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ABSTRACT

Recent work on BitTorrent swarms has demonstrated that
a bandwidth bottleneck at the seed can lead to the under-
utilization of the aggregate swarm capacity. Bandwidth un-
derutilization also occurs naturally in mobile peer-to-peer
swarms, as a mobile peer may not always be within the
range of peers storing the content it desires. We argue
in this paper that, in both cases, idle bandwidth can be
exploited to allow content sharing across multiple swarms,
thereby forming a universal swarm system. We propose a
model for universal swarms that applies to a variety of peer-
to-peer environments, both mobile and online. Through a
fluid limit analysis, we demonstrate that universal swarms
have significantly improved stability properties compared to
individually autonomous swarms. In addition, by studying
a swarm’s stationary behavior, we identify content replica-
tion ratios across different swarms that minimize the average
sojourn time in the system. We then propose a content ex-
change scheme between peers that leads to these optimal
replication ratios, and study its convergence numerically.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design–distributed networks, store and for-
ward networks; C.4 [Performance of Systems]: Perfor-
mance Attributes

General Terms

Theory, Algorithms
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1. INTRODUCTION
Peer-to-peer systems have been tremendously successful

in enabling sharing of large files in a massive scale. This
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success has motivated several approaches of modeling Bit-
Torrent swarms [6, 11, 12, 13]. Such models have illuminated
important aspects of swarm behavior, including determining
conditions for swarm stability and minimizing the system’s
average sojourn time. The study of swarm stability amounts
to identifying conditions under which the swarm population
remains finite as time progresses, while the sojourn time
captures the time required until peers retrieve the file they
request and leave the swarm.

Our aim in this work is to provide answers for similar
questions in the context of universal swarms [15]. Rather
than considering swarms as individual autonomous systems,
we study scenarios in which peers from different swarms are
permitted to exchange file pieces (chunks) with each other.
Such inter-swarm exchanges make sense when bottlenecks in
a single swarm lead to bandwidth under-utilization.

One application in which such bandwidth bottlenecks nat-
urally arise is the peer-to-peer distribution of content over
mobile opportunistic networks. Mobile peers wishing to re-
trieve a file can do so by downloading chunks from other
peers they encounter opportunistically. These mobile con-
tent distribution systems have received considerable atten-
tion recently [1, 2, 4, 7, 8, 9, 14], as they alleviate the load
on the wireless infrastructure by harnessing the bandwidth
available during local interactions among mobile peers.

Bottlenecks in such peer-to-peer systems are a result of the
opportunistic nature of the communication between peers:
two peers meeting may not necessarily belong to the same
swarm and may not be interested in the same content. Nev-
ertheless, during encounters with peers from other swarms,
a peer may use its idle bandwidth to obtain pieces of files
in other swarms. Such exchanges can aid the propagation
of under-replicated pieces that are otherwise hard to locate.
If designed properly, such inter-swarm exchanges have the
potential to improve the overall performance in terms of so-
journ times and system stability.

Bottlenecks can also lead to bandwidth underutilization in
online swarms. An example can be found in the recent work
of Hajek and Zhu [6]. The authors considered the stability
of a single BitTorrent swarm comprising a single seed and a
steady stream of arriving peers (leechers). The peers share
pieces they have retrieved while they are in the system but
immediately depart once they download all pieces of a file.
Hajek and Zhu observed that if the arrival rate of peers
exceeds the upload capacity of the seed, the system becomes
unstable in a very specific way: almost all peers arriving in
the swarm very quickly obtain every missing piece except
for one. The seed is unable to serve these peers with the



missing piece fast enough and, as a result, the size of this
set of peers—termed the “one-club” [6]—grows to infinity.

When this so-called“missing piece syndrome”occurs, peers
waiting for the missing piece are effectively idle, and their
available upload bandwidth is essentially under-utilized. In
this work we argue that, provided that peers have excess
storage, this idle bandwidth capacity can be exploited in the
presence of other swarms to store and to exchange pieces of
other files. Such inter-swarm exchanges have the potential
of improving the overall stability of the universal swarm sys-
tem, as the peers in the “one-club” may be able to retrieve
their missing piece from collaborating peers in other swarms.
Most importantly, such transactions can be restricted to take
place only when the intra-swarm bottleneck has rendered
the peers idle, so inter-swarm exchanges do not hinder the
delivery of the file in any way.

Our contributions can be summarized as follows:

• We propose a novel mathematical model for inter-swarm
data exchange. Our model is simple but versatile enough
to capture several different peer-to-peer file-sharing en-
vironments, both mobile and online.

• Using the above model, we analyze the stability of
a universal swarm in which peers can retrieve items
they miss from other swarms, but otherwise keep their
caches static.

• Studying the stationary points of the data exchange
process, we characterize the optimal replication ratios
of pieces across swarms that minimize the system’s av-
erage sojourn times.

• We propose BARON, a scheme for guiding data ex-
changes to yield optimal replication ratios, and study
its convergence to these ratios numerically.

To the best of our knowledge, our work is the first sys-
tematic study of file sharing in a universal swarm system.
Our results suggest that universal swarms can indeed achieve
considerable performance improvements over independent
autonomous swarm systems.

In particular, we establish the following surprising result:
in a universal swarm where inter-swarm piece exchanges take
place, only one swarm can become unstable. This is an
interesting finding, especially when viewed in the context of
the work of Hajek and Zhu [6]. An intuitive explanation of
this phenomenon is this: a swarm growing to infinity attains
an ever-growing capacity, which can be used to serve the
missing pieces of other swarms. This service suppresses the
growth of other swarms and, as a result, no two “one-clubs”
can exist simultaneously.

Furthermore, our proposed scheme for guiding content ex-
changes can be used to enlarge the stability region for a uni-
versal swarm. Our design raises interesting open questions,
such as the construction of schemes that work, e.g., in fully
distributed or non-cooperative environments. Though our
model is simple, and our analysis is a first attempt at analyz-
ing universal swarm behavior, we believe that these results
are very promising. They indicate that universal swarms
have very appealing stability properties, and certainly merit
further investigation.

The remainder of this paper is structured as follows. We
begin with an overview of related work in Section 2 and
introduce our mathematical model for universal swarms in

Section 3. We present our main results on convergence, sta-
bility, and optimality in Section 4, and provide their proofs
in Section 5. We further propose BARON, a scheme to guide
the system to the optimal stationary state, and evaluate it
numerically in Section 6. We conclude by presenting future
directions in Section 7.

2. RELATED WORK
Qiu and Srikant [13] were the first to introduce a fluid

model for BitTorrent. Using an ordinary differential equa-
tion (ODE) to capture peer dynamics, they study sojourn
times at the fixed points of this ODE, as well as the impact
of incentive schemes. Our work is most similar to Massoulié
and Vojnovic [12] who, contrary to [13], study directly the
dynamics of the stochastic system determined by piece ex-
changes between peers. As in the present work, no seed ex-
ists: peers arrive already storing several pieces of a file, and
exchange pieces by contacting uniformly at random other
peers in the swarm. The authors identify conditions for sys-
tem stability and determine the sojourn time at equilibrium.
Massoulié and Twigg [11] study similar issues in the context
of P2P streaming, which differs by requiring that pieces are
retrieved in a certain order. Our work generalizes [12] by al-
lowing piece exchanges across swarms and, as [11, 12], stud-
ies a fluid limit of the resulting system.

Recent work by Hajek and Zhu [6] identifies the “missing
piece syndrome” described in the introduction. Their model
differs from [12] in assuming that a single, non-transient
seed exists while all other peers arrive with no pieces. The
bandwidth bottleneck due to the missing piece syndrome
partially motivates our study of universal swarms. We will
further elaborate on the relationship of our work to [6] in
our concluding remarks.

In the context of mobile peer-to-peer systems, BARON,
our scheme for guiding content exchanges, is related to a se-
ries of recent papers on optimizing mobile content delivery.
In general, the goal of these works is to ensure fast delivery
of content to mobile users through opportunistic exchanges
while using as few bandwidth and storage resources as pos-
sible. Schemes studied involve selecting which content to
transmit during contacts [1, 2, 7], which information to cache
in local memory [9, 14], or where to inject new content [8].
Our work differs both in considering an open system, where
mobile users depart once obtaining the content they want,
as well as in capturing several different (e.g., contact or in-
terference constrained) communication scenarios.

3. SYSTEM MODEL

3.1 Overview
The system that we model is a universal swarm, consisting

of several peers wishing to retrieve different content items.
Peers share content they store with other peers while they
are in the system; once a peer retrieves the content item
that it is interested in, it exits the system.

Our model describes both mobile and online peer-to-peer
swarms. In both cases, we assume that downloads take place
as in [12]: each peer is idle for an exponentially distributed
time and then contacts a peer selected uniformly at random
from the peers present in the system. During such contacts,
peers may choose to exchange content items they store and
all transfers are instantaneous.



In the wireless mobile case, the above contact process aims
to model mobility. That is, two mobile peers come into
contact whenever they are within each other’s transmission
range. In an online peer-to-peer network, the contact pro-
cess captures random sampling. In particular, peers sample
the system population uniformly at random to find the items
they want. No “universal tracker” exists, and peers do not
know which peers in other swarms may be storing the items
they request, hence the need for random sampling.

We make the following assumptions. First, every peer
entering the system is only interested in downloading a sin-
gle content item; once retrieving this single item, the peer
immediately exits the system. Second, whenever a peer con-
tacts another peer that stores its requested item, it is able
to retrieve the entire item immediately. Third, as in [12],
peers arrive with non-empty caches, and begin to share im-
mediately when they enter the system.

The above assumptions are obviously simplifications of
real-life peer-to-peer system behavior. On one hand, if our
items correspond to the granularity of files, a peer would not
be able to download an entire file within one downloading
session with another peer. If, on the other hand, items cor-
respond to the granularity of chunks, peers would need to
retrieve several items before exiting the system. Neverthe-
less, in spite of these simplifications, our analysis provides
interesting insights in universal swarm behavior, especially
in light of the “missing piece syndrome” observed by Hajek
and Zhu [6]. We will revisit this issue in Section 7.

3.2 Peer Swarms and Classes
We consider a universal swarm in which content items

belonging to a set K, where |K| = K, are shared among
transient peers. Each peer arrives with a request i ∈ K and
a cache of items f ⊂ K, where C = |f | is the capacity of the
cache. We denote by F = {f ⊂ K : |f | = C} the set of all
possible contents of a peer’s cache.

A peer swarm consists of all peers interested in retrieving
the same item i ∈ K. We partition the peers in the system
into classes according to both (a) the item they request and
(b) the content in their cache. That is, each pair (i, f) ∈
C = K× F defines a distinct peer class.

We denote by Ni,f (t) the number of peers requesting i
and storing f at time t. We use the notation

N(t) = [Ni,f (t)](i,f)∈C

for the vector representing the system state, i.e., the number
of peers in each class. We also denote by

N(t) =
∑

(i,f)∈C

Ni,f (t) = 1T ·N(t)

the total number of peers in the system at time t.

3.3 Peer Arrival Process
Peers requesting item i ∈ K and storing f ∈ F arrive

according to a Poisson process with rate λi,f , and that ar-
rivals across different classes are independent. By definition,
λi,f = 0 if i ∈ f . We denote by λ =

∑

(i,f)∈C
λi,f the ag-

gregate arrival rate of peers in the system. We also define

λi,· =
∑

f∈F

λi,f , λ·,i =
∑

j∈K

f:i∈f

λj,f , i ∈ K (1)

as the aggregate arrival rates of peers requesting and caching
item i, respectively.

For some of our results, we require that λ tends to infin-
ity; when doing so, we assume that the arrival rate corre-
sponding to each class increases proportionally to λ, i.e., the
normalized arrival rate

λ̂i,f = λi,f/λ (2)

is constant w.r.t. λ.

3.4 Contact Process
Opportunities to exchange items among peers occur when

two peers come into contact. As mentioned in Section 3.1,
contacts model different processes in a mobile network and
an online peer-to-peer network. In the mobile case, a con-
tact indicates that two mobile peers are within each other’s
transmission range. In the online case, contacts capture ran-
dom peer sampling in the universal swarm.

Formally, if N(t) is the total number of peers in the system
at time t, then a given peer a present in the system contacts
other peers according to a non-homogeneous Poisson process
with rate

µ · (N(t))1−β, β ∈ [0, 2].

The peer with which peer a comes into contact is selected
uniformly at random from the N(t) peers currently present
in the system. Moreover, the above contact processes are
independent across peers.

The parameter β is used to capture different communica-
tion scenarios that may arise in a mobile or online network.
We classify these below into contact-constrained, constant-
bandwidth, and interference-constrained scenarios.

Contact-constrained communication. When 0 ≤ β <
1, the contact rate of a peer is growing proportionally to the
total peer population. This would be the case in a sparse,
opportunistic or DTN-like wireless mobile network, where
peers are within each other’s transmission range very infre-
quently. In such cases, the bottleneck in data exchanges is
determined by how often peers meet. Adding more peers
in such an environment can increase the opportunities for
contacts between peers. This is reflected in the increase of
a peer’s contact rate as the population size grows.

Constant-bandwidth communication. When β = 1
the contact rate of a peer does not depend on the popula-
tion size. This reflects constant-bandwidth scenarios, where
the system population has no effect on the bandwidth capa-
bilities of a peer, and is thus a natural model of an online
peer-to-peer network.

Interference-constrained communication. When
β ∈ (1, 2], the contact rate of a peer decreases as the to-
tal peer population grows. This captures a dense wireless
network in which peers share a wireless medium to commu-
nicate. As the number of peers increases, the wireless inter-
ference can become severe, degrading the network through-
put. This is reflected in our model by a decrease in successful
contact events and, thus, in a peer’s contact rate.

If β > 2, the aggregate contact rate over all peers in the
system decreases as the total peer population grows. As-
suming constant arrival rates, such a system will be trivially
unstable; as such, we do not consider this case.

For simplicity of notation, we allow self-contacts. Con-
tacts are not symmetric; when Alice contacts Bob, Bob does



not contact Alice, and vice versa. This, however, is not re-
strictive: symmetric contacts can be easily represented by
appropriately defining symmetric interactions between two
peers (c.f. the conversion probabilities appearing below).

Under the above assumptions, when the system state is
N, the aggregate rate with which users from class A contact
users from class A′ is

µA,A′(N)=µNANA′/Nβ , A,A′ ∈ C. (3)

We call µA,A′ as the inter-contact rate between A and A′.

3.5 Content Exchanges During Contacts
When a peer in class A ∈ C = K×F contacts another peer

in class B ∈ C, the two peers may exchange items stored in
their respective caches. Such exchanges can lead to, e.g.,
(a) the departure of a peer, because it obtains the item it
requests, or (b) the change of its cache contents, as new
items replace old items in the peer’s cache.

In particular, given that the current state of the system is
N(t), when a peer of class A ∈ C contacts another peer in
A′ ∈ C, the peer in A is converted to a peer in B ∈ C∪ {∅}
and the peer in A′ is converted to a peer in B′ ∈ C ∪ {∅}
with the following probability

∆A,A′→B,B′(N(t)),

independently of any other event in the history of the process
N(t) so far. In the above, we use the notation ∅ to indicate
that a peer exits the system. We call the above ∆ func-
tions the conversion probabilities of the system. Conversion
probabilities depend on the global state N(t) at the time of
contact. We make the following technical assumption:

Assumption 1. For every s > 0, and for every A,A′ ∈ C

and B,B′ ∈ C ∪ {∅}, ∆A,A′→B,B′(N) = ∆A,A′→B,B′(sN).

In other words, the conversion probabilities are invariant to
rescaling : if all peer classes are increased by the same factor,
the conversion probabilities will remain unaltered. Let

ζAA′,A′′→B′,B′′ = 1B′=A + 1B′′=A − 1A′=A − 1A′′=A, (4)

be an indicator function capturing how a conversionA′,A′′→
B′, B′′ affects the population of class A. For example, (4)
states that conversions can increase NA by at most 2, when
both classes A′, A′′ are converted to A.

We require that conversions follow what we call the “grab-
and-go” principle: whenever two peers come into contact, if
the first stores the second peer’s requested item, the latter
will retrieve it and exit the system. In other words, con-
tent exchanges that lead to departures are always enforced.
Formally, the “grab-and-go” principle can be defined as:

∑

B′∈C∪{∅} ∆(i,f),(i′,f ′)→∅,B′ (N) = 1 if i ∈ f ′, and
∑

B∈C∪{∅} ∆(i,f),(i′,f ′)→B,∅(N) = 1 if i′ ∈ f.
(5)

The simplest interaction that satisfies the “grab-and-go”
principle is the static-cache policy: peers never alter the
contents of their caches for as long as they are in the sys-
tem, other than as dictated by the “grab-and-go” principle.
Formally, the static-cache policy can be stated as:

∆(i,f),(i′,f ′)→B,B′ (N) = 1, where

B =

{

∅, if i ∈ f ′

(i, f) o.w.,
and B′ =

{

∅, if i′ ∈ f

(i′, f ′), o.w.

(6)

Table 1: Summary of Notation
K Set of items
C Cache capacity
F Set of possible cache contents

(i, f) Class of users requesting i ∈ K and storing
f ∈ F

C The set of classes K× F

Ni,f (t) The number of users in class (i, f)
N(t) The system state
N(t) Number of peers in the system
λi,f Arrival rate of peers in class (i, f)
λ Aggregate arrival rate

λ̂i,f Normalized arrival rate for class (i, f)
β Decay exponent of the contact rate
µ Contact rate constant

∆A,A′→B,B′ Conversion probabilities
ζA
A′,A′′→B′,B′′ Effect of conversionA′, A′′

→ B′, B′′ on class A

δA′,A′′→B′,B′′ Limit points of the conversion probabilities
ni,f (t) Fluid trajectory of class (i, f)
n(t) Fluid trajectories of the system state
n(t) Sum of fluid trajectories

ni,·, n·,i Demand and supply for i ∈ K

n∗
i,·, n

∗
·,i Optimal demand and supply for i ∈ K

Of course, there are many other conversion probabilities
that satisfy the “grab-and-go” principle. In particular, (5)
tells us nothing about how peers interact with each other
when neither of them stores the other’s requested item.
Rather than leaving caches static, as in (6), such events can
be exploited to change the number of replicas in the sys-
tem, e.g., to reach some global optimization objective, like
increasing system stability or reducing the system sojourn
times. We do precisely this in Section 6: we design inter-
actions between peers (i.e., determine the conversion prob-
abilities) in a way that such a global optimization objective
is met.

4. MAIN RESULTS
Having described our system model, we now present our

main results. To begin with, we establish that, for arbitrary
conversion probabilities the dynamics of our system can ar-
bitrarily well approximated by a fluid limit (Section 4.1). We
then describe the stability region of the static-cache policy
(Section 4.2). Finally, we establish conditions under which
interactions that follow the“grab-and-go”principle minimize
sojourn times (Section 4.3).

4.1 Convergence to a Fluid Limit
Our first main result states that the evolution of the uni-

versal swarm through time can be approximated arbitrar-
ily well by the solution of an ordinary differential equation
(ODE). This result is very general: we prove convergence
to such a fluid limit for all β ∈ [0, 2) and all conversion
probabilities satisfying Assumption 1.

We begin by formally defining the notion of a fluid limit
of the universal swarm. We say that the vector

n(t) = [nA(t)]A∈C

is a fluid trajectory of the system if, for every class A ∈ C,
the functions nA : R+ → R+ satisfy the following ODEs:

ṅA(t)= λ̂A+
∑

A′,A′′∈C

B′,B′′∈C∪{∅}

ζAA′,A′′→B′,B′′µA′,A′′ (n(t))δA′,A′′→B′,B′′(n(t)), (7)
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Figure 1: Comparing the rescaled trajectory of the
original system to the fluid trajectory using the
static-cache policy. We simulated a system where
K = {1, 2, 3}, C = 1, and β = 0, for λk = 1 and λk = 100
respectively. The rescaled trajectory clearly con-
verges to the fluid trajectory as λk increases.

where λ̂A, µA′,A′′ , and ζAA′,A′′→B′,B′′ are given by (2), (3),

and (4) respectively, and δA′,A′′→B′,B′′ : R
|C|
+ → [0, 1] are any

functions that satisfy the following property:

δ·→·(n) ∈ [lim inf
n
′→n

∆·→·(n
′), lim sup

n
′→n

∆·→·(n
′)].

The δ functions are unique and coincide with the conver-
sion probabilities if and only if the latter are continuous. In
this case, the ODEs (7) also have a unique solution. For

any n∗ ∈ R
|C|
+ , let S(n∗) be the set of all fluid trajectories of

the system with initial condition n(0) = n∗. The following
theorem establishes two facts. First, S(n∗) is non-empty—
i.e., fluid trajectories exist for all initial conditions. Second,
under appropriate rescaling, a trajectory of the universal
swarm {N(t), t ∈ R+}, can be arbitrarily well approximated
by a fluid trajectory.

Theorem 1. Let α ≡ 1/(2− β). Consider a sequence of
positive numbers {λk}k∈N such that limk→∞ λk = +∞, and
a sequence of initial conditions Nk(0) = [Nk

A(0)]A∈C s.t. the
limit limk→∞ λk

−αNk(0) = n∗ exists. Consider the rescaled
process

nk(t) = λ−α
k Nk(λα−1

k t), t ∈ R+. (8)

Then for all T > 0 and all ǫ > 0,

lim
k→∞

P
(

inf
n∈S(n∗)

sup
t∈[0,T ]

|nk(t)− n(t)| ≥ ǫ
)

= 0,

i.e., nk converges to a fluid trajectory in probability.

The above convergence in probability is illustrated in Fig-
ure 1: the rescaled process nk(t) = 1Tnk(t) converges to the
fluid trajectory as we increase the scaling factor λk from 1
to 100. The proof of this theorem can be found in our tech-
nical report [16] and follows closely the argument in [10], so
we omit it for reasons of brevity.

Given a fluid trajectory {n(t)}t∈R+
, we denote by

ni,·(t) =
∑

f ni,f (t), n·,i(t) =
∑

j,f :i∈f nj,f (t), i ∈ K (9)

the (rescaled) population of peers requesting and caching
item i, respectively. We call ni,., n.,i the demand and the
supply of item i, respectively.

4.2 Stability of the Static-Cache Policy
Armed with the above system characterization through

its fluid trajectories, we turn our attention to the issue of
system stability. Intuitively, we wish to understand what is
the stability region of our system: what conditions should
the arrival rates λi,f , (i, f) ∈ C, satisfy, so that the total
number of peers in the system remains bounded?

Surprisingly, a universal swarm evolving under the static-
cache policy, arguably the simplest policy satisfying the
“grab-and-go”principle, has a very wide stability region. We
demonstrate this below by studying (a) the stability of the
fluid trajectories of the static-cache policy and (b) the er-
godicity of the original stochastic system.

We begin by stating our main result regarding fluid tra-
jectories. We say that the system of ODEs (7) is stable if
the fluid trajectories {n(t)}t≥0 remain bounded for all t ≥ 0
irrespectively of the initial conditions n(0). In other words,
irrespectively of how many peers are originally in the system,
the population never blows up to infinity. Denote by

λi,j =
∑

f :j∈f λi,f , i, j ∈ K, (10)

the aggregate arrival rate of peers requesting item i and
caching item j.

A sufficient condition for stability of the static-cache pol-
icy is stated in the following theorem, whose proof can be
found in Section 5.1.

Theorem 2. Assume that all rates λi,j are positive and
∑

j:j 6=i λj,i/λi,j > 1, ∀i ∈ K. (11)

Then, for all β ∈ [0, 2), the system of ODEs (7) under the
static-cache policy is stable.

There are several important conclusions to be drawn from
Theorem 2. To begin with, the stability region remains the
same for all values of β ∈ [0, 2): this is quite surprising, as it
implies that (7) applies to all the different contact regimes
we reviewed in Section 3.4 (contact-constrained, constant-
bandwidth, and interference-constrained communications).

In addition, recall that λi,· and λ·,i, given by (1), are the
aggregate arrival rates of peers requesting and caching item
i, respectively. Inequality (11) implies that the system can
be stable even if λi,· > λ·,i for some i, i.e., peers requesting
i arrive at a higher rate than peers storing i. In particu-
lar as long as for every i there exists an item j such that
λj,i > λi,j , then (11) are satisfied, and the system is sta-
ble. Intuitively, if such a j exists, the size of its swarm will
grow large enough to provide the upload capacity necessary
to serve peers requesting item i.

The above theorem has a direct equivalent w.r.t. the stochas-
tic process {N(t)}t∈R+

:

Theorem 3. Assume that all rates λi,j are positive and
that (11) holds. Then, for all β ∈ [0, 2), the stochastic pro-
cess {N(t)}t∈R+

under the static-cache policy is ergodic.

We provide a proof of this theorem in Section 5.2.
A very interesting aspect of static-cache stability is in

the manner in which the universal swarm becomes unsta-
ble when (11) is violated. In particular, recall by (9) that
ni,·(t) is the demand for item i, i.e., the size of the swarm
of peers requesting item i (in the fluid limit). The following
theorem then holds:



Theorem 4. Assume that all rates λi,j are positive, and
β ∈ [0, 2). Then there exists at most one item i ∈ K for
which

∑

j:j 6=i λj,i/λi,j < 1. (12)

Moreover, if such an item i exists, there exist initial condi-
tions n(0) such that

lim
t→∞

ni,·(t) = ∞, and lim sup
t→∞

nj,·(t)n
1−β
i,· (t) < ∞, ∀j 6= i.

In other words, for β ∈ [0, 1], only one swarm can become
unstable. There can be only one item that satisfies (12), and
although the swarm of peers requesting this item grows to
infinity, the product nj,·n

1−β
i,· remains bounded. As a result,

for β ∈ [0, 1], no other swarm than the one satisfying (12)
can become unstable. This property is very appealing, as it
suggests that even if the arrival rates are outside the stability
region, the stability of all but one swarm remains unaffected.
Note that, when β > 1, i.e., in the interference-constrained
case, the product nj,·n

1−β
i,· is also bounded; however, this

does not imply that other swarms do not grow. Nevertheless,
these swarms grow at a slower rate than ni,·.

This stability property arises precisely because the uni-
versal swarm utilizes available bandwidth for inter-swarm
communication. Intuitively, a swarm that becomes unstable
has unbounded uploading capacity. As a result, as long as
all arrival rates are positive, a fraction of this unbounded
capacity can be used serve to other swarms at a very high
rate; when β ∈ [0, 1], this rate is in fact high enough to
suppress the growth of any other swarm.

4.3 Optimality Under the “Grab-and-Go”
Principle

Despite the interesting stability properties of the static-
cache policy, it is still tempting to see whether we can design
more sophisticated policies that achieve a wider stability re-
gion. Preferably, given that the system is stable we would
like a design that minimizes average sojourn time. In this
section, we characterize the minimum sojourn time achiev-
able by any system satisfying the “grab-and-go” principle.
We will use this to propose a content exchange policy that
minimizes the average sojourn time in Section 6.

By Little’s Theorem, minimizing the average sojourn time
is equivalent to minimizing N(t), the total number of peers
in the system. We approach this problem by studying the
stationary points of the fluid trajectories. This is a heuris-
tic: by studying the stationary points of (7), we implicitly
assume that the Markov process {N(t)}t∈R+

exhibits some
form of concentration around these stationary points. Nev-
ertheless, we believe that there is important intuition to be
gained through our approach; we demonstrate that this is
indeed the case through our numerical study of a sojourn
minimizing system in Section 6.2.

Recall by (9) that ni,. and n.,i are the demand and sup-
ply of item i, respectively. The “grab-and-go” principle (5)
implies that the fluid trajectories given by (7) satisfy the
following set of equations:

ṅi,·(t) = λ̂i,· − 2µ · (n(t))−βni,·(t)n·,i(t). i ∈ K (13)

The above equations state that the swarm of peers request-
ing i grows with new peer arrivals and decreases at encoun-
ters between peers in the swarm and peers that cache i.
However, they do not specify what type of conversions take

place during other types of encounters between peers. Nev-
ertheless, a stationary point n ∈ R

|C| of (13) must satisfy:

ni,·n·,i − λ̂i,·(2µ)
−1(n)β = 0, ∀i ∈ K.

Since peers cache at most C items, the number of cached
items must be no more than the total cache capacity, i.e.,

∑

i∈K
n·,i ≤ Cn = C

∑

i∈K
ni,·

We now pose the following problem: among all stationary
points of content exchange policies that satisfy the “grab-
and-go” principle, which stationary point has the minimum
aggregate peer population? More formally, we wish to solve:

Minimize
∑

i∈K
ni,· (14a)

subj. to: ni,·n·,i − λ̂i,·

2µ
(
∑

i∈K
ni,·)

β = 0, ∀i ∈ K (14b)
∑

i∈K
n·,i ≤ C

∑

i∈K
ni,· (14c)

ni,· ≥ 0, ∀i ∈ K. (14d)

When β ∈ [0, 1], the above problem is convex [3] and its
solution is given by the following theorem:

Theorem 5. For β ∈ [0, 1] and ρi = λ̂i,·(2µC)−1 the
unique optimal solution to (14) is

n∗
i,· =

√
ρi(

∑

j:j∈K

√
ρj)

β/(2−β) (15a)

n∗
·,i = C

√
ρi(

∑

j:j∈K

√
ρj)

β/(2−β), ∀i ∈ K, (15b)

The proof of Theorem 5 can be found in Section 5.4. Note
that the theorem does not hold for β ∈ (1, 2], as (14) is
not convex for these values of β. Moreover, (15) describes
the optimal steady state demand and supply but not the
size of each individual class. By (15), the optimal supply
is proportional to the square-root of the aggregate arrival
rates of peers requesting this item. This was also observed
in the closed caching system described in [5]; our result can
thus be seen as an extension of [5] for an open system with
peer arrivals and departures. Finally, by (15)

n∗
i,· = Cn∗

·,i (16)

i.e., the demand is C times the supply. In Section 6, we use
this to propose a sojourn-minimizing item-exchange policy.

5. ANALYSIS

5.1 Proof of Theorem 2
Using (6), the ODE (7) for the fluid trajectories under the

static cache policy assumes the following simple form.

ṅi,f (t)= λ̂i,f−2µn(t)−βni,f (t)n·,i(t), i ∈ K, f ∈ F, (17)

where n·,i(t) =
∑

j,f :i∈f nj,f (t). The above differential equa-

tion has an explicit solution in terms of gi(t) := 2µn·,i(t)n(t)
−β,

given by nif (t) =
{

nif (0)+
∫ t

0
λ̂ife

∫ s
0

gi(u)duds
}

e−
∫ t
0
gi(u)du.

Consider now the ratio nif (t)/nif ′(t) for two distinct indices
f , f ′. In the view of the previous formula, it reads

nif (t)

nif ′(t)
=

nif (0) +
∫ t

0
λ̂if exp

(∫ s

0
gi(u)du

)

ds

nif ′(0) +
∫ t

0
λ̂if ′ exp

(∫ s

0
gi(u)du

)

ds
.

Since the function gi is non-negative, the argument in the in-
tegrals is lower-bounded by a positive constant. As a result,

it follows by L’Hospital’s rule that
nif (t)

nif′ (t)
=

λ̂if

λ̂if′
+ O(1/t).



This implies that for large t, the individual variables nij(t)
are related by proportionality constraints, and as a result
we can focus on tracking a smaller set of variables. Namely,

we introduce the variables ui(t) := ni·(t)

λ̂i·
· Each individual

variable nif (t) verifies nif (t) = λ̂ifui(t) +O(1/t), then

u̇i(t) = 1− ui(t)n·i(t)n(t)
−β

= 1− ui(t)
(

∑
j 6=i λ̂jiuj(t)

[
∑

j λ̂j·uj(t)]
β +O(1/t)

)

,

where λ̂ij as in (10) and λ̂i· as in (1). Hence, for large enough
T the evolution of ui within a finite interval [T, T + t] can
be arbitrarily well approximated by the ODE:

u̇i = 1− ui

∑

j 6=i λ̂jiuj

[
∑

j λ̂j·uj

]−β· (18)

We therefore focus on (18)—keeping in mind that our anal-
ysis below holds for large enough T . We will show that if
(11) is satisfied for every i ∈ K, then supi ui(t) is bounded
for all t. In particular, the following lemma holds:

Lemma 1. For M>0 large enough, there exist δ>0 and
ǫ>0 s.t. if supi ui(0)=M , then sup ui(Mδ)≤M(1− ǫ).

Proof. To show this, for a given M , fix a δ > 0. If
supi ui(δM) < M(1 − δ), then the lemma obviously holds
for ǫ = δ. Suppose thus that there exists an i such that
ui(δM) ≥ M(1−δ). By (18), for t ∈ [0, δM ] we have ui(t) ≤
ui(0)+ t ≤ M + δM and ui(t) ≥ ui(δM)+ t− δM ≥ M(1−
δ) − δM . Hence ui(t) ∈ [M(1 − 2δ),M(1 + δ)]. This in
turn implies that, for t ∈ [0, δM ], n(t) = Θ(M)(1 + O(δ)),

where the constants involved depend on λ̂i but not on t. As
a result, for j 6= i, and t ∈ [0, δM ], we have

u̇j(t) = 1− ujΘ(M1−β)(1 + ǫ1(δ)),

where ǫ1(δ) = 1 − 1+O(δ)

(1+O(δ))β
= O(δ). Thus for t ∈ [0, δ′M ],

where δ′ < δ, we have

uj(t) = [uj(0) +

∫ t

0

esΘ(M1−β)(1+ǫ1(δ))ds]e−tΘ(M1−β)(1+ǫ1(δ))

= uj(0)e
−tΘ(M1−β)(1+ǫ1(δ)) +

1− e−tΘ(M1−β)(1+ǫ1(δ))

Θ(M1−β)(1 + ǫ1(δ))
.

Fix a 0 < δ′ < δ, then

uj(δ
′M) =O(Me−Θ(δ′M2−β)(1+ǫ1(δ)))+

1−e−Θ(δ′M2−β )(1+ǫ1(δ))

Θ(M1−β)(1+ǫ1(δ))

=Θ(M−(1−β))(1 + ǫ2(M, δ, δ′)),

where ǫ2 = O(ǫ1(δ)+M2−βe−Θ(δ′M2−β )(1+ǫ1(δ))). From this
and (18) we get that for t ∈ [δ′M, δM ]

u̇j(t) = 1− uj λ̂i,jλ̂
−β
i,· M

1−β(1 + ǫ3(M, δ, δ′)),

where ǫ3 = O(δ+O(Mβ−2)+O(Mβ−2ǫ2) = O(δ)+O(Mβ−2)+

O(e−Θ(δ′M2−β )(1+ǫ1(δ))). From this refined bound on the
ODE, we can repeat the steps above to get that for t ∈
[δ′′M, δM ], where δ′ ≤ δ′′ < δ, we have

uj(t) = λ̂β
i,·λ̂

−1
i,j M

β−1(1 + ǫ4(M, δ, δ′, δ′′)),

where ǫ4 = O(ǫ3) +O(M2−βe−Θ(δ′′M2−β )). As a result, for
t ∈ [δ′′M, δM ],

u̇i(t) = 1− ui

∑

k 6=i λ̂kiuk

nβ

= 1− ui(t)

∑

k 6=i λ̂k,i
λ̂
β
i·

λ̂ik
[Mβ−1(1 + ǫ4)]

[λ̂i·M(1 +O(M2−β)(1 + ǫ4)]β

= 1− ui

∑

k 6=i

λ̂k,i

λ̂i,k

[M(1 + ǫ5(M, δ, δ′, δ′′))]−1,

for ǫ5 = O(ǫ4)+O(M2−β). Let γi =
∑

k 6=i
λ̂ki

λ̂ik
> 1, by (11).

Then

ui(δM) = ui(δ
′′M)e−γi(1+ǫ5)(δ−δ′′) +M

1− e−γi(1+ǫ5)(δ−δ′′)

γi(1 + ǫ5)
.

By a Taylor expansion, ui(δM) becomes

ui(δ
′′M)[1−γi(1+ǫ5)(δ−δ′′)+O(δ2)]+M [(δ−δ′′)+O(δ2)

≤M [1 + δ′′ + (δ − δ′′)[1− γi(1 + ǫ5)] +O(δ2)]

as ui(δ
′′M) ≤ M(1 + δ′′) by (18). Assume now that M is

large, and set δ = Θ(M (β−2)/2) and δ′, δ′′ to be proportional
to δ, such that δ′ < δ′′ < δ and δ′′ + (δ − δ′′)[1 − γi] < 0.
It then follows that ǫ5 = O(δ). Hence for large enough M
(and small enough δ) ui(δM) = M [1+δ′′+(δ−δ′′)[1−γi]+
O(δ2)] < 0 and the lemma follows.

Hence, outside a bounded set, supi ui has to decrease (i.e.,
is a Lyapunov function), and the theorem follows.

5.2 Proof of Theorem 3
We now establish that under condition (11), the original

Markov process N(t) is ergodic. To this end, we shall rely
on the fluid limit approach. That is to say, we shall identify
a Lyapunov function F , and establish that, for initial condi-
tion N(0) such that F (N(0)) = M , then , for large enough
M , it holds that

EF (N(δM)) ≤ (1− ǫ)M, (19)

for suitable positive constants δ, ǫ > 0. Unsurprisingly, the
line of argument parallels that of Theorem 2’s proof, with
some additional elements introduced to take care of the ran-
dom fluctuations in the process.

The Lyapunov function to be considered is

F (N) := supi6=j Nij/λij .

Define the event Ωij = {Nij(Mδ) ≥ λijM(1− δ)}. We first
establish the following intermediate result.

Lemma 2. On the event Ωij , for some positive constants
γ, c > 0, for all k 6= i, with probability 1− e−Θ(M) one has

Nij(t) ∈ [λijM(1− cδ), λijM(1 + cδ)], t ∈ [0,Mδ], (20)

Nik(Mδ) ∈ [γM, λikM(1 + cδ)], k 6= j. (21)

Proof. Let Eik denote the unit rate Poisson processes
used to generate the arrival times of type (ik)-users in the
system. Consider the event Ω1 = {|Eik(λikMδ)−λikMδ| ≤
Mλikδ/2, k 6= i}. Then using Chernoff bounds, it is readily

seen that its probability is at least 1− e−Θ(M).
To establish (20), it suffices to note that

Nij(Mδ)− Eij(λijMδ) ≤ Nij(t) ≤ Nij(0) + Eij(Mδ),

and on the event Ω1 ∩ Ωij , the left-hand side is at least
λijM(1−(5/2)δ) and the right-hand side is at most λijM(1+
(3/2)δ). (20) thus holds with c = 5/2.



Consider next k 6= j. We introduce now the notationDi(t)
to represent the number of departures of users requesting
object i in time interval [0, t]. On the event Ω1, necessar-
ily Di(Mδ) ≤ rM for some suitable constant r. Indeed,
Di(Mδ) cannot exceed Ni·(0)+

∑

k 6=i Eij(Mδλij), which in

turn is no larger than
∑

k 6=i Mλik(1 + (3/2)δ) on Ω1, given

the initial condition F (N(0)) = M .
Introduce now Dik(t) to represent the number of depar-

tures of type (ik)-users during time interval [0, t]. This pro-
cess is generated as follows: at each jump time T of the
counting process Di(·), conditional on the past of the pro-
cess before time T , a type (ik)-user is chosen to leave the
system with probability Nik(T

−)/Ni·(T
−). An explicit con-

struction of this selection mechanism can be made by at-
taching a uniform random variable Un to each jump point
Tn of the process Di in [0,Mδ], and by letting

Dik(t) =
∑

n:Tn≥t 1Un<Nik(T−
n )/Ni·(T

−
n )

.

As previously established, on the event Ω1 ∩ Ωij , one has
Ni·(t) ≥ Mγ for all t ∈ [0,Mδ], and Di(Mδ) ≤ rM . This

entails that, on this event, Dik(Mδ) ≤ ∑rM
n=1 Zn, where

Zn := 1
Un<(X−

∑n−1

ℓ=1
Zℓ)/Mγ

, andX := Nik(0)+Eik(λikMδ).

Indeed, type (ik)-departures are more likely if arrivals occur
at the beginning of the interval [0,Mδ].

This yields a first lower bound:

Nik(Mδ) ≥ Y := X −∑rM
n=1 Zn. (22)

To simplify this further, one can note that the resulting ran-
dom variable Y is stochastically reduced if one replaces X in
both this expression and the definition of the random vari-
ables Zn by a lower bound. On the event Ω1, such a lower
bound consists in Mρ with ρ = λikδ/2.

We now control the probability that the lower bound Y
in (22) is below a threshold τM for some constant τ > 0,
taking X = Mρ. We have the following representation:

P(Y < τM) = P(
∑(ρ−τ)M

n=0 Vn ≤ rM), where the random
variables Vn are independent, geometrically distributed with
parameter (ρM−n)/(γM). We omit details, but Chernoff’s
bounding technique can be used, by evaluating the Laplace

transform of the random variable
∑(ρ−τ)M

n=0 Vn, to show that,
for small enough constant τ > 0, the probability P(Y <
τM) is at most exp(−Θ(M)). This concludes the proof of
the Lemma.

We next need the following Corollary.
Corollary: On the event Ωij , for any δ′ < δ, with proba-

bility 1− exp(−Θ(M)), the following holds for all k 6= i:

Nk·(Mδ′) ≤ Bin(O(M), e−Θ(M2−β)) + Poi(Θ(Mβ−1)),

where Bin denotes a Binomial random variable, Poi a Pois-
son variable, that are mutually independent.

Proof. On Ωij , with probability 1−e−Θ(M) it holds that
Nij(Mδ′) ≥ M(1− (5/2)δ). The previous Lemma, suitably
modified, therefore applies, and thus, there must exist a con-
stant δ′′ < δ′ such that with probability 1 − e−Θ(M), the
following holds: Nik(t) = Ω(M), t ∈ [Mδ′′,Mδ′]. Consider
now the dynamics of (Nk·). Arrivals occur at a rate λk·, and
departures occur at a time-varying rate Nk·(t)N·k(t)N(t)−β.
The product N·k(t)N(t)−β is at least Ω(M1−β) on the inter-
val [δ′′M, δ′M ] by the previous argument. Thus its state at
time Mδ′ can be upper-bounded by that of a M/M/∞/∞

queue, with initial state Nk·(Mδ′′) at time Mδ′′, arrival
rate λk· and death rate Ω(M1−β). Now, with probability

1− e−Θ(M), it holds that Nk·(Mδ′′) = O(M), and the result
follows.

We are now ready to conclude the proof of the Theorem.
To this end, we place ourselves on the event Ωij , and de-
rive bounds on the trajectories Nij(t) for t in the interval
[Mδ′,Mδ], relying on the previous results.

As we have just seen, with probability 1 − e−Θ(M), the
components Nik(Mδ′) are of order Θ(M). Furthermore, fol-
lowing the same lines as in the proof of (21), we can deduce
from the fact that Nij(t) = Nij(0)(1 + O(δ)), t ∈ [0,Mδ]
that

Nik(t) = Nik(Mδ′)(1 +O(δ)), t ∈ [Mδ′,Mδ]. (23)

Let us now introduce dedicated unit rate Poisson processes
∆kℓ for each user type (kℓ), and consider the representation

Nkℓ(t) = Nkℓ(Mδ′) +Ekℓ(λkℓ(t−Mδ′))

−∆kℓ(µ
∫ t

Mδ′
Nkℓ(s)N·k(s)N(s)−βds).

Replacing in the above N·k(s) by an upper bound of order
Nik(Mδ′)(1 + O(δ)), and N(s) by a lower bound of order
Ni·(Mδ′)(1 + O(δ)), we obtain a process N+

kℓ(t) that is an
upper bound to Nkℓ(t), and that is an M/M/∞/∞ process
with arrival rate λkℓ and death rateNik(Mδ′)Ni·(Mδ′)−β(1+
O(δ)).

Subsequently, we can also derive lower-bounding processes
N−

kℓ(t) by upper-bounding N·k(s) by

N·k(s) ≥ Nik(Mδ′)(1 +O(δ)) +
∑

m6=i,k N
+
mk(s),

and lower-bounding N(s) by N(Mδ′)(1 + O(δ)) in the ar-
gument of ∆kℓ. Note now that the processes N+

kℓ have
a stationary distribution that is Poisson with parameter
O(Mβ−1). Thus with high probability, their supremum over
[Mδ′,Mδ] is small compared to Niℓ, itself of order M . Even-
tually, we obtain that with high probability, Nkℓ(t) admits
lower bounds N−

kℓ(t) that are M/M/∞/∞ processes with
arrival rate λkℓ and death rates again equal to

Nik(Mδ′)Ni·(Mδ′)−β(1 +O(δ)).

These lower bounds in turn will provide upper bounds on
Nik, by writing

Nik(t) ≤ Nik(Mδ′) + Eik(λik(t−Mδ′))

−∆ik(
∫ t

Mδ′
Nik(s)[

∑

ℓ 6=i N
−
ℓi (s)]N(s)−βds.

(24)
The argument of ∆ik is lower-bounded by

Nik(Mδ′)Ni·(Mδ′)−β(1 +O(δ))

∫ t

Mδ′

∑

ℓ 6=i

N−
ℓi (s)ds.

By the ergodic theorem, applied to the M/M/∞/∞ pro-
cesses N−

ℓi , this integral reads with high probability with
respect to M :

(t−Mδ′)
∑

ℓ 6=i

λℓi
Ni·(Mδ′)β

Niℓ(Mδ′)
(1 +O(δ)).

Upon simplification, we have with high probability, replacing
in (24) the Poisson processes Eik and ∆ik by their expecta-
tion, up to some error vanishing as M increases,

Nik(Mδ)−Nik(Mδ′) ≤ M(δ − δ′) [λik −−(1 +O(δ))× . . .

. . . Nik(Mδ′)
∑

ℓ 6=i
λℓi

Niℓ(Mδ′)

]

.



Let aik(t) = λ−1
ik Nik(t). The previous equation reads

aik(Mδ)− aik(Mδ′) ≤ M(δ − δ′)× · · ·
· · · ×

[

1− aik(Mδ′)
∑

ℓ 6=i
λℓi

λiℓ

1
aiℓ(Mδ′)

(1 +O(δ))
]

.

Now, for the index k for which aik(Mδ′) is largest,the right-
hand side of the above is no larger than

M(δ − δ′)
[

1− (1 +O(δ))
∑

ℓ 6=i

λℓi

λiℓ

]

,

itself strictly smaller than −Mǫ for some positive ǫ, if we
chose δ small enough, when condition (11) is in force. This
enables to conclude that, with high probability,

sup
i,j

Nij(Mδ)/λij = F (N(Mδ)) ≤ (1− ǫ)F (N(0)).

The same bound applies to the expectation of the left-hand
side, using a uniform integrability argument. This estab-
lishes the desired contraction property of the Lyapunov func-
tion F and, hence, the ergodicity of the original Markov
process.

5.3 Proof of Theorem 4
To show that there can be at most one i for which (12)

holds, we observe that if it holds for some i, then for any
other j 6= i, we have λ̂j,i/λ̂i,j < 1. This implies that any
other j satisfies (11), so no j 6= i can also satisfy (12).

To prove the remainder of the theorem, we use the nota-
tion z = x ± y to indicate that z ∈ [x − y, x + y]. Suppose

that γi =
∑

k 6=i λ̂ki/λ̂ik < 1 for some i and assume that

ui(0) = M > 0, for some large M . Assume further that for

j 6= i, uj(0) = u1−β
i

λ̂
β
i·

λ̂i,j
(1 ± ǫ), for some small ǫ > 0. The

following lemma then holds:

Lemma 3. For all ǫ > 0, there exists M0 > 0 s.t. for all
M > M0 there exists δ > 0 such that if ui(0) = M and

u1−β
i (0)uj(0) = (1 ± ǫ)λ̂β

i·/λ̂i,j , then uj(t)u
1−β
i (t) = (1 ±

ǫ)λ̂β
i·/λ̂i,j for all t ∈ [0, δ].

Proof. Fix some ǫ > 0. The lemma follows by the con-
tinuity of the fluid trajectories if u1−β

i uj is in the interior

of
λ̂
β
i·

λ̂i,j
(1± ǫ). Suppose thus that it is at the boundary. We

consider the upper boundary case, i.e., uju
1−β
i =

λ̂
β
i·

λ̂i,j
(1+ ǫ)

and show that d
dt
uju

1−β
i is negative, so that uju

1−β
i is forced

in the interior; the same argument can be used to show that
the derivative is positive when at the lower boundary, so we
omit this case. Indeed

d

dt
u1−β
i uj = (1− β)u̇iu

−β
i uj + u1−β

i u̇j

=(1− β)u−β
i uj(1−ui

∑

k 6=i λ̂kiuk

nβ
)+u1−β

i (1−uj

∑

k 6=j λ̂kjuk

nβ
).

Note that uj(0) = Θ(uβ−1
i (0)), where the asymptotic nota-

tion is as M → ∞. Observe that, since λ̂i′,j′ > 0 for all

i′, j′ ∈ K, we have that at time t = 0, 0 <
∑

k 6=i λ̂kiuk

nβ =

Θ(uju
−β
i ) = Θ(u−1

i ), and 0 <
∑

k 6=j λ̂kjuk

nβ = u1−β
i

λ̂i,j

λ̂
β
i,·

(1 +

o(1)). We thus have that, at t = 0,

d

dt
u1−β
i uj =

λ̂β
i·

λ̂i,j

(1 + ǫ)
( 1

uj
−u1−β

i

λ̂i,j

λ̂β
i,·

(1 + o(1)) +O(u−1
i )

)

=
λ̂β
i·

λ̂i,j

(1 + ǫ)
( 1

uj
−u1−β

i

λ̂i,j

λ̂β
i,·

(1 + o(1)))
)

as u−1
i = o(u1−β

i ) for β < 2. On the other hand as uju
1−β
i =

λ̂
β
i·

λ̂i,j
(1 + ǫ) implies that u−1

j = u1−β
i

λ̂
β
i·

λ̂i,j

1
1+ǫ

< u1−β
i

λ̂
β
i·

λ̂i,j
, so

for M large enough the above quantity is negative.

Consider now a fluid trajectory in which ui(0) = M and

u1−β
i (0)uj(0) =

λ̂
β
i·

λ̂i,j
(1± ǫ). Then we have that

u̇i = 1− ui

∑

k 6=i λ̂kiuk

nβ
= 1− ui

∑

k 6=i λ̂ki
λ̂
β
i,·

λ̂i,k
uβ−1
i 1± ǫ

(
∑

k λ̂k,·uk)β

= 1− ui

∑

k 6=i

λ̂k,i

λ̂i,k
λ̂β
i·u

β−1
i (1± ǫ)

λ̂β
i·u

β
i (1 + o(1))

,

which for large enough M and a small enough ǫ becomes

1 − ∑

k 6=i
λ̂ki

λ̂ik
(1 + o(1)) > 0. This, along with Lemma 3

implies we can select an ǫ > 0 such that, for large enough

M , if ui(0) = M and u1−β
i (0)uj(0) =

λ̂
β
i·

λ̂i,j
(1± ǫ), then there

exists a δ > 0 s.t. u′
i(0) is positive and bounded away from

zero uniformly in M and u1−β
i (t)uj(t) =

λ̂
β
i·

λ̂i,j
(1± ǫ), for all

t ∈ [0, δ]. This in turn implies that the above is true for all
t ≥ 0, and, in particular, that ui diverges to infinity.

5.4 Proof of Theorem 5
Let us define xi = ni,· and ρi = λ̂i,·(2µC)−1, i ∈ K.

By (14b), we have

n·,i = Cρi(
∑

j:j∈K
xj)

β/xi. (25)

Using (25), we can rewrite (14) as the following equivalent
convex optimization problem involving only xi:

Minimize
∑

i∈K
xi

subj. to:
∑

i∈K
(ρix

−1
i ) ≤ (

∑

i∈K
xi)

1−β , i ∈ K (26a)

xi ≥ 0, i ∈ K. (26b)

We can write its Lagrangian function as

Λ(x, ϕ,w) =
∑

i∈K
xi + ϕh(x) +

∑

i∈K
wig(xi),

where ϕ and w = [wi]i∈K are Lagrangian multipliers, x =
[xi]i∈K, h(x) =

∑

i∈K
ρix

−1
i − (

∑

i∈K
xi)

1−β, and g(xi) =
−xi. Hence, any x̃ = {x̃1, ..., x̃K} is optimal if and only if it
satisfies the following KKT conditions [3]:

h(x̃) ≤ 0, g(x̃i) ≤ 0, i ∈ K, (27a)

ϕ ≥ 0, wi ≥ 0, i ∈ K, (27b)

ϕh(x̃) = 0, wig(x̃i) = 0, i ∈ K, (27c)

dΛ

dxi
(x̃, ϕ,w) = 0, i ∈ K. (27d)

We know that xi > 0, ∀i ∈ K from (26a) and (26b). Thus
condition (27c) requires wi = 0,∀i ∈ K and (27d) needs
ϕ 6= 0. Then by ϕh(x̃) = 0 in (27c) and condition (27d), any
optimal solution x̃ must satisfy the following two equations:

h(x̃) = 0,
dΛ

dxi
(x̃, ϕ, [0]) = 0



Solving these two equations leads to the unique solution

xi =
√
ρi(

∑

j:j∈K

√
ρj)

β
2−β , i ∈ K, as shown in (15a), and

the Lagrangian multiplier ϕ = (
∑

i∈K

√
ρi)

2β
2−β (2− β)−1.

By plugging xi into (25), we can derive the value of n∗
·,i

as (15b), and (15) is the unique optimal solution of (14).

6. BARON: GUIDING CACHE REPLACE-

MENT VIA VALUATIONS
Our analysis in Section 5.4 has identified the optimal sta-

tionary points that minimize the average sojourn time. How-
ever, we have not described a method for leading the system
to such points. In this section, we present BARON to bridge
this gap. BARON dictates how peers should exchange con-
tent items so that the system converges to the optimal points
defined in Theorem 5. We also demonstrate BARON’s per-
formance using numerical simulations.

BARON is a centralized scheme. In particular, it requires
estimating the demand and supply of each item i ∈ K, cap-
tured by the population of peers requesting and storing i,
respectively. In practice, individual peers may maintain es-
timates of these quantities, e.g., either by gossiping or sam-
pling. However, studying decentralized schemes for estimat-
ing the demand and supply is beyond the scope of this paper.
As a result, we focus on scenarios in which these quantities
are readily monitored through at a centralized tracker.

6.1 Designing BARON
To lead the system to the optimal point, one intuitive

way is to first identify which items are over-replicated and
which are under-replicated. Whenever two peers come into
contact, if one has an over-replicated item i and the other has
an under-replicated item j, then the first peer replaces its
item i with item j. This replacement increases the current
supply n·,i of the under-replicated item.

Valuations in BARON. BARON keeps track of whether
an item is currently over-replicated or under-replicated in
following way. In particular, for each content item i, BARON
maintains a real-valued variable vi. We will call this variable
the valuation of item i.

Our choice of valuation is inspired by (16), which states
that at an optimal point the supply of an item is C times
the demand. Motivated by this, the valuations are given by

vi(t) = Cni,·(t)− n·,i(t), i ∈ K. (28)

A positive valuation vi > 0 indicates that item i is currently
under-replicated. Similarly, a negative valuation vi < 0 in-
dicates that item i is currently over-replicated.

One appealing property of (28) is that it requires prior
knowledge only of the cache capacity C; in particular, it
does not require knowledge of the arrival rates λi,f of each
peer class. Nevertheless, this valuation requires to track the
supply and demand for each item.

Content exchange guided by valuations. BARON
is a centralized design that relies on a central controller to
maintain the valuations (28). In addition, this central con-
troller lists the valuations on a public board, and makes
them available to all peers.

The content exchanges between peers are guided by these
valuations following a negative-positive rule. More specifi-
cally, during a contact event between a peer A with cache

f and a peer B with f ′, each peer checks if it has any over-
replicated items. If so, it further checks whether the other
peer has any under-replicated items that it has not already
stored in its cache. If such a pair of items exists, a replace-
ment takes place. In particular, the first peer A replaces the
item with the minimal negative valuation in its cache, i.e.,
peer A removes item i such that

i = argmin{vx|x ∈ f, vx < 0}.
Then, among the under-replicated items in the peer B’s
cache f ′ yet not in peer A’s cache f , peer A replicates the
item with the maximal positive valuation, i.e. peer A selects
item j such that

j = argmax{vy |y ∈ f ′ \ f, vy > 0}.
After retrieving item j from peer B, peer A replaces i with
j. Hence its cache f changes to (f \ {i})⋃{j}. A similar
procedure follows for peer B.

Clearly, there are other ways to design valuations and the
rules for guiding content exchanges via valuations. In Sec-
tion 6.3, we will examine other options for these two design
components of BARON.

Based on the above definitions, the conversion probabili-
ties of BARON satisfy Assumption 1 because of the positive-
negative rule. As a result, by Theorem 1, we can study the
dynamics of BARON through its fluid trajectory.

6.2 Evaluating BARON
We evaluate BARON’s fluid trajectories using numerical

simulations in MATLAB. Our main observation is that, by
guiding the content exchanges through valuations, BARON
converges to the optimal stationary points defined in (15),
which minimize the average sojourn time.

6.2.1 BARON vs. Static-Cache Policy

We compare BARON to the static-cache policy by the
examining system stability and optimality when using each
design. Then we further use the static-cache policy as an
example to demonstrate that only one swarm becomes un-
stable when instability occurs.

We simulate the following scenario. Assume there are
three items {1, 2, 3} in the system, and peer’s cache size
is one. Hence we have six peer classes, where each class of
peers requesting item i and caching item j ( 6= i) has a nor-

malized arrival rate of λ̂i,j . Peers requesting one item form
one swarm, leading to three swarms in total. We set the
contact process parameters as β = 0 and µ = 0.002. We
assume initially no peer is in the system.

Stability. We begin with comparing the system stability
under BARON and the static-cache policy. In particular, we
aim to understand under which conditions of arrival rates,
the system stabilizes when using each design. So we leave
λ̂23 as a free variable, and fix the relative ratios of the other
five classes as 1

5
, 1
15
, 2
15
, 1
5
, 2
5
, respectively of (1 − λ̂23). To

identify the system stability for a given λ̂23 value, we ex-
amine the system’s fluid trajectory over a significantly long
time (t ≈ 105).

Figure 2(a) shows the rescaled peer population when the

system can stabilize as we vary λ̂23. We see that when using
the static-cache policy, the system stabilizes only when λ̂23 is
above 4

19
. This verifies the conclusion in Theorem 2 since 4

19

is the arrival rate λ̂23 that violates condition (11). In con-
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Figure 2: Comparing BARON and
static-cache (SC) policy by varying
arrival rate configurations.
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Figure 3: BARON under various β.
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Figure 4: Examining the peer popu-
lation under various design options
in BARON.

trast, when using BARON, the system has a much larger
stability region. More specifically, the system is able to sta-
bilize when λ̂23 is larger than 0.1145. This demonstrates
BARON’s effectiveness of guiding content exchanges.

Optimality. We further examine the stationary state
that the system converges to when using BARON and the
static-cache policy. As shown in Figure 2(a), the system un-
der the static-cache policy converges to a non-optimal state.
Moreover, the closer λ̂23 is to the stability boundary 4

19
, the

more peers in the stationary state. In contrast, BARON
is able to guide the system to the optimal stationary state
if the system stabilizes. This demonstrates that BARON
achieves optimality by the use of valuations.

Single swarm instability. Now we examine how peer
classes evolve in time when instability occurs under the static-
cache policy. Figure 2(b) shows the population of each peer

class along the time when λ̂23 = 4
19
, demonstrating the con-

clusion in Theorem 4: only one swarm can become unstable.
Recall that peers requesting the same item form one swarm.

Our main observation is that only the swarm requesting item
3 blows up. This is because item 3 is the one that does not
satisfy (11). As this swarm grows, peers in other swarms
can obtain their requested items quickly and depart. Hence
the supply for item 3 further decreases.

6.2.2 Dependence on β

To comprehensively understand BARON’s performance,
we extend to cases with other β values. In particular, we
examine two cases with β = 0.5 and β = 1 respectively. As
shown in Section 3.4, a larger β indicates a smaller contact
rate. The case when β = 1 is the constant-bandwidth com-
munication scenario where a peer’s contact rate is constant
regardless of the peer population. We do not simulate the
case where β > 1, because the optimality result identified in

Section 4.3 does not hold for such β. We configure the other
parameters as in Figure 2 with λ̂23 = 1

6
.

Figures 3(a) and (b) show the evolution of the total num-
ber of peers in time. The main observation is that, while the
system does not stabilize when using the static-cache policy,
the system under BARON converges to the optimal in both
cases. This demonstrates the effectiveness of the valuations
under various communication settings. Even though the ag-
gregate contact rate decreases as β increases, BARON is
still able to adapt the item supply according to the demand,
guiding the system towards the optimal.

Furthermore, as the contact rate becomes smaller when
β increases, the system with BARON takes longer time to
stabilize to the optimal. This is because the item replace-
ment and replication only occur during contact events. A
smaller contact rate slows down the adjustment of the item
distribution, leading to a slower convergence.

6.3 Comparing to Other Designs
BARON has two design components – the valuations

in (28) and the negative-positive rule. Now we experiment
with other designs for these two components, and examine
their performance in comparison to BARON.

An alternative valuation v′i is

v′i(t) = n∗
·,i − n·,i(t), i ∈ K, (29)

i.e., item i’s valuation is defined as the distance of its cur-
rent supply n·,i to the optimal n∗

·,i as given by (15b). Note
that in (29), computing the optimal supply n∗

·,i requires the
knowledge of several system parameters, including the ar-
rival rates λi,f , (i, f) ∈ C, and the contact process param-
eters µ and β. Obtaining the values of these parameters
could be difficult in practice.

Moreover, instead of the negative-positive rule (NPR) in
BARON, another rule of guiding content exchanges via val-



uations is replacing one item with another as long as the
other item has a higher valuation and the item is not al-
ready stored. We refer to it as the lower-higher rule (LHR).

We examine all four combinations of these design options,
where BARON is the combination of NPR with valuations
vi defined in (28). We use the same configuration as Sec-
tion 6.2.2, and assume initially 16 peers request item 3.

Figures 4(a) and (b) plot the trajectories of peer popu-
lation under various design combinations. We observe that
none of the other combinations performs better than BARON.

In addition, in terms of the comparison of design options
for each component, we make the following observations.
First, the two valuations perform similarly, and vi performs
better than v′i under LHR. Second, the system with NPR
converges to the optimal faster than LHR. This is inter-
esting because NPR is stricter than LHR, and one would
expect that LHR leads to a faster convergence by enabling
more frequent replications and replacements. Indeed, from
Figures 4(a) and (b), we observe that the peer population
stays around its peak (≈35) for a longer time when using
NPR. Nonetheless, NPR is able to catch up later. While this
demonstrates the efficiency of restricting the replacement to
over-replicated item only, the analytical reason beneath is
worthwhile to further explore.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we made the first attempt towards a system-

atical understanding of universal swarms, where peers share
content across peer-to-peer swarms. We have rigorously
proved that such content exchange across swarms signifi-
cantly improves stability compared to a single autonomous
swarm. We also have proved convergence to a fluid limit
for a general class of content exchanges; our theorem thus
paves the way for the analysis of more complicated exchange
schemes than the one described in the present work.

An important future research direction lies in further in-
vestigating the parallels between our work and“missing piece
syndrome” in single swarms [6]. In particular, once a “one-
club” forms in a swarm, each “one-club” peer has idle band-
width capacity. It can thus contact uniformly at random
peers and seeders at other swarms to obtain C items and
place them in its cache, and subsequently continue to sample
other swarms to see if it can retrieve and/or offer a missing
piece. From this point on, our model applies: peers wish
to retrieve one item (their “missing piece”), and leave the
system immediately once they retrieve it (corresponding to
the “grab-and-go” principle).

This is of course a simplification of the above system, as it
ignores the“growing” phase when peers acquire all chunks of
a file but the last one, as well as the cache-filling phase. How-
ever, in light of the stability properties we observed in this
work, understanding if, e.g., the stability region increases
through such exchanges, is an interesting open question.

Our analysis leaves several additional open questions, in-
cluding formally characterizing the stability conditions of
BARON, and analytically studying BARON’s convergence
to optimal stationary points. Our model can also be ex-
tended in various ways, including multi-item request, het-
erogeneous cache sizes and contact rates. The case where
arrival rates are not strictly positive, and peers arrive with
a partially-filled cache are also worth considering.

Finally, while our model assumes peers are cooperative, it

would be interesting to investigate the strategic behavior of
peers in universal swarm systems.
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