous hand pose. �e perturbation range is the same as that of the �xed-step method. We then optimize
particles for 10 generations.
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Fig. 12. Comparison our quasi-random search algorithm, fixed-step sequential search,
and PSO in accuracy and latency.

Figure 12 shows CDFs of an-
gular deviation and latency of
these methods. �e reconstruc-
tion accuracy is similar across
methods, where the mean angu-
lar deviation is 10.25 ◦, 10.85◦
and 11.14◦ for our algorithm,
�xed-step search, and PSO, re-
spectively. However, our al-
gorithm runs much faster. It
means latency is 32% and 30%
of that of the �xed-step search and PSO method. It also reduces the 95th-percentile latency from 25.5 ms (�xed-
step) or 28.5 ms (PSO) to 8.1 ms. �e result demonstrates that our quasi-random search algorithm speeds up the
reconstruction by 3 times without sacri�cing accuracy.
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Subjective Feedback All the participants felt that Aili’s sensing region was large enough for comfortable use
(4 with 5 being strongly agreed). �ey were satis�ed with the brightness of the lamp (3 with 5 being too bright).
Participants liked the height of the lamp (3.8) and thought that the height of our prototype was about normal for
any table lamp. Finally, participants expressed the need for di�erent styles and colors so that the lamp could �t
nicely in their home.

8 ELICITED USER FEEDBACK ON PRIVACY PROTECTION
A side bene�t of Aili is its inherent privacy-preserving nature, as it captures only the binary blockage information
of a small number of pixels. In comparison, although camera-based approaches achieve high sensing accuracy,
camera images can be leaked to the adversary [44, 62] and impose privacy risks [19]. Even if such privacy risks
can be mitigated by various techniques (e.g., disabling cameras when they are not used, processing images locally
without storing raw images), malware at �rmware or so�ware can still perform targeted a�acks by hijacking
cameras, as shown in prior studies [55, 66]. In this section, we conduct user studies to examine user feedback on
a camera-based hand-motion tracking system (Leap Motion) and Aili on privacy protection.

8.1 Leap Motion Observational Study
Prior studies have revealed the privacy issues introduced by cameras in the context of wearable cameras [19]
and cameras on mobile devices (e.g., laptops, smartphones) [55, 58, 66]. In the context of desktop hand-gesture
tracking systems, however, it is still unclear whether privacy issues exist, since many of them (e.g. Leap Motion)
have cameras facing the ceiling rather than users.

To examine this issue, we conducted a week-long observational study of Leap Motion. We invited six volunteers
(22-30 years old, one female). All participants have used Leap Motion before. Half of them use desktops and the
other use laptops. Participants were asked to put the Leap Motion on their desks in its best working position
(e.g. in front of the keyboard or screen). �ey can move it if the device a�ects their work. A participant placed
the device on top of his monitor with the device’s cameras facing the table. A Python program running on their
computers collects data from Leap Motion’s built-in cameras. While video recording is possible, we only recorded
images (1 per second) to save storage space. Participants were asked to run the program for at least an hour per
day. �ey were not informed of the study purpose during the study.

Two inspectors manually labeled each image to identify events that may raise privacy concerns, including
revealing faces, activities, computer screens, personal items, and multiple people [19]. Participants were then
invited to complete a questionnaire, asking their agreement on privacy concerns a�er seeing three randomly
selected images in their data set from each category. Participants were informed of the fraction of each category
in the data set. Ratings were from 1 to 7 on a continuous numeric scale (1 strongly disagree, 7 strongly agree)
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Fig. 13. Study on images captured by Leap Motion. (a) shows percentages of image
categories and user feedbacks (error bars show 90% confidence intervals). (b) is an
example image, revealing a student ID card stored in the card holder on the back
of a smartphone.

with decimal ratings like 3.5.
We collected approximately 10

hours of data per participant (195,395
images in total), among which 70%
contained objects that are previ-
ously reported as the source of
privacy concerns [19]. In partic-
ular, 55% of them contained per-
sons, 49% contained users’ activities
(e.g. working, drinking yogurt, and
laughing), 32% contained computer
screens, 9.5% contained objects (e.g.
working tools, smartphones, and
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student IDs), and 3.3% contained multi-person activities (Figure 13(a)). In general, participants expressed privacy
concerns about Leap Motion (5.8, SD = 1.2). A repeated measures ANOVA revealed no signi�cant e�ect of the
category in user responses (F4,20 = 0.396,p = 0.81), indicating that reducing the likelihood of revealing an object
in images did not mitigate users’ privacy concerns.

An unexpected �nding is that we were able to reveal student ID cards, stored in the card holder on the
smartphone back (Figure 13(b)). Student ID cards contain personal information and are o�en linked to �nancial
accounts (e.g. campus dining or bus services). Exposing this information to an adversary risks serious �nancial
losses. Participants were shocked to �nd out this risk and told us that they even kept their credit cards in the
smartphone card holder. Participants were also concerned a�er learning that Leap Motion could capture their
partial computer screen. P6 said that ”�is will de�nitely be a problem when I use an online bank to check my
account”. All participants told us that they would use Leap Motion with caution in the future.

8.2 User Feedback on Aili’s Privacy Protection
We also conducted a user study to collect their feedback on Aili’s privacy protection. We invited participants from
our Leap Motion study to use Aili and comment on privacy-related issues. We are also interested in examining if
participants are interested in using Aili at home or work. During the study, we demonstrate to participants how
Aili works and shows them blockage maps of di�erent hand gestures. �ey then complete a short questionnaire
using a 7-point continuous numeric scale (1 strongly disagree, 7 strongly agree).

Overall, participants �nd no privacy issue using Aili (6.8, SD = 0.3). A participant comments that ”it seems to
be more viable to use Aili instead of Leap Motion, since it will just capture the gesture without any privacy concerns.”
(P5). �ey all see themselves using Aili at home or in workplaces as both an input device and a table lamp (6.2,
SD = 0.4). A participant comments that ”If the price is acceptable, I want to buy it” (P2).

9 AILI USAGE SCENARIOS
To illustrate Aili’s potential, we discuss �ve applications to showcase Aili’s usage scenarios. We have made a
demo video available at https://youtu.be/Fl1vVc3UGLA.

Fig. 14. Aili applications: (a) navigating Google Earth, (b) playing a piano game with a free hand in the light , (c) playing
angry bird with pinch gestures, (d) playing a racing game with a ”V” gesture to trigger nitro booster, and (e) switching on/o�
light by gesturing under the lamp.

Manipulating Virtual 3D Objects Aili can replace a 3D mouse with complicated control bu�ons and simplify
user’s 3D control. Figure 14(a) shows an example where a user navigates Google Earth using Aili. Also, consider a
user (e.g., mechanical engineer) si�ing next to a table and editing virtual 3D objects in a so�ware. Aili requires no
extra input device and the lamp is always within the reach of the hand. While not implemented, other application
scenarios include the following: a user can pinch the thumb and index �nger to grab a virtual object and move
the hand to translate the object in a 3D environment; opening the hand drops the object on the virtual �oor.
Education and Gaming Aili can also facilitate user’s learning of new skills or gaming. Figure 14(b) shows
a user playing a virtual piano, where �ngers can be mapped to a unique set of keys. Bending multiple �ngers
presses corresponding keys. Figure 14(c) demonstrates how a user leverages Aili to play Angry Bird with pinch
gestures. Figure 14(d) illustrates a user performing a ”V” gesture to trigger booster in a racing game.
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Controlling Home Appliances. Controlling the light at home requires the user to walk up to the switch.
Although now a smartphone can be used as a remote controller, the task is still cumbersome as it requires the
user to take out the phone, unlock it, navigate the app list, and open the controller app. With Aili, the user can
freely gesture to switch on and o� the light without leaving the desk or using the smartphone. For example, the
user can use an open hand to turn on the light and a �st to turn it o� (Figure 14(e)).

10 DISCUSSIONS
We now discuss the limitations of our current prototype and plans for future work.
Sensing Capability. We elaborate on the system’s current sensing resolution both spatially and temporally, as
well as its capability of handling palm rotation.

1) Spatial Resolution. Aili’s spatial sensing resolution refers to the minimal horizontal �nger movement that
can be reconstructed by the system. It is bounded by the density of LEDs on the LED panel (i.e., the pixel interval
of a blockage map). �e system cannot recognize �nger movement if its change on the blockage map is smaller
than the LED/pixel interval (2.25 cm). �is translates into 4.5-mm �nger movement, assuming the hand is 10 cm
above the lamp base. Increasing the LED density can improve the spatial sensing resolution (see Figure 7(a)).
However, it can also degrade the robustness of blockage detection, as we described in the discussion of Figure 7(a).
Photodiodes with higher sensing resolution can be�er detect small changes and potentially handle denser LEDs
more robustly. We leave it to future exploration.
2) Temporal Resolution. Although Aili’s pose reconstruction takes only 7.2 ms on average, the system’s

reconstruction rate is currently limited by the latency of acquiring blockage maps (25 ms). �us, hand motion
faster than 40 Hz leads to larger errors. However, this is not a fundamental limit of our approach, rather, it is an
artifact of our use of Arduino Due boards for the ease of programming. Arduino Due has relatively low analog-to-
digital converter (ADC) sampling rate and computation power, which results into 7 ms for sampling photodiode
data and 15 ms for computing FFT to detect blockage. Furthermore, Arduino transmits data to a machine using
a serial port. �e port’s low data rate (115 Kbps) adds 2-ms additional delay in data transfer. Nevertheless,
these hardware constraints can be removed by using micro-controllers with faster ADC and communication
interface. For example, the RM57L843 [20] micro-controller has 330-MHz CPU clock and 1.6-Msps ADC. With a
communication interface such as USB 2.0 (480 Mbps), the delay of data transfer will be negligible. �e resulting
delay of acquiring blockage maps can be well controlled within 7 ms, allowing up to 140-Hz reconstruction rate.
3) Rotation. �e current system requires a hand in the air (at least 5 cm above the table) and the forearm

intersects the panel’s long edge. �e palm does not need to be strictly parallel to the lamp base, as the system
supports a palm’s roll angle up to ±45◦ and palm’s pitch angle up to ±30◦. Palm rotation within above range
achieves 8◦ accuracy on average, otherwise its angular error becomes larger than 12◦ because �nger occlusions
are severer. Such occlusions can be addressed with more light rays from the sides. In future work, we plan to
examine adding tilted LED panels at the lamp top, so that they emit light rays from more diverse directions to
handle a wider range of palm rotation.
System Portability �e current Aili prototype has limited portability since it requires LEDs and photodiodes
at two sides and its LED panel is relatively large. To improve system portability, we will explore two aspects.
First, we will study embedding photodiodes inside the LED panel to make Aili a standalone sensing panel. In this
scenario photodiodes sense the light re�ected by hand and the system leverages re�ected light intensity to sense
hand gestures. We will examine photodiodes with high sensitivity to deal with weak re�ected light. Second, the
LED panel can be made smaller, depending on the required sensing area of the application. Additionally, most
electrical components (e.g., power supply, FPGAs boards) of the panel can be miniaturized. For examples, FPGAs
can be replaced with AD9833 wave generators (9 mm2 in size, 12.5 MHz). �ey can be hosted on a small PCB
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board integrated with a power supply, reducing the thickness of the LED panel to a few millimeters. It eases the
integration of Aili to mobile devices (e.g., virtual reality headsets).
Broadening Sensing Scenarios Finally we plan to broaden Aili’s sensing scenarios. We will study two-hand
or even multi-user scenarios to allow richer user input and support users on collaborative tasks. �e main
challenge is that hands can block one another with overlapping blockage maps, which signi�cantly increases
reconstruction complexity and computation overhead. We will seek solutions to tracking individual hands. We
will also extend Aili’s ability to recognizing general objects (e.g., cups, phones) based on how they block light
rays. It is challenging for objects that are fully or partially transparent. A possible solution is to leverage the raw
frequency power a�er FFT computation to gauge the light penetration and infer object transparency.

11 CONCLUSION
We proposed a lightweight approach to reconstructing hand poses using only binary blockage information. We
presented the design, development, and evaluation of Aili, a table lamp that senses how our hand blocks light
rays to reconstruct arbitrary hand poses, without the need of cameras or on-body sensors. We evaluated Aili’s
usability and system performance via prototype experiments and user studies.
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