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ABSTRACT
Tracking user’s eye �xation direction is crucial to virtual reality
(VR): it eases user’s interaction with the virtual scene and enables
intelligent rendering to improve user’s visual experiences and save
system energy. Existing techniques commonly rely on cameras and
active infrared emitters, making them too expensive and power-
hungry for VR headsets (especially mobile VR headsets).

We present LiGaze, a low-cost, low-power approach to gaze track-
ing tailored to VR. It relies on a few low-cost photodiodes, eliminat-
ing the need for cameras and active infrared emitters. Reusing light
emitted from the VR screen, LiGaze leverages photodiodes around
a VR lens to measure re�ected screen light in di�erent directions.
It then infers gaze direction by exploiting pupil’s light absorption
property. The core of LiGaze is to deal with screen light dynamics
and extract changes in re�ected light related to pupil movement.
LiGaze infers a 3D gaze vector on the �y using a lightweight regres-
sion algorithm. We design and fabricate a LiGaze prototype using
o�-the-shelf photodiodes. Our comparison to a commercial VR eye
tracker (FOVE) shows that LiGaze achieves 6.3◦ and 10.1◦ mean
within-user and cross-user accuracy. Its sensing and computation
consume 791µW in total and thus can be completely powered by a
credit-card sized solar cell harvesting energy from indoor lighting.
LiGaze’s simplicity and ultra-low power make it applicable in a
wide range of VR headsets to better unleash VR’s potential.
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sors and actuators;
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1 INTRODUCTION
Virtual reality (VR) emerges as a promising next computing plat-
form. Taking the form of head-mounted displays (HMD), modern
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Figure 1: LiGaze integrated into a FOVE VR headset. LiGaze uses
only passive photodiodes on a light-sensing unit to track user gaze.
It can be powered by a credit-card sized solar cell (atop the headset)
harvesting energy from indoor lighting.

VR headsets provide immersive, realistic simulation of the 3D phys-
ical world and are poised to transform how we interact, entertain,
and learn. With the advent of a�ordable, accessible VR headsets (e.g.,
Google Daydream, Cardboard, Samsung Gear VR), VR is gaining
popularity and projected to be a multi-billion market by 2025 [2].

Our work in this paper focuses on a feature crucial to VR: gaze
tracking, i.e., determining user’s eye �xation direction. Not only
does gaze tracking allow users to interact with the content just by
glances, it also can greatly improve user’s visual experience, reduce
VR sickness, and save systems (display) energy. The energy saving
can be achieved by foveated rendering [23, 52], which progressively
reduces image details outside the eye �xation region. Such energy
saving is particularly bene�cial for mobile VR headsets without
external power cords.

The dominating methodology to gaze tracking relies on (infrared)
cameras, often accompanied by infrared (IR) LEDs to illuminate
eyes. The combination of IR LEDs and cameras raises concern on
energy consumption and form factor. Recent hardware advances
have led to modular designs of eye tracker that can be included to
mobile and wearable devices. These commercial eye trackers (e.g.,
Tobii, SMI), however, are still expensive (e.g., $10K for integrating a
Tobii eye tracker into a VR headset) and power-hungry (requiring
external battery packs). As a result, most VR headsets today shy
away from integrating gaze tracking and resort to head direction
as a coarse, often incorrect, estimate of user’s gaze.

In this paper, we seek a low-power, low-cost approach that can
lower the barrier to integrate gaze tracking into various VR headsets
including those for mobile VR. We consider a minimalist sensing
approach, which eliminates active IR LEDs and replaces cameras
with a few low-cost ($2 each), small (e.g., 2 mm2) photodiodes.
Exploiting the fact that VR screen light is the sole and constant
light source within the space of a VR headset, we reuse screen light
to track user gaze. Speci�cally, we place a few (e.g., 16) photodiodes
at the boundary of each VR lens (Figure 1), so that each photodiode
senses screen light re�ected by user’s eyeball in a certain direction.
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Given that our pupil is a hole in the iris center and absorbs incoming
light, when screen light strikes the pupil region, most light rays
are absorbed from the photodiode’s point of view, weakening the
re�ected light perceived by photodiodes in that direction. Thus,
pupil movement a�ects the spatial pattern of changes in re�ected
screen light. Such pattern can be exploited to infer gaze direction.

Although pupil’s light absorption has been exploited by prior
methods [19, 42], we face unique challenges in VR, mainly because
of the uncontrolled nature of our light source (screen light). VR con-
tent is colorful and dynamic, resulting in screen light and hence re-
�ected screen light that are spatially nonuniform and time-varying.
Such inherent variations make it hard to identify changes in re-
�ected light caused by pupil movement. Furthermore, user diversity
presents additional challenges in inferring gaze. Our experiments
show that eye and skin characteristics all a�ect the actual impact of
pupil’s light absorption on sensed re�ected light. The gaze tracking
algorithm needs to be customized for individual users. Finally, blink
can interfere with sensing re�ected light and tracking gaze.

To address these challenges, we design LiGaze. The core of LiG-
aze is to estimate re�ected light changes associated with screen
content and then identify changes caused by pupil movement. To
do so, we design a circuit board with photodiodes embedded back
to back on both sides, where one side faces the screen sensing
incoming screen light in di�erent directions and the other faces
user’s eyeball sensing re�ected screen light. We characterize the
relationship between the front and back sensors’ readings assuming
a center pupil. This characterization is then used to derive features
related to changes of re�ected light caused by pupil movement. We
apply supervised learning (boosted trees [12, 21]) to learn the corre-
lation between our features and the 3D gaze vector, and infer gaze
vectors on the �y using regression. To handle user diversity, we cal-
ibrate our characterization and apply bootstrap aggregating [10] to
�ne-tune the trained model for a speci�c user. Furthermore, LiGaze
detects blinks in a parallel process. Given that a blink causes similar
changes in re�ected light at most photodiodes, LiGaze leverages
this spatial correlation to detect blink occurrences.

To examine LiGaze’s feasibility and performance, we build a LiG-
aze prototype using o�-the-shelf, low-cost photodiodes. We design
and fabricate a thin (<1 mm), ring-shaped printed circuit board to
host 16 photodiodes (OPT3001) on each side. These sensors are con-
nected to a low-power micro-controller (MSP432) that aggregates
sensor data, infers a 3D gaze vector, and detects blink. We add the
prototype to a commercial VR headset (FOVE) with eye-tracking
functionality and evaluate our tracking performance. Based on our
experiments with 30 participants, our key �ndings are as below:
• LiGaze achieves 6.3◦ and 10.1◦ mean within-user and cross-user

accuracy in tracking gaze, which translates to 100%, 99.5%, and
91.7% accuracy in di�erentiating 4, 9, and 16 regions on a screen;

• LiGaze generates a 3D gaze inference within 7.8 ms on average,
with spatial precision of 5.2◦ and 5.9◦ within and cross users;

• LiGaze consumes 791µW including both sensing and computa-
tion and thus can be completely powered by a credit-card sized
solar cell harvesting energy from indoor lighting;

• LiGaze detects blinks with 83% precision and 80% recall overall.
The main contribution of our work is a demonstration that a few

passive photodiodes can enable gaze tracking for VR. We explore

the tradeo� between performance and energy consumption of gaze
tracking in the context of wearable devices. Our work follows the
spirit of recent works [40, 41] and yet di�ers in that we focus on
the VR scenario and exploit the VR setup to further drive down
the energy consumption. The simplicity and ultra-low power of
our approach can help bring gaze tracking to a wide range of VR
headsets and better unleash VR’s potential.

2 LIGAZE: RATIONALE AND CHALLENGES
Tailored to wearable VR, LiGaze reuses screen light inside a VR
headset and senses screen light re�ected by our eyes. Next we
�rst describe the inner structure of modern VR headsets. We then
introduce LiGaze’s design rationale and challenges.

2.1 Inner Structure of VR Headsets
Modern VR headsets are classi�ed into two types based on the
head-mounted displays (HMDs): 1) tethered HMDs (e.g., HTC Vive,
Oculus Rift), displays built in the headset and connected to powerful
desktop servers for rendering, and 2) mobile HMDs, which reuse
screens of mobile phones slotted into the VR headset (e.g., Google
Cardboard, Daydream, Samsung Gear VR). Tethered HMDs o�er
better visual quality, thanks to the computation power of external
servers allowing more advanced rendering. However, they are con-
strained in mobility due to the need of tethered cords. Mobile VR,
on the other hand, is self-contained o�ering full mobility, and yet
su�ers from relatively lower visual quality and limited battery life.

Despite the di�erences in HMDs, VR headsets share a similar
inner structure: with a display/screen in the front, screen light
passes through a pair of lenses (36 – 43 mm in diameter) positioned
very closely (1 – 2 cm) to eyes. The lenses divide the screen content
into two slightly di�erent 2D images tailored to the left and right
eye. By angling the 2D images, the pair of lenses helps to create a
3D virtual scene perceived by the user. Figure 2 shows the main
components of a mobile VR headset. The foam padding and head
strap block ambient light from entering the headset to create an
immersive virtual scene. They also improve the comfort of wearing
the headset. Next we explain how to exploit the VR setup to enable
gaze tracking using only a few light sensors (i.e., photodiodes).

(a) VR headset (Front) (b) VR headset (Back)

Figure 2: VR headset structure. A VR headset contains a display, a
cover, a pair of lenses, a foam padding, and a head strap.

2.2 The Light Absorption E�ect
LiGaze leverages the light-absorption e�ect of our pupil when
the observation point is not right next to the illumination source.
In essence, the pupil is a hole in the center of iris, which allows
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Figure 3: Light entering pupil
is absorbed directly or a�er dif-
fuse reflection at the retina.

light rays to enter the retina. For
an observation point o� the axis
of the illumination’s optical path,
light rays entering the pupil are
absorbed either directly by eye’s
inner tissue, or after di�use re-
�ections at the retina by miss-
ing the exit from the pupil (Fig-
ure 3)1. Pupil’s light absorption
explains the dark pupil e�ect exploited by prior eye tracking meth-
ods [19, 42], where a camera is placed o� the optical axis of the
light source to observe a dark pupil.

Figure 4:A light sensor on aVR lens bor-
der senses light reflected by a region of
the eye. Pupil absorbs light and its posi-
tion a�ects the reflected light sensed by
the photodiode.

In the VR context, pupil’s
light absorption in�uences
re�ected screen light ob-
served by photodiodes
on the boundary of each
VR lens (Figure 4). Here
screen light passes through
VR lenses, strikes eye-
balls, and is re�ected.
Photodiodes (i.e., obser-
vation points) are placed
to avoid obstructing the
lens and thus o� the axis
of screen light. Each pho-
todiode perceives re�ected light rays within its viewing angle. Be-
cause of its short distance (e.g., 1 cm) to the eye and limited viewing
angle (e.g., ±45◦), a photodiode perceives light re�ected by only a
region of the eyeball2. Take the bottom photodiode P (Figure 4) as
an example, it senses screen light re�ected by the bottom region of
the eyeball. As a result, when pupil moves to the bottom, sensor P
perceives larger decrease in re�ected light because of pupil’s light
absorption; when pupil moves to other regions, photodiodes close
to those regions perceive larger decrease in re�ected light.

To examine this phenomenon in practice, we conduct experi-
ments using low-cost photodiodes (OPT3001) and a mobile VR head-
set (DESKTEK V3) with a Pixel XL phone. We design and fabricate
a ring-shaped printed circuit board (PCB) to host eight photodiodes
and their circuits (Figure 5(a)). The PCB is narrow (2 mm) with
a diameter matching the VR lens to avoid a�ecting the viewing
of VR content. On the PCB, photodiodes are spread out evenly,
sensing re�ected light in the top (T), bottom (B), left (L), right (R),
top-left (TL), top-right (TR), bottom-left (BL), and bottom-right (BR)
directions around the eye. Each photodiode has a built-in analog-
to-digital converter (ADC) that outputs light intensity readings at
10 Hz. We connect photodiodes to a micro-controller (MSP432) to
collect sensor data. We seek to answer following questions:

Q1: Can reflected screen light be sensed by light sensors?
Our starting point is to examine whether low-cost photodiodes
can sense screen light re�ected by eyes and capture pupil’s light-
absorption e�ect. In our experiment, a participant wears the headset
with our PCB attached to the left VR lens. The intensity of screen

1The light re�ected by retina can only be sensed if the observation point aligns with
the optical path of illumination source, since the eye acts as a retro-re�ector [69].
2A photodiode also perceives light di�used by other regions of the eyeball. However,
the intensity of di�used light from other regions is negligible.

(a) A ring-shaped PCB on a VR lens

T
TR

R

BR
B

TL

L

BL
5 lux

12 lux

(b) Re�ected light w/ center pupil

Figure 5: (a) shows the experiment setup, where a ring-shaped PCB
hosting 8 photodiodes is a�ached to a VR lens. (b) plots the reflected
light intensity at each photodiode when pupil is in the center.

light is measured as 100 lux at the lens. We �rst instruct the par-
ticipant to stare at a center dot on the screen for 3 seconds while
collecting data from photodiodes. We average each photodiode’s
readings and plot the result in Figure 5(b). Here the darkness of
a bar indicates the light intensity perceived at this location. We
make two observations. First, despite being 90%+ weaker than in-
coming screen light, re�ected screen light can be reliably measured
by photodiodes. It is far above the minimal intensity (0.01 lux) that
the photodiode can sense. Also, sensor readings are very stable,
with the standard deviation of 0.02 lux. Second, the re�ected light
is nonuniform across photodiodes, even under uniform screen light.
We hypothesize that it is due to the asymmetry of the eye structure
and its surrounding area, where re�ectivity di�ers across directions.

We then instruct the participant to stare at four dots (top, bot-
tom, left, and right) on the screen, each for 3 seconds. To examine
whether photodiode can sense pupil’s light-absorption e�ect, we
examine the change of re�ected light intensity observed by each
photodiode, by subtracting its reading under a center pupil (Fig-
ure 5(b)). As shown in Figure 6, photodiodes in pupil’s direction
perceive larger decrease in light intensity (i.e., darker bars) as pupil
absorbs more light, while photodiodes in the opposite direction
perceive stronger re�ected light as pupil’s light absorption has less
impact. The result demonstrates that photodiodes can capture the
subtle re�ected light change caused by pupil’s light absorption.

Figure 6: Impact of pupil’s light absorption on the reflected light
change perceived by each photodiode, in comparison to that under a
center pupil in Figure 5(b).

Next we vary the brightness of the white screen and repeat
the above experiment, seeking to understand the minimal level of
screen light that allows photodiodes to sense re�ected light reliably.
From our experiments, we observe that if the screen light is above 10
lux after passing the VR lens, then the re�ected screen light is above
sensor’s noise range (0.05 lux) and thus can be reliably measured.
We further examine whether the 10-lux threshold can be met by
existing VR screen content. We test 20 popular VR applications
supported by either mobile or tethered HMDs (e.g., the Play Store
and SteamVR platforms). We place a photodiode (OPT3001) at the
back of the VR lens facing the VR display to measure the screen
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light intensity after passing the lens. The experiment is conducted
in a dark room so that screen light is the only light source. We
see that 99% of screen content leads to screen light above 15 lux,
demonstrating that screen light of most VR content is su�ciently
bright to be reused for detecting gaze direction.

Q2: Would ambient light interfere with the sensing of re-
flected screen light? Another natural question is whether ambient
light can leak in the VR headset and interfere with the sensing of
weak re�ected screen light. To examine the impact of ambient light,
we place a light sensor on each VR lens and turn o� the display
within a VR headset. We then ask a participant to wear the headset
under normal o�ce lighting (400 lux) and record light sensor read-
ings. We repeat this experiment using �ve popular VR headsets in
the market, including headsets of both mobile and tethered HMDs.
Table 1 shows the mean and standard deviation of sensor reading
for each headset. We see that for all headsets except Cardboard,
light intensity within the headset is zero, demonstrating that the
foam padding and head strap of these headsets e�ectively block
ambient light from entering headsets and screen light from the
display is the only light source for those headsets. Cardboard, on
the other hand, has neither foam padding nor head strap, letting
a slight amount of ambient light rays enter the headset. However,
the intensity of the leaking ambient light is only 0.2 lux, similar to
sensor’s noise level, and thus its impact is negligible.

VR Headset Vive FOVE Daydream DESTEK Cardboard
Sensor Mean 0 lux 0 lux 0 lux 0 lux 0.2 lux
Data Std 0 lux 0 lux 0 lux 0 lux 0.1 lux

Table 1: The impact of ambient light on photodiodes on VR lenses.
The screen is o� and a user wears a VR headset under o�ce lighting.

Q3: Is it a universal phenomenon across users? Finally, we
repeat experiments with di�erent users, aiming to understand
whether pupil’s light-absorption e�ect can be observed across users
with di�erent eye characteristics. We invite six participants (Ta-
ble 2), with ages ranging from 18 to 33 years old. Their eyes vary
in color (green, black, blue), size, and length of eyelashes. Two par-
ticipants wear contact lenses. Their skin color also di�ers (white,
yellow, black). We ask each participant to wear our VR headset
(Figure 5(a)) and repeat the prior experiment in Figure 5(b). In Fig-
ure 7 (top), we plot the re�ected light intensity at each photodiode
when a participant stares at screen center. We observe that the
absolute re�ected light intensity di�ers across users, indicating
that eye characteristics a�ect light re�ection. In particular, for the
participant with dark skin (User 4), the re�ected light is lower than
other users with lighter skin colors. It is likely because some light
rays are re�ected by the skin around the eye and dark skin has
lower re�ectivity.

We then examine the change in re�ected light when pupil moves
to other direction. For each other gaze direction, Figure 7 (bottom)
plots re�ected light observed by each photodiode, minus its reading
under a center pupil. We observe that despite the di�erences in
absolute light change, pupil’s light absorption e�ect is consistently
observed across users. For instance, when the pupil moves to the top,
the top photodiode observes a decrease in re�ected light intensity
for all users; when the pupil is on the left, the left photodiode
similarly observes a drop in re�ected light intensity across all users.
The results are encouraging, indicating pupil’s light absorption

User ID 1 2 3 4 5 6
Eye Color Blue Black Black Black Green Black
Skin Color White Yellow Yellow Black White White

w/ Contact Lenses No Yes No No No Yes

Table 2: Participant information.

Figure 7: Examining pupil’s light-absorption e�ect across users. The
top �gure plots reflected light intensity at 8 photodiodes (Figure 5(a))
when pupil is in the center. The other four �gures plot changes in re-
flected light when pupilmoves to four directions.We observe that sen-
sors in user’s gaze direction perceive larger decline in reflected light
intensity. The exact amount of change varies across users.

e�ect can be consistently observed across users. On the other hand,
the results also indicate challenges in dealing with diverse eye and
skin characteristics, which we will elaborate on later (§ 2.3).

In summary, our experiment results con�rm the feasibility of
using low-cost photodiodes around VR lens to sense pupil’s light-
absorption e�ect. Under static screen light, this e�ect results into
a spatial pattern of changes in photodiode readings correlated to
pupil movement and can be exploited to infer gaze direction.

2.3 Challenges
To exploit pupil’s light absorption property for VR gaze tracking, we
face several challenges. The �rst challenge comes from screen light
dynamics. Our prior experiments assume uniform, static screen
light to illustrate the concept. However, actual VR screen content
is colorful and dynamic, which emits screen light varying both
spatially and temporally. As a result, the re�ected light perceived
by photodiodes also inherently varies spatially and temporally, even
under a �xed pupil position. The spatial variation makes it hard to
estimate the re�ected light when pupil is in the center, given that
the asymmetric eye structure also a�ects re�ected light intensity
in a nonuniform manner (Figure 5(b)). The temporal variation of
screen light makes it infeasible to leverage prior observations for
inferring nonuniform re�ected light. Therefore, the spatial pattern
of re�ected light changes is no longer an e�ective indicator of pupil
position. Furthermore, re�ected light intensity varies from 0.5 lux
to 5.5 lux even without any pupil movement, while the re�ected
light change caused by pupil movement is within 2 lux (Figure 6,
Figure 7). Thus, the challenge lies in extracting the re�ected light
change related to pupil movement given screen light dynamics.

The second challenge is to derive a gaze vector based on the light
absorption e�ect while handling diverse eye and skin characteristics
across users. A latest study [20] has revealed that user diversity



Ultra-Low Power Gaze Tracking for Virtual Reality SenSys ’17, November 6–8, 2017, Del�, Netherlands

Figure 8: LiGaze system flow.

contributes the most to eye tracking errors. Similarly in our context,
user diversity makes it hard to predict the re�ected light under a
center pupil, as shown in Figure 7 (top). Even if we can derive the
change in re�ected light with respect to that under a center pupil,
its relation to the actual gaze vector can slightly vary across users.
Simply seeking the photodiode with the largest decrease in re�ected
light leads to a very coarse estimate of gaze direction, with error
≈ 360◦/N , where N is the number of photodiodes.

Additionally, blink is another factor that can interfere with the
sensing of re�ected light intensity. Finally, the gaze tracking al-
gorithm needs to entail low computational overhead so that the
system can infer gaze direction in real time with low power.

3 LIGAZE OVERVIEW
At hight level, LiGaze addresses above challenges as follows. To
deal with nonuniform, time-varying screen light, LiGaze uses an
additional set of photodiodes facing the display to sense incoming
screen light in di�erent directions. Based on the sensed screen light,
LiGaze estimates the re�ected screen light assuming pupil is in the
center, and extracts features related to pupil’s light-absorbing e�ect.
These features are used to infer gaze vectors in real time using
supervised learning. To deal with user diversity, LiGaze leverages a
quick calibration to customize the model for estimating re�ected
light and parameters in the trained learning model. LiGaze also
runs a parallel process that detects the blink event by examining
photodiode data over a time window. Next, we elaborate on the
sensor platform design and system �ow.

Sensor Platform. LiGaze design relies on a unique dual-side
light-sensing unit, where photodiodes are embedded in both sides
in a back-to-back manner (Figure 11(a)). The sensing unit is realized
as a thin, ring-shaped (annulus) PCB and easily attached to the back
of each VR lens. Photodiodes on one side of the PCB face the VR
display and sense incoming screen light in di�erent directions,
while photodiodes on the other side of the PCB face user’s eyes
and sense screen light re�ected by the eyeball. Because of the small
form factor of the photodiode, the panel can be made in a very
narrow width (e.g., 2 mm) to ensure that it does not obstruct user’s
view. We will present a user study in § 6.5 to examine the impact
of our sensing panel on user’s perception.

System Flow. LiGaze starts with a short (3-minute) calibration3

to calibrate system parameters. Figure 8 shows the system �ow after
calibration. LiGaze �rst checks whether the sensed incoming screen
light is su�ciently strong (i.e., above 10 lux in our experiments)
for later gaze tracking. If so, LiGaze starts two parallel processes,
one for inferring the 3D gaze vector, and the other for detecting
blink. Speci�cally, the gaze tracking process consists of three steps:
estimating the re�ected light under a center pupil, extracting fea-
tures on the re�ected light change associated with pupil position,
3A short calibration is common for all existing eye trackers and eye-tracking designs.

and running a boosted tree regression algorithm to estimate a 3D
gaze vector. The blink detection process examines the re�ected
light changes and leverages the spatial correlation among changes
perceived by photodiodes to detect blink. Since a blink typically
lasts 300 to 400 milliseconds [1], LiGaze runs the blink detection
algorithm every 0.3 seconds. Next we describe the detailed design
of gaze tracking and blink detection.

4 LIGAZE DESIGN
Based on the real-time photodiode data, LiGaze infers 3D gaze vec-
tors represented as normalized 3D vectors. Next we �rst introduce
our estimation of re�ected screen light under a center pupil. We
then describe our learning algorithm for gaze inference and the
mechanism for blink detection.

4.1 Estimating Re�ected Screen Light
Given N photodiodes on each side of the annulus sensing panel,
we seek to model the relationship between screen light sensed by
N front photodiodes (facing the screen) and the re�ected screen
light sensed by N back photodiodes (facing the eye), given an �xed
pupil location (center). This relationship characterizes the impact
of the re�ections occurred after screen light rays strike the eyeball.

We start our exploration with experiments. We attach the annu-
lus PCB in Figure 11(a) to a wearable VR headset, instruct a user
to wear the headset, and ask the user to stare at screen center. We
display 257 images on the screen to generate nonuniform, time-
varying screen light and collect data from all photodiodes. For every
pair of front and back photodiodes, we compute the Pearson corre-
lation coe�cient [15], which is the standard measure of the linear
correlation between two variables, with r (−1 ≤ r ≤ 1) indicating
the strength and direction of the correlation, and p indicating the
signi�cance of the �nding.

Table 3 lists the correlation coe�cients (r -values, p < 0.01) for
all pairs. Interestingly, a strong linear correlation commonly exists
between back photodiode in direction d and front photodiode in
direction d ′ that is diagonally opposite to d . Front photodiodes
in directions other than d ′ are also correlated with back sensor
in direction d , and the correlation becomes weaker for front pho-
todiodes further away from direction d ′. Take the top-right (TR)
back photodiode as an example, its perceived re�ected light has the
strongest linear correlation (r = 0.91) with that at the bottom-left
(BL) front photodiode. For front photodiodes further away from
BL, the correlation gradually decreases. This observation suggests
that re�ected light intensity is dominated by specular re�ections
(possibly due to eyeball’s glossy surface), which direct each incom-
ing screen light ray to a coplanar direction diagonally opposite to
its incident direction. Di�use re�ections, on the other hand, scat-
ter a light ray in a broad range of directions. Although they also
contribute to the re�ected light intensity perceived by a back pho-
todiode, di�used light rays are much weaker and thus play a much
less signi�cant role.

Given the linearity of light transport [50] (i.e., contributions of
individual light rays add up at a receiver location), we consider
to model the relationship between back and front photodiodes’
readings as a simple linear relation. Similar linear models have
also been applied in prior works [18, 50, 59] in computer graphics
and vision. Speci�cally, let I be the vector of N front photodiodes’
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T TR R BR B BL L TL
T 0.48 0.75 0.87 0.87 0.96 0.81 0.59 0.54
TR 0.69 0.55 0.76 0.76 0.79 0.91 0.88 0.78
R 0.66 0.64 0.55 0.67 0.79 0.83 0.93 0.89
BR 0.86 0.79 0.62 0.51 0.64 0.74 0.76 0.84
B 0.97 0.83 0.68 0.55 0.50 0.51 0.78 0.79
BL 0.84 0.90 0.89 0.86 0.85 0.61 0.60 0.58
L 0.80 0.91 0.92 0.78 0.65 0.49 0.52 0.58
TL 0.66 0.88 0.89 0.91 0.86 0.78 0.52 0.47

Table 3: Pearson correlation coe�cient (r -value) matrix (p < 0.01)
between the reflected light and display light intensity around the eye.
T, R, B, and L denote top, right, bo�om, and le� direction, respectively.

readings. Assuming a center pupil, the estimated back photodiodes’
readings, denoted as vector R̃, can be written as:

R̃ =W · I, (1)

where W is a N × N weight matrix: W = {wi j |i, j ∈ [1,N ]}. wi j
indicates the contribution of incoming light intensity Ij perceived
by front photodiode j to the estimated re�ected light R̃i perceived
by back photodiode i .

Calibration. The weight matrixW can di�er across users based
on their eye and skin characteristics (Figure 7). Subtle o�set of
the headset to the eyes can also a�ect screen light’s re�ections
and thus W. To deal with user diversity and headset o�sets, we
determineW in a calibration phase when a user �rst puts on the
VR headset. During the calibration, the user watches a short video
while staring at the screen center. In the meantime, the readings of
all front and back photodiodes are then used to calculateW using
linear regression. Speci�cally, let R be the vector of measured back
photodiodes’ readings, we are seekingW that leads to the estimated
vector best matching the measurement R:

W = argmin
W′

| |R − R̃ (W′) | |2. (2)

With the calibratedW, upon real-time readings I from front photo-
diodes, we can then estimate on the �y re�ected light at each back
photodiode using Eq. (1), assuming pupil is in the center.

To shorten the calibration, we judiciously design the video con-
tent so that it best represents the variety of brightness distribution
of the screen using a limited number of frames. Speci�cally, we
divide each video frame into 10×10 grids and randomly change the
gray-scale color of each grid based on a quasi-random sampling
strategy in the color space [65]. Quasi-random sampling can gen-
erate samples in high-dimensional space more uniformly than the
traditional pseudo-random sampling [45]. This strategy allows us
to use a 2-min4 video to estimateW accurately.

4.2 Gaze Inference
The next step of LiGaze is to extract features related to pupil position
and infer a 3D gaze vector. Given incoming screen light, our model
in § 4.1 estimates the re�ected light that each back photodiode
would perceive if pupil is in the center. Thus, the di�erence between
this estimate and the measured re�ected light is caused by the o�set
4Our experiments show that after 2 minutes, user’s gaze is more likely to start drifting
away from the screen center.

between the actual pupil position and the center. Speci�cally, we
consider normalized change, since the actual amount of change in
re�ected light can depend on the level of re�ected light intensity.
Hence, let R = {R1, ...,RN } denote the vector of measured re�ected
light at N back photodiodes, we compute fi = Ri/R̃i for each
photodiode, and use the resulting set F = { f1, ..., fN } as the feature
vector for later gaze inference.

We infer gaze using supervised learning. In particular, we choose
boosted trees (or tree ensemble) [12, 21], which represent the rela-
tionship between features and prediction values as a set of regres-
sion trees. Here each tree is similar to a decision tree but di�ers in
that it associates a weight to each leaf (i.e., decision). By summing
the predictions of multiple trees, boosted trees improve the reliabil-
ity and accuracy of the �nal prediction. Another important bene�t
is its lightweight computation. Once the tree ensemble is trained,
online regression involves only comparison operations. Thus it is
fast and entails low power, which is critical for real-time execution
on micro-controllers. We have also explored other options such as
Support Vector Machine (SVM) [58] and its variants (SVC1V1 [27],
SVOREX [14], REDSVM [38]), and feed-forward neural network [9].
However, these algorithms entail either higher latencies or larger
memory footprints. For example, neural network involves �oating-
point addition, multiplication, and exponential operations; SVM
and its variants require storing a large number of support vectors
(e.g., 10K vectors for a training set with 200K samples).

O�line Training. We train boosted trees o�ine using a data
set consisting of computed feature vectors and 3D gaze vectors
from existing eye trackers. Let D denote the training set with size
X , where D consists of X pairs of feature vector and actual 3D
gaze vector д, i.e., D = {< Fi ,дi > |0 < i ≤ X }. To improve the
stability and accuracy of our inference, we combine the power of
multiple tree ensembles by applying bootstrap aggregating (i.e.,
bagging) [10]. As illustrated in Figure 9, it has two steps. First, K
tree ensembles are trained usingK new training sets generated from
the original training set D. Each new training set D ′k (with size X ′)
is created by uniformly sampling D with replacement. Each new
training set is then used to train a tree ensemble separately. Second,
the resulting K tree ensembles are combined linearly. Additional
training samples are used to seek the optimal linear combination
using linear regression. Speci�cally, for each training sample <
F ,д >, we feed it to each tree ensemble and obtain the prediction
value. Let д̂j be the prediction from the j-th tree ensemble, then the
�nal prediction д̂ is derived as д̂(θ ) =

∑K
j=1 θ j · д̂j , where θ j is the

weight of the j-th tree ensemble. We then run linear regression to
determine the optimal θ?, such that θ? = argminθ | |д̂(θ ) − д | |. By
combining multiple tree ensembles, bootstrap aggregating seeks to
learn underlying correlations that could di�er across user groups.

Online Inference. With the trained tree ensembles, LiGaze’s
online inference operates with only photodiode data coming on the
�y. Since individual user can have his/her own features and di�er
from users in the training data, to better address user diversity, for
each user during online testing, we calibrate θ? through a short
(1-minute in our experiments) calibration phase (after the phase
of calibratingW). It is a simple game where the user is prompted
to stare at various dots with known locations spread in a virtual
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Figure 9: Applying bootstrap aggregating over boosted trees, where K
tree ensembles are trained using training sets generated by random
sampling with replacements, and their optimal linear combination
is derived by linear regression with additional training samples.

scene. We then feed the front and back photodiodes’ readings to
the K trained tree ensembles to obtain predicted д̂. Assuming the
dots are the actual locations the user stares at, we calculate gaze
vectors д based on actual dot locations and treat them as ground
truth. Using linear regression, we compute the optimal adjustment
ϵ over existing θ?, so that (θ? + ϵ ) best matches this user’s ground
truth. Speci�cally, ϵ is calculated as:

ϵ = argmin
ϵ ′

( | |д̂(θ? + ϵ ′) − д | |2 + λ | |ϵ ′ | |2), (3)

where λ is a regularization term to constrain the amount of ad-
justment ϵ . We determine λ using cross-validation among users
in the training data set. We consider slight adjustment over θ?,
rather than calculating a new θ?, because of the small amount of
data from the short calibration phase. Overall, this short calibration
allows the system to slightly adjust θ? to best �t a speci�c user.

After the quick calibration, upon each set of back and front
photodiode readings coming on the �y, we infer the 3D gaze vector
as follows: 1) with front sensors’ readings I = {I1, ..., IN }, we
estimate R̃i , the re�ected light under a center pupil for each back
photodiode i based on Eq. (1); 2) based on back sensors’ readings
R = {R1, ...,RN }, we derive the feature vector F = { fi }, where
fi = Ri/R̃i ; 3) we input F to each of the K trained tree ensemble
and obtain prediction д̂j from tree ensemble j; 4) �nally the gaze
vector is inferred as д̂(θ? + ϵ ) =

∑K
j=1 (θ

?
j + ϵj ) · д̂j .

4.3 Blink Detection
LiGaze detects a blink event based on a simple observation: when a
blink occurs, the re�ected light intensity around the eye experiences
similar pulse changes in most directions. Figure 10 shows the time
series of re�ected light intensity perceived by four photodiodes
around the eye. We observe that re�ected light intensity in three
directions exhibit similar pulse changes during a blink. When the
eye is closed, the pupil is covered by the eyelid, which re�ects light
rays better than pupil. When the eye is opened, pupil continues
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Figure 10: Reflected light intensity changes when user blinks the eye.
Each red box represents a blinking instance

absorbing incoming light rays, which decreases the re�ected light
intensity around the eye. Since the eyelash can block some light
rays between the eyeball and photodiodes, this pulse change is not
signi�cant at the top photodiode. However, a blink still leads to
noticeable patterns in most photodiodes. Thus, by counting the
number of photodiodes concurrently perceiving pulses of re�ected
light intensity, we can detect the occurrence of blink.

To detect the re�ected light pulses around the eye, we �rst ex-
tract gaze features to remove the impact of screen content change,
using the estimate of re�ected screen light (§ 4.1). We then compute
the �rst-order derivatives of time series of gaze features at each
photodiode. A pulse of light intensity can be detected when two ad-
jacent �rst-order derivatives are positive and negative, respectively.
When a su�cient number (half of the photodiodes in our imple-
mentation) of photodiodes perceive pulses in their gaze features,
LiGaze outputs a blink event. To further reduce the false positive
due to subtle screen content change (e.g., cut scene in movie), LiG-
aze bypasses the blink detection when half of the front photodiodes
concurrently detect a pulse in incoming screen light.

5 LIGAZE PROTOTYPE
We build a LiGaze prototype using o�-the-shelf hardware and attach
it to an existing VR headset (FOVE). The prototype contains three
main components:

Light-Sensing Unit. We design and fabricate a thin (0.8 mm),
ring-shaped PCB (Figure 11(a)) that hosts 16 photodiodes (OPT3001)
on each side and their associated circuits (e.g., resistors, capacitors).
The photodiode is 1.9 mm × 1.25 mm in size, so the PCB ring is
narrow in width (2 mm), avoiding to a�ect user’s view. The ring
diameter is 36 mm, customized to �t the lens of the FOVE headset.

We select OPT3001 for three reasons. First, it is ultra-low power,
consuming only 6 µW in the active state. Also, with a built-in ADC,
it directly outputs digitized light intensity (in lux, at 10-Hz rate),
thus removing the need to add external ADC that can be energy-
consuming. Second, as an ambient light sensor responding only to
visible light (400 nm – 700 nm), it can sense very weak light (as
low as 0.05 lux) and provides a high resolution (0.01 lux). Thus, it is
suitable for sensing weak re�ected light in our scenario. Third, it has
a ±45◦ �eld of vision (FOV). With only 1.8 cm to the eye, this FoV
is su�cient for covering the whole eye surface after aggregating
the coverage of 16 photodiodes.
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(a) Light-sensing unit (front and back) (b) Energy-harvesting Unit

Figure 11: Fabricated PCBs in LiGaze prototype.

Photodiodes transmit raw data to a micro-controller through a
hardware Inter-Integrated Circuit (I2C) interface at the clock of 400
kHz. Given that OPT3001 allows up to 4 serial bus addresses, one
hardware I2C can only di�erentiate up to 4 photodiodes. To support
fetching data from 32 (16 front and 16 back) photodiodes, we design
a switch using two 4-channel analog multiplexers (74HC4052). The
switch divides 32 photodiodes into 8 groups and lets each group
transmit data to the micro-controller in turn. In our experiment, the
switch consumes less than 2 µW, and the hardware I2C interface is
1.5 times more energy-e�cient than software simulation I2C inter-
face for supporting the 32 sensors. The switch and its associated
circuit are integrated in a side PCB board connecting to the PCB
ring. This is di�erent from the PCB used in our prior experiments
(Figure 5(a)), which is a single-sided PCB ring hosting eight pho-
todiodes. This new PCB design leads to a cleaner look with only
7 wires connecting to the micro-controller (Figure 1). The arc gap
allows the rim of the VR lens to �t in.

Micro-Controller. The micro-controller periodically wakes up
to receive data from photodiodes, computes the feature vector re-
lated to pupil position, and runs our gaze inference algorithm (§ 4.2)
to derive the current 3D gaze vector. We choose MSP432 because
of its ultra-low power according to the power benchmark ULP-
Bench [5]. ULPBench is from the embedded micro-processor bench-
mark consortium (EEMBC) and is a standard way to compare power
performance on micro-controllers. The gaze inference results can
be either stored on the micro-controller or transmitted to other
computing units through a USB cable.

Energy-Harvesting Unit. To demonstrate LiGaze’s ultra-low
power, we add a credit-card sized solar cell (AM-1816) atop the
headset, which harvests energy from indoor lighting to power the
entire system (sensing and computation). AM-1816 is a amorphous
silicon solar cell and is sensitive only to visible light (wavelengths
from 400 nm to 700 nm). Therefore, it is ideal for harvesting indoor
light. We use a buck-boost DC/DC converter (LTC3016) to maintain
the output voltage at 4V, which maximizes the output power at
varying light conditions (e.g., 200 lux - 800 lux).

The main challenge in designing this unit is to maintain an output
power above the minimum required by the system. Since the solar
cell is atop the headset, user’s head movement can cause drastic
variations in light intensity perceived by the solar cell, resulting
into drastic changes in output power (200µW to 1200 µW). Such
power variation can make the system out of power occasionally. To
address this problem, we leverage a 15-F super capacitor to store
extra harvested energy (Figure 11(b)). The capacitor can be fully
charged after 12 hours under 600-lux lighting. Once fully charged, it
can support our system for 18 hours without harvesting additional

Eye Color Skin Color
Black Blue Green White Yellow Black

# of Users 18 8 4 15 9 6
Table 4: Participant information in evaluation study, where partic-
ipants di�er in eye and skin characteristics.

energy. It allows the system to run in a dark environment and to
deal with sudden light changes due to head movement.

6 LIGAZE EXPERIMENTS
To evaluate LiGaze prototype, we recruit 30 participants (from 18
to 45 years old, 19 males and 11 females). The user information is
summarized in Table 4. Three out of 30 participants wear contact
lens. We �rst focus on gaze tracking performance across partici-
pants and dynamic VR content. We then measure LiGaze’s energy
consumption and analyze the tradeo� between energy and perfor-
mance. Finally, we consider several practical factors when using
LiGaze, including head movement and user perception. We have
made a demo video of LiGaze available at [3].

Experimental Setup. We add LiGaze to an existing VR headset
(FOVE 0, $600) equipped with an eye-tracking system, which pro-
vides 3D gaze vectors at 120 Hz with a claimed accuracy of 1◦ error.
We run our system concurrently with FOVE and use FOVE’s output
as ground truth to evaluate LiGaze. We choose FOVE because it
is the �rst VR headset in the market (released in Feb. 2017) with a
built-in eye tracker. FOVE uses near-infrared emitters and infrared
cameras in the headset to track gaze. Since our light sensors only re-
spond to visible light (400–700 nm) spectrum, FOVE’s near-infrared
emitters have a negligible impact on LiGaze.

In our experiment, each participant wears the FOVE headset and
watches various VR content. The resulting light intensity at VR
lenses is measured as 34 lux on average, with the 5-th percentile at
20 lux and 95-th percentile at 75 lux (Figure 12). The experiment
starts with two quick calibrations: a 2-min calibration described
in § 4.1 to compute W in Eq. (2), and a 1-min game to calibrate
parameters in Eq. (3). After calibration, the participant watches 30-
min VR content5, including drama, sport, scenery, and games. The
VR content is randomly selected from a pool for each participant.

To evaluate LiGaze gaze tracking performance, we examine four
metrics: 1) accuracy: the 3D angular di�erence between 3D gaze
vectors inferred by LiGaze and FOVE; 2) precision: a measure of
stability and reliability of gaze inferences, de�ned as the variance of
the temporally-successive point of gazes [26]; 3) latency: the dura-
tion that an online gaze inference takes; and 4) power consumption:
the overall power consumption of LiGaze.

6.1 Gaze Tracking Accuracy
To examine gaze tracking accuracy, we consider two scenarios: 1)
within-user accuracy, where we use the same participant’s data to
train and test the inference model (25% for training and 75% for
testing); 2) cross-user accuracy, where we train the model using
half of participants’ data and test it using the other participants’
data. Speci�cally, we divide participants into two groups based on

5Participants only watch VR content because no existing VR applications in FOVE
support VR controllers yet.
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Figure 13: Overall gaze tracking accuracy in comparison to FOVE.
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Figure 14: Impact of skin and eye color on LiGaze accuracy.

their skin colors (light and dark). We train and test inference model
separately for each group of participants. Note that within-user ac-
curacy only serves as a reference to examine LiGaze’s performance
if the same user’s training data is available (e.g., through click-
event based collection of a user’s gaze data using methods similar
to [28, 51]). LiGaze does not require to train each new user, rather, it
builds an inference model o�ine using pre-collected training data.

Overall Accuracy. Figure 13(a) plots the CDFs of within-user
and across-user accuracy, over 418,906 gaze inference instances.
The mean error is 6.3◦ and 10.1◦ with 95-th percentile at 13.4◦ and
19.2◦, for within- and cross-user accuracy, respectively. We further
examine the spatial pattern of tracking accuracy and plot the error
distribution in Figure 13(b) and 13(c). We observe that tracking error
in the center region is smaller (within 5◦), while higher tracking
errors commonly occur at the boundary of the eye’s �eld of view
(FoV). It can be attributed to two factors. First, 40% of our training
data contain samples with gazes in the center region. With fewer
training samples in border regions, gaze inferences in those regions
are less accurate. We plan to further enrich our training set to
improve the performance. Second, a recent study [20] reports larger
tracking errors in screen corners using two commercial IR-based
eye trackers (Tobii EyeX and SMI REDn). Since FOVE uses a similar
methodology (IR-based), it can su�er from similar problems, causing
larger deviation between FOVE and LiGaze inferences. We plan to
test higher-end eye tracker in the future to examine this problem.

User Diversity. Focusing on cross-user accuracy, we examine
the impact of user diversity on gaze inference accuracy. Figure 14
plots the mean accuracy for participants with di�erent skin and
eye colors. We also include error bars covering 90% con�dence
intervals. We observe that the average accuracy is similar among
di�erent skin colors, as well as eye colors (blue and black). The
accuracy of the green-eye participant is lower because only four
participants have green eyes. However, the within-user accuracy for
these participant is 7.4◦ on average, indicating that the performance
can be greatly improved if there are other participants with green
eyes in the training set. We conclude that it is necessary to have
representative eye colors in the training set for robust inference.
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VR Content. Next, we examine the impact of VR screen content
on LiGaze’s gaze tracking accuracy. We partition VR screen content
into four types: drama (quick scene changes), sports (stable back-
ground with moving foreground objects), scenery (small, gradual
scene change), and games (drastic scene changes). Figure 15 plots
the cross-user accuracy under each content type. We observe that
the accuracy under games is slightly lower. The reason is twofold.
First, we observe that to highlight target objects, game content is
generally darker than other content types (Figure 12). The lower
screen light intensity leads to smaller changes in re�ected light
at photodiodes and thus introduces higher errors in gaze infer-
ence. Second, users often rapidly move their gaze directions during
games. Since it takes 3.6 ms to collect both re�ected light and screen
light intensity from all photodiodes, the gaze movement within the
data collection data can a�ect the tracking performance. Due to
hardware limitation, the I2C interface’s baud rate is limited by its
full-speed mode (400 Kbps). We can shorten data collection duration
by using the faster modes such as the fast mode (1 Mbps) or even
high-speed mode (3 Mbps). We leave it as future work.

Accuracy in Estimating Re�ected Light. Finally, we examine
the accuracy of our linear model in § 4.1 in predicting re�ected
screen light under a center pupil, as it is the basis of LiGaze’s gaze
inference. For each participant, the weight matrixW is computed
using the short (2-min) calibration data. We then compute estima-
tion error as the di�erence between the estimated and measured
re�ected light intensity at back photodiodes. Figure 16 plots the
CDF of re�ected light estimation error for all 30 participants. Over-
all, the estimation is fairly accurate: the mean estimation error is
0.09 lux with 0.38 lux as the 95th percentile. Given that the re�ected
light change is between -1 lux to 2 lux (Figure 6), our model is
su�cient for deriving features related to pupil position.

6.2 Gaze Tracking Precision and Latency

Precision. We also measure the precision of LiGaze’s gaze track-
ing, which re�ects the reproducibility or stability of gaze inferences
in spatial domain. It is calculated as the root mean square (RMS) of
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(a) Within user (b) Cross user

Figure 17: Precision distribution of LiGaze gaze tracking.

successive inference results under a �xed gaze [26]. We compute
this metric using the gaze inference results during the 5-min cali-
bration, where users stare at screen center. As shown in Figure 17,
the mean precision is 5.2◦ and 5.9◦ using the within-user and cross-
user model, respectively. Similar to the accuracy distribution, the
precision is larger at the boundary of the eye’s FoV.

Latency. Table 5 shows the latency of LiGaze’s main steps. The
sensing step includes photodiode sensing duration and the data
communication between photodiode and MCU through the I2C
board. The feature extraction is mainly on estimating re�ected
light, with tens of �oating-point multiplications. The online gaze
inference only includes hundreds of �oating point addition and
tens of �oating point multiplications, thanks to the simplicity of the
boosted trees regression. Blink detection entails computing the �rst-
order derivatives of adjacent data points and thus the computation
overhead is negligible. Overall, LiGaze generates an inferred gaze
vector within 7.8 ms on average, holding the potential to support
128-Hz tracking if photodiodes support higher ADC sampling rates.

Steps Light Feature Gaze Blink TotalSensing Extraction Inference Detection
Duration (ms) 3.6 (±0.1) 1.5(±0.15) 2.6 (±0.15) 0.1 (±0.01) 7.8 (±0.4)

Table 5: LiGaze latency.

6.3 Power Consumption
We measure LiGaze’s power consumption using Monsoon power
monitor. Table 6 lists the power consumed by the main components
of LiGaze. Overall the system (sensing and computation) consumes
791 µW on average. The MCU consumes 75% of the total power at
10-Hz tracking rate, where it is active for only 78 ms every second
(Table 5). 32 photodiodes consume 226 µW because they not only
sense the ambient light intensity, but also digitize the light intensity
using built-in ADC. The data collection relies on the hardware I2C
interface for the MCU to communicate with photodiodes. Its power
consumption can be further lowered down by leveraging DMA.
When the MCU does not infer gaze movement, it enters an ultra
power mode (LPM3) with only a few lower-power clocks awake.

Next, we evaluate the e�cacy of our energy-harvesting unit,
seeking to examine whether the whole gaze tracking system can be
completely powered by the energy harvested from indoor lighting.
We measure the harvested power and the power loss using our
energy-harvesting unit under three levels of indoor lighting. Table 7
lists the results and energy conversion ratios. We observe that
once the ambient light is above 400 lux, LiGaze can be powered
without additional power. The additional harvested energy in the
brighter environments can be stored in the super capacitor so that
the system can continue tracking gaze movement under temporally

dark scenarios caused by user movement and ambient light change.
The energy conversion ratio for the energy harvest component
remains 86–89% regardless of the ambient light level.

Finally, to understand the tradeo�s between energy and tracking
accuracy, we compare LiGaze to three existing low-power gaze
tracking systems: iGaze [74], iShadow [40], and CIDER [41]. Since
all these systems run in di�erent tracking rates, we examine the
energy (in µJ) consumed per gaze inference. For LiGaze, we also
down-sample photodiodes to examine its performance and energy
with fewer photodiodes (e.g., 8, 16). Figure 18 plots the comparison,
where the black line indicates the potential trend of LiGaze in strik-
ing the balance between energy and tracking accuracy. We observe
that LiGaze reduces the energy per inference by multiple orders
of magnitude, with sacri�ces in tracking accuracy. However, with
more photodiodes, LiGaze can capture more feature dimensions in
boosted trees, which can potentially improve the tracking accuracy.
The trend (black line) indicates that with more photodiodes, LiG-
aze can achieve accuracy comparable to CIDER and iShadow, yet
consuming almost half the power. By using photodiodes to capture
low-level light signals, LiGaze can adapt the number of photodi-
odes to speci�c application needs, making it �exible and e�cient.
Whereas other systems all rely on cameras capturing hundreds to
millions of pixels, where many pixels are often redundant.

6.4 Blink Detection
To examine LiGaze’s accuracy in blink detection, we compute the
precision and recall for all participants, where precision is the per-
centage of correctly identi�ed blink events among all blink events
identi�ed by LiGaze, while recall is the percentage of actual blink
events that are identi�ed by LiGaze. Table 8 summarizes the results,
where 6511 blink instances were collected from 30 participants
during the study. The average interval between adjacent blinks
is 9.7 seconds across participants, and each blink lasts 0.3 – 0.4
seconds. Because of photodiodes’ limited ADC sampling rates (10
Hz), LiGaze can only capture up to 4 data points during a blink and
it may miss the data point when a user just closes the eyes. We also
observe that the blink detection is more accurate for users with
lighter skin, and the recall for users with black skin is low. This is
because our blink detection algorithm assumes eyelid re�ects light
well, whereas the re�ectivity of black skin is low, leading to more
missed blink events. In the future, we plan to test photodiodes with
higher ADC sampling rates, which can allow LiGaze to capture
more data points within a blink instance and extract more detailed
temporal features to improve detection accuracy.

6.5 Practical Considerations

Head Movement. To examine the impact of head movement on
LiGaze, we ask a participant to wear the VR headset and watch the
same VR content for two rounds. In the �rst round, the participant
keeps the head still, while in the second time, the participant freely
turns the head. As we examine the gaze tracking accuracy in these
two rounds, we observe that the head movement has negligible
impact on the average tracking accuracy, where the di�erence
is within 0.8◦. It is because unlike other gaze tracking scenarios,
in VR, the headset keeps �xed relative positions among the eyes,
photodiodes, and the VR display, thanks to the head strap. Thus,
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Components Mean Power (µW)
32 photodiodes 226 (±20)

Data collection (MCU) 207 (±15)
Feature extraction (MCU) 120(±12)

Gaze inference (MCU) 193 (±10)
Blink detection (MCU) 5 (±0.5)

Standby (MCU) 40 (±10)
Total 791(±67)

Table 6: LiGaze energy consumption.

Ambient light Harvested Power Conversion
(Lux) power (µW) loss (µW) ratio (%)
600 1091 163 87
500 924 114 89
400 788 107 88
300 589 96 86

Table 7: The performance of LiGaze energy-
harvesting unit .

Skin color
White Yellow Black

Precision 0.86 0.92 0.67
Recall 0.81 0.80 0.76

Overall Precision 0.83
Overall Recall 0.80

Table 8: LiGaze blink detection perfor-
mance.
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Figure 18: Tradeo�s between energy and tracking accuracy for LiG-
aze and existing low-power gaze tracking systems. We down-sample
photodiodes in LiGaze to evaluate the trend (the black line) in balanc-
ing energy consumption and tracking accuracy.

the light propagation properties within the headset remains the
same regardless of the user head movement, making the system
robust against head movement.

User Perception. Since LiGaze adds an annulus PCB on top
of each VR lens, we seek to understand whether the PCB a�ects
user’s viewing of VR content. In the experiment, we ask sixteen
participants to wear the headset with and without our PCB board
for 10 minutes. We then ask them to rate their perception of VR
content from 1 to 5, where 1 means the PCB board signi�cantly
a�ects the viewing of VR content, and 5 means the user cannot
feel the PCB board at all while watching the VR content. All users
in the study rate LiGaze as 5, demonstrating that LiGaze does not
a�ect user’s VR experiences.

Supported Applications. We also examine the implications of
LiGaze’s gaze tracking accuracy to end users in practical applica-
tions. We consider using LiGaze to di�erentiate a few regions in the
screen, which can enable simple user input (e.g., selecting/clicking
buttons, typing letters or numbers) using only glances. We test
three settings, where we split the eye’s FoV into 2 × 2, 3 × 3, and 4
× 4 grids, respectively. In each setting, we select the testing data
with actual gaze directions (based on FOVE) within a circular center
(3◦ range6) of each grid. We then check whether the corresponding
gaze directions inferred by LiGaze are also within the same grid’s
circular center. We observe that LiGaze accurately di�erentiates
di�erent regions, achieving 100%, 99.5%, and 91.7% accuracy under
4, 9, and 16 regions, respectively. It demonstrates that LiGaze can be
utilized in a wide range of interaction applications such as dialing
phone numbers, navigating VR world, selecting menu items, brows-
ing photo gallery, and controlling the depth of �eld e�ect rendering
in VR world. We further implement a few demo applications as a
proof of concept based on the above scenarios. We conduct a user

63◦ is the typical range of gaze drift based on our data collected using FOVE.

study with 10 users to gather user feedback on using LiGaze for
accomplishing these tasks. Users are asked to rate their satisfaction
on both accuracy and latency of LiGaze from 1 to 5, where 5 means
high satisfaction. On average, users have responded with 4.2 and
4 on accuracy and latency, respectively. It indicates that LiGaze’s
performance is su�cient for these basic interaction applications.

7 DISCUSSIONS AND FUTUREWORK
We discuss the insights and lessons we learned through the study,
current limitations, and open questions for future research.

DataQuality ofGroundTruth. Our extensive experiments with
FOVE have revealed issues of its performance stability. Participants
have occasionally reported noticeable inference errors of FOVE to-
wards the end of the study. FOVE’s practical performance deviates
from the numbers (e.g., 1◦ mean error) claimed by the manufac-
turer. This echoes the �ndings in a latest study [20], which reports
similar results on commercial eye trackers’ performance in the wild.
Additionally, we observe that some participants exhibit fatigue in
the end of the study, resulting into tears in the eye or long closing
of eyelid. Both factors a�ect the quality of ground truth data, the
training of our gaze inference algorithm, and evaluation results. In
the future, we plan to test other commercial eye trackers and exam-
ine whether they provide better-quality tracking results as ground
truth. We will also re�ne the design of our study to reduce the
likelihood of user fatigue. Potential solutions include partitioning
a study into multiple short (e.g., 15-minute) sessions, and adding
more interactive VR games to make the study more entertaining.

Improving Tracking Accuracy. LiGaze’s current tracking ac-
curacy is constrained by two factors. First, the training data set
is still relatively small. Moving forward, we will recruit more di-
verse users (especially those with green or hazel eyes) to train our
boosted-tree model and improve tracking accuracy among di�erent
user groups. Second, limited by the photodiode’s built-in ADC, our
current prototype samples sensor data at 10 Hz. This low sampling
rate causes the system missing very rapid eye movements (e.g., sac-
cades lasting only tens of milliseconds). Also, it a�ects the accuracy
of blink detection, as some fast eye movements (e.g., closing eye
lid) during a blink are occasionally missed, which triggers more
false negatives. This problem, however, is not a fundamental limit
of our approach. It can be solved by using photodiodes with ultra
low-power ADCs supporting higher sampling rates. For example,
ADS7042 from Texas Instrument consumes less than 1 µW at 1 KSPS.
Higher sensor sampling rate allows LiGaze to capture more subtle
gaze movement and extract �ner-grained time-series changes to
improve tracking accuracy.
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Prior Knowledge of VRContent. As a stand-alone system, LiG-
aze currently assumes no knowledge and control of screen content.
However, such knowledge can be available if our system is inte-
grated into the VR system, where the gaze inference algorithm and
VR content rendering are both running at the HMD or server. In this
scenario, we can remove front photodiodes (for sensing incoming
screen light), and instead directly model the relationship between an
image frame and the re�ected light perceived by back photodiodes.
We can then leverage this relationship to identify features related
to pupil movement. This approach can lead to higher tracking accu-
racy, as front photodiodes only sample incoming screen light while
an image frame allows us to estimate a full spatial distribution of
screen light. We plan it as a future exploration.

Scenarios Beyond VR. The principle of our approach can be
extended to broader application scenarios, such as augmented re-
ality (AR) headsets or even general eyeglasses. The key challenge
lies in the diversity of ambient light sources, which leads to light
rays coming in more diverse directions when striking the eyeball.
To sense ambient light in diverse directions, we will explore op-
timizations of photodiode placement along the eyeglass rim. For
AR headset with front-facing cameras, we can leverage cameras to
sense high-resolution information about incoming light. Photodi-
odes can complement cameras by sensing light outside camera’s
view. Fusing the information can better sense incoming ambient
light and identify changes related to pupil movement.

8 RELATEDWORK
We categorize existing gaze/eye tracking into two types and overview
representative works in each category. We refer readers to sur-
veys [24, 43] for more comprehensive summaries.

Camera/Vision Based Methods. Most gaze tracking systems
rely on cameras. A common feature is limbus, the boundary between
sclera and iris. The color contrast of these two regions makes it a
feature easy to track horizontally, but not vertically. [32] used edge
detection to segment limbus. Identifying pupil is hard because of
the lower color contrast between pupil and iris.

To enhance the color contrast between pupil and iris, existing
methods often use an IR light (880 nm) to illuminate eyes. By placing
the camera either near or o� light source’s optical axis, camera sees
a bright or dark pupil, which can be used to locate pupil [19, 42].
Furthermore, [49, 75] applied ellipse �tting to track iris and compute
pupil center. [7] used arti�cial neural network to study implicit
features for gaze tracking. Additionally, pupil-corneal re�ection
property have been used by examining the Purkinje images [17, 35],
which are re�ections created at di�erent layers of the eye.

In addition to IR-based approaches, prior e�orts examined using
camera images under visible light to track gaze. They have studied
gray-scale images [33], webcam images [28, 51, 56, 60], and depth
images from Kinect [71]. The tracking methods include analyzing
limbus features [34, 36, 37], inferring �ow-�eld information [33],
identifying iris center [6, 53, 62, 67], and tracking gaze locking [64].

Prior works have also studied gaze tracking when cameras are
remote [29, 68, 73]. They focused on improving the tracking robust-
ness under lighting condition changes [76], head motion [8, 25, 46–
48, 77], less per-user calibration [61, 72], long range [13], and vari-
ous facial features (e.g., eye corners, face color) [16, 44, 57, 63].

With the rise of wearable/mobile devices, recent research started
to expand eye tracking to these low-power devices. Commercial
eye trackers (e.g., Tobii, SMI), however, remain very expensive
and consume high power (with battery packs). [30, 39] studied
lower-cost alternatives with consumer cameras and open-source
computer vision software. [74] added eye tracking to glasses to
infer user attention and guide the design of networking protocols.
Its eye tracking achieved 5◦ mean error with 2.5-W power. [40, 41]
examined the performance tradeo� and proposed low-power de-
signs by sampling image pixels. The latest prototype achieves 1◦
accuracy while consuming 7 mW at 10-Hz tracking rate. A recent
work [22] also studied eye tracking for mobile VR (Google Card-
board). Reusing smartphone display and camera, they exploited the
corneal re�ection of screen to estimate user’s gaze.

Comparing to all above works, our work di�ers in that it re-
moves the need of cameras and uses only a few photodiodes, further
lowering the power consumption. [4, 54] also studied camera-free
methods but with a constant IR light. In contrast, our method is
completely passive and deals with screen light dynamics. [66] in-
ferred gaze by adding a photodiode to each LCD pixel to detect
light re�ected by eyes. It requires modifying the LCD display to
embed the dense photodiode array, whereas our method does not
require modifying the VR hardware.

Non-Vision Based Methods. Other methods use magnetic �eld
or electric skin potential to estimate gaze. In [55], Robinson used
a contact lens embedded with a small coil to track user’s gaze. By
measuring the voltage induced in the coil by an external magnetic
�eld, it estimated user gaze. A recent study [70] designed a wear-
able scleral coil tracking system for VR, where scleral search coils
are mounted on a VR headset to create a magnetic �eld. Electro-
oculogram (EOG) places skin electrodes around the eye to measure
di�erences in skin potential caused by eye movement [31]. In [11],
Bulling et. al built wearable EOG goggles to detect blink, saccade,
and eye movement in four directions. Overall, these methods are
very accurate (< 1◦) and yet the most intrusive. Our work di�ers in
that our system is much less intrusive and entails a much simpler
set up with only a few small photodiodes on VR lens boundary.

9 CONCLUSION
We demonstrated the feasibility of using only a few low-cost photo-
diodes to sense re�ected screen light for inferring user’s gaze in VR.
We designed and fabricated a dual-sided light-sensing unit hosting
photodiodes to sense incoming and re�ected screen light. Exploiting
pupil’s light absorption property, we designed lightweight learn-
ing algorithm to extract features related to pupil movement and
infer gaze on the �y. We validated our design using prototype ex-
periments. Moving forward, we plan to expand our training data
with larger-scale user studies and improve system performance for
diverse users.
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