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ABSTRACT

Much of the stress and strain of student life remains hidden.
The StudentLife continuous sensing app assesses the day-to-
day and week-by-week impact of workload on stress, sleep,
activity, mood, sociability, mental well-being and academic
performance of a single class of 48 students across a 10 week
term at Dartmouth College using Android phones. Results
from the StudentLife study show a number of significant cor-
relations between the automatic objective sensor data from
smartphones and mental health and educational outcomes of
the student body. We also identify a Dartmouth term lifecycle
in the data that shows students start the term with high pos-
itive affect and conversation levels, low stress, and healthy
sleep and daily activity patterns. As the term progresses and
the workload increases, stress appreciably rises while posi-
tive affect, sleep, conversation and activity drops off. The
StudentLife dataset is publicly available on the web.
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INTRODUCTION

Many questions arise when we think about the academic per-
formance of college students. Why do some students do bet-
ter than others? Under similar conditions, why do some in-
dividuals excel while others fail? Why do students burnout,
drop classes, even drop out of college? What is the impact of
stress, mood, workload, sociability, sleep and mental well-
being on educational performance? In this paper, we use
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smartphones carried by students to find answers to some of
these pressing questions.

Consider students at Dartmouth College, an Ivy League col-
lege in a small New England college town. Students typically
take three classes over a 10-week term and live on campus.
Dartmouth classes are generally demanding where student as-
sessment is primarily based on class assignments, projects,
midterms and final exams. Students live, work and social-
ize on a small self-contained campus representing a tightly-
knit community. The pace of the 10 week Dartmouth term is
fast in comparison to a 15 week semester. The atmosphere
among the students on campus seems to visibly change from
a relaxed start of term, to an intense midterm and end of
term. Typically classes at Dartmouth are small (e.g., 25-50
students), but introductory classes are larger (e.g., 100-170),
making it difficult for a faculty to follow the engagement or
performance of students on an individual level. Unless stu-
dents contact a student dean or faculty about problems in their
lives, the impact of such challenges on performance remains
hidden.

To shine a light on student life we develop the StudentLife
smartphone app and sensing system to automatically infer hu-
man behavior in an energy-efficient manner. The StudentLife
app integrates MobileEMA, a flexible ecological momentary
assessment [37] (EMA) component to probe students’ states
(e.g., stress, mood) across the term. We administer a number
of well-known pre-post health and behavioral surveys at the
start and end of term. We present the results from a deploy-
ment of StudentLife on Google Nexus 4 Android phones at
Dartmouth College.

StudentLife makes a number of contributions. First, to the
best of our knowledge we are the first to use automatic and
continuous smartphone sensing to assess mental health, aca-
demic performance and behavioral trends of a student body.
Second, we identify strong correlation between automatic
sensing data and a broad set of well-known mental well-
being measures, specifically, PHQ-9 depression, perceived
stress (PSS), flourishing, and loneliness scales. Results indi-
cate that automatically sensed conversation, activity, mobil-
ity, and sleep have significant correlations with mental well-
being outcomes. We also observe strong correlations be-
tween academic performance and automatic sensing data and
mental well-being. We find usage patterns of an online ed-



ucational tool (i.e., Piazza) correlates with academic perfor-
mance. Third, we observe trends in the sensing data, termed
the Dartmouth term lifecycle, where students start the term
with high positive affect and conversation levels, low stress,
and healthy sleep and daily activity patterns. As the term pro-
gresses and the workload increases, stress appreciably rises
while activity, sleep, conversation, positive affect, visits to
the gym and class attendance drop.

RELATED WORK

There is a growing interest in using smartphone sensing [31,
9, 12, 11, 40, 8, 15] to infer human dynamics and behavioral
health [7, 34, 25, 21, 18, 23, 35, 28, 30]. The StudentLife
study is influenced by a number of important behavioral stud-
ies: 1) the friends-and-families study [7], which uses Funf [3]
to collect data from 130 adult members (i.e., post-docs, uni-
versity employees) of a young family community to study fit-
ness intervention and social incentives; and 2) the reality min-
ing project [20], which uses sensor data from mobile phones
to study human social behavior in a group of students at MIT.
The authors show that call records, cellular-tower IDs, and
Bluetooth proximity logs accurately detect social networks
and daily activity.

There is little work on correlations between continuous and
automatic sensing data from smartphones and mental health
outcomes such as PHQ-9. However, the authors in [34] use
wearable sensors (i.e., Intel’s mobile sensing platform) to
study the physical and mental well-being of a group of 8 se-
niors living in a continuing care retirement community over
a single week. The retirement community study [34] is the
first to find correlations with depression and continuous sens-
ing measures from wearables. In [33], the authors monitor
bipolar disorder in patients using wearable sensors, but the
project does not enable continuous sensing data. In [22, 10],
the authors present an approach that collects self-assessment
and sensor data on a smartphone as a means to study patients’
mood. They find that self-reported activity, stress, sleep and
phone usage are strongly correlated with self-reported mood.
Health Buddy [24] presents patients with a series of pre-
programmed questions about symptoms of depression and
suicide, allowing mental health service providers to monitor
patients’ symptoms. No continuously sensing is used. Mobi-
lyze is an intervention system [13] that uses smartphones to
predict self-reported states (e.g., location, alone, mood) using
machine learners. Results indicate that Mobilyze can predict
categorical contextual states (e.g., location, with friends) with
good accuracy but predicting internal states such as mood
show poorer predictive power.

There is a considerable interest in studying the health and
performance of students. However, no study has used smart-
phone sensing to study these issues. In [39], the authors study
the effect of behaviors (i.e., social support, sleep habits, work-
ing hours) on grade points based on 200 randomly chosen
students living on the campus at a large private university.
However, this study uses retrospective survey data manually
entered by users to assess health and performance. Watan-
abe [41, 42] uses a wearable sensor device to investigate the

correlation between face-to-face interaction between students
during break times and scholastic performance.

STUDY DESIGN

In this section, we discuss how participants were recruited
from the student body, and then describe our data collection
process. We also discuss compliance and data quality issues
in this longitudinal study.

Participants

All participants in the study were voluntarily recruited from
the CS65 Smartphone Programming class [1], a computer sci-
ence programing class at Dartmouth College offered to both
undergraduate and graduate students during Spring term in
2013. This study is approved by the Institutional Review
Board at Dartmouth College. 75 students enrolled in the class
and 60 participants joined the study. As the term progressed,
7 students dropped out of the study and 5 dropped the class.
We remove this data from the dataset analyzed in the Results
Section. Among the 48 students who complete the study, 30
are undergraduates and 18 graduate students. The class de-
mographics are as follows: 8 seniors, 14 juniors, 6 sopho-
mores, 2 freshmen, 3 Ph.D students, 1 second-year Masters
student, and 13 first-year Masters students. In terms of gen-
der, 10 participants are female and 38 are male. In terms of
race, 23 participants are Caucasians, 23 Asians and 2 African-
Americans. 48 participants finished the pre psychological
surveys and 41 participants finished all post psychological
surveys.

All students enrolled in the class were offered unlocked An-
droid Nexus 4s to complete assignments and class projects.
Many students in the study had their own iPhones or An-
droid phones. We denote the students who use their own An-
droid phones to run the StudentLife sensing system as pri-
mary users and those who use the Nexus 4s as secondary
users. Secondary users have the burden of carrying both their
own phones and the Nexus 4s during the study. We discuss
compliance and data quality of users in the Compliance and
Data Quality Section.

Study Procedure

The StudentLife study consists of orientation, data collec-
tion and exit stages. In addition, we deployed a number of
management scripts and incentive mechanisms to analyze and
boost compliance, respectively.

Entry and Exit. During the orientation stage, participants
sign the consent form to join the study. Each student is given
a one-on-one tutorial of the StudentLife system and study.
Prior to signing the consent form, we detail the type of data to
be collected by the phone. Students are trained to use the app.
Students do not need to interact with the background sensing
or upload functions. They are shown how to respond to the
MobileEMA system. A series of entry health and psycholog-
ical baseline surveys are administered using SurveyMonkey
as discussed in the Results Section and shown in Table 1. As
part of the entry survey students provide demographic and
information about their spring term classes. All surveys are
administered using SurveyMonkey [6]. These surveys are pre



measures which cover various aspects of mental and physical
health. Outcomes from surveys (e.g., depression scale) are
used as ground truth in the analysis. During the exit stage, we
administered an exit survey, interview and the same set of be-
havioral and health surveys given during the orientation stage
as post measures.

Data Collection. The data collection phase lasted for 10
weeks for the complete spring term. After the orientation ses-
sion, students carried the phones with them throughout the
day. Automatic sensing data is collected without any user
interaction and uploaded to the cloud when the phone is be-
ing recharged and under WiFi. During the collection phase,
students were asked to respond to various EMA questions as
they use their phones. This in-situ probing of students at mul-
tiple times during the day provides additional state informa-
tion such as stress, mood, happiness, current events, etc. The
EMA reports were provided by a medical doctor and a num-
ber of psychologists on the research team. The number of
EMAs fired each day varied but on average 8 EMAs per day
were administered. For example, on days around assignment
deadlines, we scheduled multiple stress EMAs. We set up
EMA schedules on a week-by-week basis. On some days
we administer the same EMA (e.g., PAM and stress) multiple
times per day. On average, we administer 3-13 EMA ques-
tions per day (e.g., stress). The specific EMAs are discussed
in the Dataset Section.

Data Collection Monitoring. StudentLife includes a num-
ber of management scripts that automatically produce statis-
tics on compliance. Each time we notice students’ phones not
uploading daily data (e.g., students left phones in their dorms
during the day), or gaps in weekly data (e.g., phones powered
down at night), or no response to EMAs, we sent emails to
students to get them back on track.

Incentives. To promote compliance and data quality, we of-
fer a number of incentives across the term. First, all students
receive a StudentLife T-shirt. Students could win prizes dur-
ing the study. At the end of week 3, we gave away 5 Jawbone
UPs to the 5 top student collectors randomly selected from
the top 15 collectors. We repeated this at week 6. We defined
the top collectors as those providing the most automatic sens-
ing and EMA data during the specific period. At the end of
the study, we gave 10 Google Nexus 4 phones to 10 collectors
who were randomly selected from the top 30 collectors over
the complete study period.

Privacy considerations. Participants’ privacy is a major
concern of our study. In order to protect participants’ personal
information, we fully anonymize each participant’s identity
with a random user id and kept the user id map separate from
all other project data so that the data cannot be traced back to
individuals. Call logs and SMS logs are one-way hashed so
that no one can get phone numbers or messages from the data.
Participants’ data is uploaded using encrypted SSL connec-
tions to ensure that their data cannot be intercepted by third-
parties. Data is stored on secured servers. When people left
the study their data was removed.

Compliance and Data Quality

The StudentLife app does not provide students any feedback
by design. We do not want to influence student behavior by
feedback, rather, we aim to unobtrusively capture student life.
Longitudinal studies such as StudentLife suffer from a drop
in student engagement and data quality. While automatic sen-
sor data collection does not introduce any burden other than
carrying a phone, collecting EMA data can be a considerable
burden. Students typically are compliant in responding to sur-
vey questions at the start of a study, but as the novelty effect
wears off, student compliance drops.

There is a 60/40 split of iPhone/Android users in the study
group. Of the 48 students who completed the study, 11 are
primary phone users and 37 secondary users. One concern is
that the burden of carrying two phones for 10 weeks would re-
sult in poorer data quality from the secondary users compared
to the primary users. Figure 1(a) shows the average hours of
sensor data we have collected from each participant during
the term. As expected, we observe that primary users are bet-
ter data sources, but there is no significant difference. We can
clearly see the trend of data dropping off as the term winds
down. Achieving the best data quality requires 24 hours of
continuous sensing each day. This means that users carry
their phones and power their phones at night. If we detect that
a student leaves their phone at the dorm during the day, or it
is powered down, then we remove that data from the dataset.
The overall compliance of collecting automatic sensing data
from primary and secondary users over the term is 87% and
81%, respectively.

Figure 1(b) shows the average number of EMA responses per
day for primary and secondary users. The figure does not cap-
ture compliance per se, but it shows that secondary users are
slightly more responsive to EMAs than primary users. On av-
erage we receive 5.8 and 5.4 EMAs per day per student across
the whole term from secondary and primary users, respec-
tively. As the term progresses there is a drop in both adminis-
tered EMAs and responses. However, even at the end of term,
we still receive over 2 EMAs per day per student. Surpris-
ingly, secondary users (72%) have better EMA compliance
than primary users (65%). During the exit survey, students fa-
vored short PAM-style EMAs (see Figure 3(a)), complained
about the longer EMAs, and discarded repetitive EMAs as the
novelty wore off. By design, there is no notification when an
EMA is fired. Participants need to actively check their phone
to answer scheduled EMA questions. The EMA compliance
data (see Figure 1(b)) shows that there are no significant dif-
ferences between primary and secondary phone users. It in-
dicates that secondary phone users also used the study phone
when they were taking the phone with them. Therefore, the
study phone can capture the participants’ daily behavior even
it was not their primary phone.

In summary, Figure 1 shows the cost of collecting continu-
ous and EMA data across a 10-week study. There is a small
difference between primary and secondary collectors for con-
tinuous sensing and EMA data, but the compliance reported
above is promising and gives confidence in the analysis dis-
cussed in the Results Section.
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Figure 1. Compliance and quality of Stu-
dentLife data collected across the term.
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Figure 2. StudentLife app, sensing and analytics system architecture.

STUDENTLIFE APP AND SENSING SYSTEM

In what follows, we describe the design of the StudentLife
app and sensing system, as shown in Figure 2.

Automatic and Continuous Sensing

We build on our prior work on the BeWell App [27] to provide
a framework for automatic sensing in StudentLife. The Stu-
dentLife app automatically infers activity (stationary, walk-
ing, running, driving, cycling), sleep duration, and sociabil-
ity (i.e., the number of independent conservations and their
durations). The app also collects accelerometer, proximity,
audio, light sensor readings, location, colocation, and appli-
cation usage. The inferences and other sensor data are tem-
porarily stored on the phone and are efficiently uploaded to
the StudentLife cloud when users recharge their phones under
WiFi. In what follows, we discuss the physical activity, so-
ciability/conversation and sleep inferences computed on the
phone which represent important heath well-being indicators
[27].

Activity Detection. We use the physical activity classifier
from our prior work [27, 29] to infer stationary, walking, run-
ning, driving and cycling based on features extracted from ac-
celerometer streams. The activity classifier extracts features
from the preprocessed accelerometer stream, then applies a
decision tree to infer the activity using the features. The ac-
tivity classifier achieves overall 94% of accuracy [29]. (Note,
we conducted our study before Google announced the avail-
ability of an activity recognition service for Android phones).
We extend our prior work to compute a daily activity dura-
tion, and indoor and outdoor mobility measures, discussed as
follows. The activity classifier generates an activity label ev-
ery 2 seconds. We are only interested in determining whether
a participant is moving. For each 10-min period, we calculate
the ratio of non-stationary inferences. If the ratio is greater
than a threshold, we consider this period active, meaning that
the user is moving. We add up all the 10-min active periods
as the daily activity duration. Typically, students leave their

dorms in the morning to go to various buildings on campus
during the day. Students spend a considerable amount of time
in buildings (e.g., cafes, lecture rooms, gym). We consider the
overall mobility of a student consists of indoor and outdoor
mobility. We compute the outdoor mobility (aka traveled dis-
tance) as the distance a student travels around campus during
the day using periodic GPS samples. Indoor mobility is com-
puted as the distance a student travels inside buildings during
the day using WiFi scan logs. Dartmouth College has WiFi
coverage across all campus buildings. As part of the study,
we collect the locations of all APs in the network, and the
Wi-Fi scan logs including all encountered BSSIDs, SSIDs,
and their signal strength values. We use the BSSIDs and sig-
nal strength to determine if a student is in a specific building.
If so, we use the output of activity classifier’s walk inference
to compute the activity duration as a measure of indoor mo-
bility. Note, that Dartmouth’s network operations provided
access to a complete AP map of the campus wireless network
as part of the IRB.

Conversation Detection. StudentLife implements two clas-
sifiers on the phone for audio and speech/conversation detec-
tion: an audio classifier to infer human voice, and a conver-
sation classifier to detect conversation. We process audio on
the fly to extract and record features. We use the privacy-
sensitive audio and conversation classifiers developed in our
prior work [34, 27]. Note, the audio classification pipeline
never records conversation nor analyses content. We first seg-
ment the audio stream into 15-ms frames. The audio classi-
fier then extracts audio features, and uses a two-state hidden
Markov model (HMM) to infer speech segments. Our clas-
sifier does not implement speaker identification. It simply
infers that the user is “around conversation” using the out-
put of the audio classifier as an input to a conservation clas-
sifier. The output of the classification pipeline captures the
number of independent conversations and their duration. We
consider the frequency and duration of conversations around
a participant as a measure of sociability. Because not all



(a) PAM EMA (b) Stress EMA
Figure 3. MobileEMA: First the PAM popup fires followed by one of the

StudentLife EMAs – in this example the single item stress EMA.

conservations are social, such as lectures and x-hours (i.e.,
class meetings outside lectures), we extend our conservation
pipeline in the cloud to remove conversations associated with
lectures and x-hours. We use student location to determine
if they attend lectures and automatically remove the conser-
vation data correspondingly from the dataset discussed in the
Dataset Section. We also keep track of class attendance for
all students across all classes, as discussed in the Results Sec-
tion.

Sleep Detection. We implement a sleep classifier based
on our previous work [14, 27]. The phone unobtrusively in-
fers sleep duration without any special interaction with the
phone (e.g., the user does not have to sleep with the de-
vice). The StudentLife sleep classifier extracts four types
of features: light features, phone usage features including
the phone lock state, activity features (e.g., stationary), and
sound features from the microphone. Any of these features
alone is a weak classifier for sleep duration because of the
wide variety of phone usage patterns. Our sleep model com-
bines these features to form a more accurate sleep model and
predictor. Specifically, the sleep model assumes that sleep
duration (Sl) is a linear combination of these four factors:

Sl =
∑

4

i=1
αi ·Fi, αi ≥ 0 where αi is the weight of the cor-

responding factor. We train the model using the method de-
scribed in [14] with an accuracy of +/- 32 mins to the ground
truth. We extend this method to identify the sleep onset time
by looking at when the user is sedentary in term of activity,
audio, and phone usage. We compare the inferred sleep onset
time from a group of 10 students who use the Jawbone UP
during the study to collect sleep data. Our method predicts
bedtime where 95% of the inferences have an accuracy of +/-
25 mins of the ground truth. The output of our extended sleep
classifier is the onset of sleep (i.e., bedtime), sleep duration
and wake up time.

MobileEMA

We use in-situ ecological momentary assessment (EMA) [37]
to capture additional human behavior beyond what the sur-
veys and automatic sensing provide. The user is prompted

by a short survey (e.g., the single item [38] stress survey as
shown in Figure 3(b)) scheduled at some point during their
day. We integrate an EMA component into the StudentLife
app based on extensions to Google PACO [4]. PACO is an
extensible framework for quantified self experiments based
on EMA. We extend PACO to incorporate:

• photographic affect meter (PAM) [32] to capture partici-
pant’s instantaneous mood;

• pop-up EMAs to automatically present a short survey to the
user when they unlock or use the phone; and,

• EMA schedule and sync feature to automatically push a
new EMA schedule to all participants and synchronize the
new schedule with StudentLife cloud.

PACO is a self-contained and complex backend app and ser-
vice. We extend and remove features and integrate the EMA
component into the StudentLife app and cloud. We set up
EMA questions and schedules using the PACO server-side
code [4]. The cloud pushes new EMA questions to the
phones. The StudentLife app sets up an alarm for each EMA
in the list and fires it by pushing it to the users’ phone screen
as a pop-up. We implement PAM [32] on the Nexus 4 as
part of the EMA component. PAM presents the user with a
randomized grid of 16 pictures from a library of 48 photos.
The user selects the picture that best fits their mood. Fig-
ure 3(a) shows the PAM pop-up asking the user to select one
of the presented pictures. PAM measures affect using a sim-
ple visual interface. PAM is well suited to mobile usage be-
cause users can quickly click on a picture and move on. Each
picture represents a 1-16 score, mapping to the Positive and
Negative Affect Schedule (PANAS) [43]. PAM is strongly
correlated with PANAS (r = 0.71, p < 0.001) for positive
affect. StudentLife schedules multiple EMAs per day. We
took the novel approach of firing PAM before showing one of
the scheduled EMAs (e.g., stress survey). Figure 3(b) shows
an EMA test after the PAM pop-up. We are interested in how
students’ mood changes during the day. By always preceding
any EMA with PAM, we guarantee a large amount of affect
data during the term.

STUDENTLIFE DATASET

Using the StudentLife system described in StudentLife Sens-
ing System Section, we collect a dataset from all subjects in-
cluding automatic sensor data, behavioral interferences, and
self-reported EMA data. Our ground truth data includes be-
havioral and mental health outcomes computed from survey
instruments detailed in Table 1, and academic performance
from spring term and cumulative GPA scores provided by the
registrar. We discuss three epochs that are evident in the Stu-
dentLife dataset. We uses these epochs (i.e., day 9am–6pm,
evening 6pm–12am, night 12am–9am) as a means to analyze
some of the data, as discussed in the Results Section. The
StudentLife dataset is publicly available [5].

Automatic Sensing Data. We collect a total of 52.6 GB of
sensing inference data from smartphones over 10 weeks. The
data consist of: 1) activity data, including activity duration
(total time duration the user moves per day), indoor mobility
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Figure 4. Statistics on class meeting times and sleep onset time (i.e., bedtime).

Table 1. Mental well-being surveys.

survey measure

patient health
depression levelquestionnaire

(PHQ-9) [26]
perceived stress scale

stress level
(PSS)[17]
flourishing scale

flourishing level
[19]

UCLA loneliness
loneliness level

scale [36]

Table 2. PHQ-9 depression scale interpretation and pre-post class out-
comes.

depression
minimal minor moderate

moderately
severe

severity severe

score 1-4 5-9 10-14 15-19 20-27
number of

17 15 6 1 1students
(pre-survey)

number of

19 12 3 2 2students

(post-survey)

and the total traveled distance (i.e., outdoor mobility) per day;
2) conversation data, including conversation duration and fre-
quency per day; 3) sleep data, including sleep duration, sleep
onset and waking time; and finally 4) location data, including
GPS, inferred buildings when the participant is indoors, and
the number of co-located Bluetooth devices.

Epochs. Students engage in different activities during the
day and night. As one would expect, sleep and taking classes
dominate a student’s week. Figure 4(a) shows the collective
timetable of class meetings for all the classes taken by the
students in the study. The darker the slot, the greater propor-
tion of students taking classes in the slot. We can observe
that Monday, Wednesday, Friday slots from 10:00-11:05 am
and the x-period on Thursday 12:00-12:50 pm are dominant
across the week; this is the teaching time for the CS65 Smart-
phone Programming class which all students in the study are
enrolled in. Figure 4(a) clearly indicates that the timetable of
all classes ranges from 9am to 6pm – we label this as the day
epoch. Students are not taking classes for the complete pe-
riod. Many class, social, sports, and other activities take place
during the day epoch but class is dominant. The next domi-
nant activity is sleep. Students go to bed at different times.
Figure 4(b) shows the distribution of bedtime for all students
across the term. We see that most students go to bed between
12am and 4am but the switch from evening to night starts at
12am, as shown in Figure 4(b). We label the period between
12am and 9am as the night epoch, when most students are
working, socializing or sleeping – but sleep is the dominant
activity. We consider the remaining period between the end of
classes (6pm) and sleep (12am) as the evening epoch. We hy-
pothesize that this is the main study and socialization period
during weekdays. We define these three epochs as a means to
analyze data, as discussed in the Results Section. We appre-
ciate that weekdays are different from weekends but consider
epochs uniformly across the complete week. We also look
for correlations in complete days (e.g., Monday) and across
epochs (i.e., Monday day, evening and night).

EMA Data. Students respond to psychological and behav-
ioral EMAs on their smartphones that are scheduled, man-
aged, and synchronized using the MobileEMA component
integrated into StudentLife app. We collect a total of 35,295
EMA and PAM responses from 48 students over 10 weeks.
EMA and PAM data are automatically uploaded to the cloud
when students recharge their phones under WiFi. Students
respond to a number of scheduled EMAs including stress
(stress EMA), mood (mood EMA), sleep duration (sleep
EMA)(which we use to confirm the performance of our sleep
classifier), the number of people students encountered per day
(social EMA), physical exercise (exercise EMA), time spent
on different activities (activity EMA), and short personality
item (behavior EMA). All EMAs were either existing vali-
dated EMAs (e.g., single item stress measure [38]) found in
the literature, or provided by psychologist on the team (e.g.,
mood EMA).

Survey Instrument Data. Table 1 shows the set of surveys
for measuring behavioral and mental well-being we adminis-
ter as part of our pre-post stages, as discussed in Study De-
sign Section. These questionnaires provide an assessment of
students’ depression, perceived stress, flourishing (i.e., self-
perceived success) and loneliness. Students complete surveys
using SurveyMonkey [6] one day prior to study commence-
ment, and complete them again one day after the study. Sur-
veys are administered on the phone and stored in the Stu-
dentLife cloud (Figure 2). In what follows, we overview each
instrument. The Patient Health Questionnaire (PHQ-9) [26]
is a depression module that scores each of the 9 DSM-IV
criteria as 0 (not at all) to 3 (nearly every day). It is vali-
dated for use in primary care. Table 2 shows the interpre-
tation of the scale and the number of students that fall into
each category for pre-post assessment. The perceived stress
scale (PSS) [17] measures the degree to which situations in
a person’s life are stressful. Psychological stress is the ex-
tent to which a person perceives the demands on them exceed
their ability to cope [17]. Perceived stress is scored between
0 (least stressed) to 40 (most stressed). The perceived stress
scale can only be used for comparisons within a sample – in
our case 48 students. The flourishing scale [19] is an 8-item
summary measure of a person’s self-perceived success in im-
portant areas such as relationships, self-esteem, purpose, and
optimism. The scale provides a single psychological well-
being score. Flourishing is scored between 8 (lowest) to 56
(highest). A high score represents a person with many psy-
chological resources and strengths. The final survey we ad-
minister is the UCLA loneliness (version 3) [36] scale, which



Table 3. Correlations between automatic sensor data and PHQ-9 de-

pression scale.

automatic sensing data r p-value

sleep duration (pre) -0.360 0.025
sleep duration (post) -0.382 0.020
conversation frequency during day (pre) -0.403 0.010
conversation frequency during day (post) -0.387 0.016
conversation frequency during evening (post) -0.345 0.034
conversation duration during day (post) -0.328 0.044
number of co-locations (post) -0.362 0.025

is scored between 20 (least lonely) to 80 (most lonely). The
loneliness scale is a 20-item scale designed to measure a per-
son’s subjective feelings of loneliness as well as feelings of
social isolation. Low scores are considered a normal experi-
ence of loneliness. Higher scores indicate a person is expe-
riencing severe loneliness. Table 4 shows the pre-post mea-
sures (i.e., mean and standard deviation) for each scored sur-
vey for all students. We discuss these assessments in the Re-
sults Section.

Academic Data. We have access to transcripts from the reg-
istrar’s office for all participants as a means to evaluate their
academic performance. We use spring and cumulative GPA
scores as ground truth outcomes. Undergraduates can receive
an A–E grade or I (incomplete). Students who get an Incom-
plete must agree to complete the course by a specific date.
GPA ranges from 0 to 4. For the CS65 smartphone program-
ming class we had all the assignment and project deadlines –
no midterms or finals are given in this class. Students provide
deadlines of their other classes at the exit interview from their
calendars or returned assignments or exams.

RESULTS

In what follows, we discuss the main results from the Stu-
dentLife study. We identify a number of significant corre-
lations between objective sensor data from smartphones and
mental well-being and academic performance outcomes. We
also identify a Dartmouth term lifecycle that captures the im-
pact of the term on behavioral measures representing an ag-
gregate term signature experienced by all students.

Correlation with Mental Health

We first consider correlations between automatic and objec-
tive sensing data from smartphones and mental well-being.
We also discuss results from correlations between EMA data.
Specifically, we report on a number of significant correla-
tions between sensor and EMA data and pre-post survey
ground truth outcomes for depression (PHQ-9), flourishing,
perceived stress, and loneliness scales, as discussed in the
Dataset Section and shown in Table 4. We calculate the de-
gree of correlation between sensing/EMA data and outcomes
using the Pearson correlation [16] where r (−1 ≤ r ≤ 1)
indicates the strength and direction of the correlation, and p
the significance of the finding.

PHQ-9 Depression Scale. Table 2 shows the pre-post
PHQ-9 depression severity for the group of students in the
study. The majority of students experience minimal or minor
depression for pre-post measures. However, 6 students ex-
perience moderate depression and 2 students are moderately

Table 4. Statistics of mental well-being surveys.

survey pre-study post-study

outcomes participants mean std participants mean std
depression 40 5.8 4.9 38 6.3 5.8
flourishing 40 42.6 7.9 37 42.8 8.9
stress 41 18.4 6.8 39 18.9 7.1
loneliness 40 40.5 10.9 37 40.9 10.5

Table 5. Correlations between automatic sensor data and flourishing

scale.

automatic sensing data r p-value

conversation duration (pre) 0.294 0.066
conversation duration during evening (pre) 0.362 0.022
number of co-locations (post) 0.324 0.050

severe or severely depressed at the start of term. At the end of
term more students (4) experience either moderately severe
or severely depressed symptoms. We find a number of sig-
nificant correlations (p ≤ 0.05) between sleep duration, con-
versation frequency and duration, colocation (i.e., number of
Bluetooth encounters) and PHQ-9 depression, as shown Ta-
ble 3. An inability to sleep is one of the key signs of clinical
depression [2]. We find a significant negative correlation be-
tween sleep duration and pre (r = −0.360, p = 0.025) and
post (r = −0.382, p = 0.020) depression; that is, students
that sleep less are more likely to be depressed. There is a
known link between lack of sleep and depression. One of
the common signs of depression is insomnia or an inability to
sleep [2]. Our findings are inline with these studies on de-
pression [2]. However, we are the first to use automatic sen-
sor data from smartphones to confirm these findings. We also
find a significant negative association between conversation
frequency during the day epoch and pre (r = −0.403, p =

0.010) and post (r = −0.387, p = 0.016) depression. This
also holds for the evening epoch where we find a strong re-
lationship (r = −0.345, p = 0.034) between conversation
frequency and depression score. These results indicate that
students that have fewer conversational interactions are more
likely to be depressed. For conversation duration, we find a
negative association (r = −0.328, p = 0.044) during the day
epoch with depression. This suggests students who interact
less during the day period when they are typically social and
studying are more likely to experience depressive symptoms.
In addition, students that have fewer co-locations with other
people are more likely (r = −0.362, p = 0.025) to have a
higher PHQ-9 score. Finally, we find a significant positive
correlation (r = 0.412, p = 0.010) between the validated
single item stress EMA [38] and the post PHQ-9 scale. This
indicates that people that are stressed are also more likely to
experience depressive symptoms, as shown in Table 8.

Flourishing Scale. There are no literal interpretation of
flourishing scale, perceived stress scale (PSS) and UCLA
loneliness scale instruments, as discussed in the Dataset Sec-
tion. Simply put, however, the higher the score the more
flourishing, stressed and lonely a person is. We find a small
set of correlations (see Table 5) between sensor data and
flourishing. Conversation duration has a weak positive as-
sociation (r = 0.294, p = 0.066) during the 24 hour day
with flourishing. With regard to conversation during the
evening epoch we find a significant positive association (r =

0.362, p = 0.022) with flourishing. We also find that students



Table 6. Correlations between automatic sensor data and perceived

stress scale (PSS).

automatic sensing data r p-value

conversation duration (post) -0.357 0.026
conversation frequency (post) -0.394 0.013
conversation duration during day (post) -0.401 0.011
conversation frequency during day (pre) -0.524 0.001
conversation frequency during evening (pre) -0.386 0.015
sleep duration (pre) -0.355 0.024

Table 7. Correlations between automatic sensor data and loneliness

scale.

automatic sensing data r p-value

activity duration (post) -0.388 0.018
activity duration for day (post) -0.326 0.049
activity duration for evening (post) -0.464 0.004
traveled distance (post) -0.338 0.044
traveled distance for day (post) -0.336 0.042
indoor mobility for day (post) -0.332 0.045

with more co-locations (r = 0.324, p = 0.050) are more
flourishing. These results suggest that students that are more
social and around people are more flourishing. Finally, posi-
tive affect computed from the PAM self-report has significant
positive correlation (r = 0.470, p = 0.002) with flourishing,
as shown in Table 8. This is as we would imagine. People
who have good positive affect flourish.

Perceived Stress Scale. Table 6 shows the correlations
between sensor data and perceived stress scale (PSS). Con-
versation frequency (r = −0.394, p = 0.013) and duration
(r = −0.357, p = 0.026) show significantly negative correla-
tion with post perceived stress. In addiction, we see more sig-
nificant negative associations if we just look at the day epoch.
Here, conversation frequency (r = −0.524, p = 0.001) and
duration (r = −0.401, p = 0.011) exhibit significant and
strong negative correlations with pre and post measure of
perceived stress, respectively. This suggests students in the
proximity of more frequent and longer conversations dur-
ing the day epoch are less likely to feel stressed. We can-
not distinguish between social and work study conversation,
however. We hypothesize that students work collaborative in
study groups. And these students make more progress and
are less stressed. There is also strong evidence that students
that are around more conversations in the evening epoch are
less stressed too. Specifically, there is strong negative rela-
tionship (r = −0.386, p = 0.015) between conversation fre-
quency in the evening epoch and stress. There is also a link
between sleep duration and stress. Our results show that there
is a strong negative association (r = −0.355, p = 0.024) be-
tween sleep duration and perceived stress. Students that are
getting more sleep experience less stress. Finally, we find sig-
nificant positive (r = 0.458, p = 0.003) and negative corre-
lations (r = −0.387, p = 0.012) between self-reported stress
levels and positive affect (i.e., PAM), respectively, and the
perceived stress scale. There is a strong connection between
daily reports of stress over the term and the pre-post perceived
stress scale, as shown in Table 8. Similarly, students that re-
port higher positive affect tend to be less stressed.

Loneliness Scale. We find a number of links between ac-
tivity duration, distance travelled, indoor mobility and the

Table 8. Correlations between EMA data and mental well-being out-

comes.

mental health outcomes EMA r p-value

flourishing scale (pre) positive affect 0.470 0.002
loneliness (post) positive affect -0.390 0.020
loneliness (post) stress 0.344 0.037
PHQ-9 (post) stress 0.412 0.010
perceived stress scale (pre) positive affect -0.387 0.012
perceived stress scale (post) positive affect -0.373 0.019
perceived stress scale (pre) stress 0.458 0.003
perceived stress scale (post) stress 0.412 0.009

Table 9. Correlations between automatic sensing data and academic per-

formance.

academic
Sensing Data r p-value

performance

spring GPA conversation duration (day) 0.356 0.033
spring GPA conversation frequency (day) 0.334 0.046
spring GPA indoor mobility -0.361 0.031
spring GPA indoor mobility during (day) -0.352 0.036
spring GPA indoor mobility during (night) -0.359 0.032
overall GPA activity duration -0.360 0.030
overall GPA activity duration std deviation -0.479 0.004
overall GPA indoor mobility -0.413 0.014
overall GPA indoor mobility during (day) -0.376 0.026
overall GPA indoor mobility during (night) -0.508 0.002
overall GPA number of co-locations 0.447 0.013

loneliness scale, as shown in Table 7. All our results re-
late to correlations with post measures. Activity duration
during a 24 hour day has a significant negative association
(r = −0.388, p = 0.018) with loneliness. We can look at
the day and evening epochs and find correlations. There is a
negative correlation (r = −0.464, p = 0.004) between ac-
tivity duration in the evening epoch and loneliness. Distance
traveled during the complete day (r = −0.338, p = 0.044)
and the day epoch (r = −0.336, p = 0.042) show trends
with being lonely. Indoor mobility during the day epoch has
strong negative links (r = −0.332, p = 0.045) to loneliness.
Indoor mobility is a measure of how much a student is mov-
ing in buildings during the day epoch. Students that are less
active and therefore less mobile are more likely to be lonely.
It is difficult to speculate about cause and effect. Maybe these
students move around less are more isolated (e.g., stay in their
dorm) because they have less opportunity to meet other stu-
dents outside of class. These students could feel lonely and
therefore more resigned not to seek out the company of oth-
ers. There is also no evidence that people who interact with
others regularly do not experience loneliness. This supports
our lack of findings between conversation and loneliness. The
PAM EMA data (positive affect) has a strong negative associ-
ation (r=−0.390, p = 0.020) with positive affect. In addition,
stress self-reports positively correlate (r = 0.344, p = 0.037)
with loneliness. Students who report higher positive affect
and less stress tend to report less loneliness, as shown in Ta-
ble 8.

Correlation with Academic Performance

We examine correlations between sensing and EMA data and
academic performance. We also discuss how the use of an on-
line educational tool (i.e., Piazza) correlates with educational
performance. Piazza is a popular tool for students and in-
structors. It offers a question and answer environment along
with key features for effective student collaboration. We used



Piazza in the smartphone programming class. We use stu-
dent’s cumulative GPA and spring GPA scores as the measure
of academic performance. The mean and standard deviations
for overall (i.e., cumulative) and spring GPA are (3.5, 0.38)
and (3.2, 1.0), respectively.

Table 9 shows a set of correlations between automatic sen-
sor data and academic performance. We find conversa-
tion and indoor mobility of students have strong relationship
with academic performance for spring GPA. More specifi-
cally, we find conversation duration (r=0.356, p = 0.033)
and frequency (r=0.334, p = 0.046) during the day epoch
show a positive correlation with spring GPA. Spring GPA
is negatively related to indoor mobility across the complete
day (r = −0.361, p = 0.031), and during the day (r =

−0.352, p = 0.036) and night (r = −0.359, p = 0.032)
epochs. We also find links between these measures and cumu-
lative GPA, implying, sensor data collected during the spring
term is associated with overall college performance. Specif-
ically, activity duration (r = −0.360, p = 0.030) and its
standard deviation (r = −0.479, p = 0.004) is negatively
associated with cumulative GPA performance. Cumulative
GPA is negatively related indoor mobility across the com-
plete day (r = −0.413, p = 0.014), and during the day
(r = −0.376, p = 0.026) and night (r = −0.508, p = 0.002)
epochs. Interestingly, cumulative and spring GPA have sim-
ilar relationships with the same measures. However, the cor-
relations are more significant for cumulative GPA. There is a
significant positive connection (r = 0.447, p = 0.013) be-
tween co-location and cumulative GPA; however this is not
found in spring GPA data. There is no prior work to the best
of our knowledge on studying the relationship between ob-
jective sensor data and academic performance. Our results
indicate that students who are around more conservation do
better academically. These conversations could be social or
study based – it is not clear. The indoor mobility results in-
dicate that students who move around less while in campus
buildings (e.g., library, cafes, dorms) do better educationally.

Finally, we present analytics from using the Piazza site for
the CS65 Smartphone Programming class. All students used
Piazza to a great or lesser degree during the term. Piazza
acts as a bulletin board for class announcements but impor-
tantly it provides a forum for students to help each other
collaboratively solve programming problems; that is, stu-
dents can post questions and others can respond. Piazza was
used heavily during the class. On average, students spent
43.21 days online, viewed 213.4 posts, posted 10.1 posts, and
asked/answered 3.57/1 questions. We find intuitive associ-
ations between student usage patterns and their final grade
in the smartphone programming class. We analyzed usage
data for the 48 students in the study. We find that students
who are actively using the Piazza to read, post and respond
to questions do better academically in the smartphone pro-
gramming class. More specifically, the number of posts has
a strong positive correlation with their grade in the class
(r = 0.32, p = 0.039).

Dartmouth Term Lifecycle

We analyze the Dartmouth term lifecycle using both sensing
data and self-reported EMA data. Figure 5(a-c) shows key

behavioral measures and activities over the complete term.
Figure 5(a) shows EMA data for stress and positive affect
(PA), and automatic sensing data for sleep duration. Fig-
ure 5(b) shows continuous sensing trends specifically activity
duration, and conversation duration and frequency. Finally,
Figure 5(c) shows location based data from GPS and WiFi,
specifically, attendance across all classes, the amount of time
students spent in their dorms or at home, and visits to the
gym. We hypothesize that these sensing, EMA and location
based curves collectively represent a “Dartmouth term lifecy-
cle”. Whether these trends could be observed across a dif-
ferent set of students at Dartmouth or more interestingly at a
different institution is future work. In what follow we discuss
workload across the term, mental well-being using EMA data
(i.e., stress and positive affect) and automatic sensing data
measures.

Academic Workload. We use the number of assignment
deadlines as a measure of the academic workload of students.
We collect class deadlines during exit interviews and validate
them against students’ calendars and returned assignments
dates. Figure 5 shows the average number of deadlines for
all student across each week of the term. The number of
deadlines peaks during the mid-term period in weeks 4 and
5. Interestingly, many classes taken by the students do not
have assignment deadlines during week 8. Final projects and
assignments are due in the last week of term before finals, as
shown in Figure 5(a). As discussed before, all study partic-
ipants take the same CS65 Smartphone Programming class,
for which they share the same deadlines. Among all CS65’s
lab assignment, Lab 4 is considered to be the most challeng-
ing programming assignment. In the last week of term the
students need to give final presentations and live demos of
group projects for the smartphone programming class. The
students are told that app developed for the demo day has to
work to be graded. The demo is worth 30% of their overall
grade.

Self Reported Stress and Mood. Figure 5(a) shows the
average daily stress level and positive affect over the term for
all subjects as polynomial curves. Students are more stressed
during the mid-term (days 22-36) and finals periods. The pos-
itive affect results show a similar trend. Students start the
term with high positive affect, which then gradually drops as
the term progresses. During the last week of term, students
may be stressed because of finals and class projects, with pos-
itive affect dropping to its lowest point in the term. Overall,
the results indicate that the 10-week term is stressful for stu-
dents as workload increases. Figure 5(a) clearly shows that
students return to Dartmouth after spring break feeling the
most positive about themselves, the least stressed, the most
social in terms of conversation duration and the most active
(as shown in Figure 5(b)). As the term progresses toward
mid-term week, positive affect and activity duration plunge
and remain at low levels until the final weeks where positive
affect drops to its lowest point.

Automatic Sensing Data. We also study behavioral pat-
terns over the term by analyzing automatic sensing data. We
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(c) Location-based data
Figure 5. Dartmouth term lifecycle: collective behavioral trends for all students over the term.

plot the polynomial fitting curves for sleep duration, activ-
ity duration, conversation duration, conversation frequency,
as shown Figure 5(b), and location visiting patterns in Fig-
ure 5(c). Our key findings are as follows. We observe from
Figure 5(a) that sleep peaks at the end of the first week and
then drops off and is at its lowest during the mid-term exam
weeks. Sleep then improves until the last week of term when
it plummets to its lowest point in the cycle. As shown in
Figure 5(b) students start the term with larger activity du-
ration, which gradually drops as they become busier with
course work and other term activities. Finally, the activity
duration increases a little toward the end of term. Activity
duration reaches its lowest point on day 36 when students are
focused on completing the Lab 4 assignment – considered the
most demanding assignment in the smartphone programming
class.

The student’s level of face-to-face sociability starts high at the
start of term, then we observe an interesting conservation pat-
tern, as shown in Figure 5(b). As the term intensifies, conver-
sation duration drops almost linearly until week 8, and then
rebounds to its highest point at the end of term. Conversely,
the frequency of conservation increases from the start of term
until the start of midterms, and then it drops and recovers to-
ward the end of term. We speculate that sociability changes
from long social/study related interactions at the start of term
to more business-like interactions during midterms when stu-
dents have shorter conservations. At the end of term, students
are having more frequent, longer conversations.

Figure 5(c) provides a number of interesting insights based
on location based data. As the term progresses and dead-
lines mount the time students spend at the significant places
in their lives radically changes. Visits to the gym plummet
during midterm and never rebound. The time students spend
in their dorm is low at the start of term perhaps due to social-
izing then remains stable but drops during midterm. At week
8 time spent in dorms drops off and remains low until the end
of term. The most interesting curve is class attendance. We
use location data to determine if students attend classes. We
consider 100% attendance when all students attend all classes
and x-hours (if they exist). The term starts with 75% atten-
dances and starts dropping at week 3. It steadily declines to a
point at the end of term were only 25% of the class are attend-
ing all their classes. Interestingly, we find no correlation be-
tween class attendance and academic performance. We spec-
ulate that students increasingly start missing classes as the
term progresses and the work load rises. However, absence

does not positively or negatively impact their grades. We put
this down to their self learning ability but plan to study this
further as part of future work.

It is difficult in this study to be concrete about the cause and
effect of this lifecycle. For example, stress or positive af-
fect could have nothing to do with workload and everything
to do with hardship of some sort (e.g., campus adjustment,
roommate conflicts, health issues). We speculate the inten-
sive workload compressed into a 10 week term puts consid-
erable demands on students. Those that excel academically
develop skills to effectively manage workload, social life and
stress levels.

CONCLUSION

In this paper, we presented the StudentLife sensing system
and results from a 10-week deployment. We discuss a num-
ber of insights into behavioral trends, and importantly, corre-
lations between objective sensor data from smartphones and
mental well-being and academic performance for a set of
students at Dartmouth College. To the best of our knowl-
edge, this is the first-of-its-kind smartphone sensing system
and study. A natural question arises: Could we find similar
trends and correlations in a different student body? We are
currently working on a StudentLife study at the University of
Texas Austin for a class with a large number of remote stu-
dents. University of Texas Austin has semesters rather than
short terms. We are also planning a future study at North-
eastern University. Providing feedback of hidden states to
students and other stakeholders might be beneficial, but there
are many privacy issues to resolve. Students, deans, and clin-
icians on campus all care about the health and well-being of
the student body. In this study, the professor running the study
had access to survey outcomes, sensing data, and EMAs for
students. In two cases, the professor intervened and did not
give failing grades to students who failed to complete a num-
ber of assignments and missed lectures for several weeks.
Rather, they were given incomplete grades and completed as-
signments over the summer. However, in other classes these
students took, their professors did not have such data avail-
able and these students received failing grades. While ac-
cess to such data is under IRB and cannot be shared, the data
and intervention in grading enabled those students to return
to campus the following fall. If they had received 3 failing
grades, they would have been suspended for one term.
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