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ABSTRACT
Dynamic spectrum auction is an effective solution to provide
spectrum on-demand to many small wireless networks. As
the number of participants grows, bidder collusion becomes
a serious threat. In this paper, we study bidder collusion
in large-scale spectrum auctions, investigating its impact on
auction outcomes. We found that the nature of the com-
plex interference constraints among bidders provides a fertile
breeding ground for colluders, causing significant damage in
auction efficiency and revenue. In particular, collusion group
of small size plays a dominant role since it is easy to form
and hard to be detected.

We propose Athena, a new collusion-resistant auction frame-
work for large-scale dynamic spectrum auction. Athena im-
plements a soft collusion resistance, allowing the auctioneer
to exploit the tradeoff between the level of collusion resis-
tance and the cost of achieving such level of resistance. Un-
like existing solutions, Athena enables spectrum reuse across
bidders, achieves soft collusion resistance against any form of
collusive bidding strategy, maintains provable revenue guar-
antee, and does so with polynomial-time complexity. To pro-
vide a comprehensive evaluation, we first analytically prove
Athena’s collusion resistance and revenue guarantee (under
any bids), and then experimentally verify our analytical con-
clusions using empirical bid distributions.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Algorithms, Design
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Dynamic spectrum auctions, collusion-resistance, cognitive
radio networks
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1. INTRODUCTION
Small wireless networks are blooming across the globe. In

New York City alone, the number of WiFi networks totaled
more than 14,000 in 2002 and it continues to grow [7]. Ex-
isting deployments, however, use unlicensed spectrum bands
for low-cost entry and rapid growth. Now they suffer exces-
sive interference and poor performance due to the aggressive
deployment and unprotected spectrum usage. Soon, these
networks will stop growing and even collapse due to spec-
trum shortage, despite their increasing popularity.

But the future is bright. Recent changes in FCC spectrum
policy push for secondary spectrum markets where small
wireless networks can obtain additional spectrum. Several
proposals [3, 9, 15, 25] have shown that dynamic spectrum
auction is an effective platform for secondary markets. These
new auctions target small wireless networks, allowing them
to bid for spectrum by their short-term local usages. Prop-
erly designed auctions will assign protected spectrum to net-
works producing the best economic outcomes.

To be successful, an auction must be resilient to selfish
bidders. Strategic bidders, individually or in groups, seek to
game the system by rigging their bids to manipulate auction
outcomes and to improve their own utilities. To make the
best use of the spectrum, an auction must discourage bidders
from cheating and instead encourage them to reveal their
true valuations of the spectrum to the auctioneer. In this
context, prior work has developed truthful dynamic spec-
trum auctions to discourage individual cheating [17, 25, 26].
Truthful auctions ensure that no bidder, individually, can
improve its utility by bidding other than its true valuation.
Thus a rational strategy is to bid its true valuation.

Truthful auctions, however, become ineffective when bid-
ders collude, i.e. when bidders strategically form collusion
groups and rig their bids together to manipulate auction re-
sults [2, 6]. Designed to address individual cheating, truth-
ful auctions cannot prevent collusion groups from improv-
ing their group utilities. In fact, collusion has appeared in
several past commercial auctions, and has caused signifi-
cantly lower auction revenue and unfair resource distribu-
tion [2, 5, 6, 8, 12]. Interestingly, existing measurements also
show that collusion groups were in general tacit and small in
size, because they are easy to form and hard to be detected.

In this paper, we study bidder collusion in the context of
emerging large-scale dynamic spectrum auctions. Our work
differs from prior work [2,5,6,8,12] because these new spec-
trum auctions must consider spectrum reusability. Unlike
books or paintings, radio spectrum is reusable across bid-
ders. The competition among bidders is now defined by a
large set of complex interference constraints. The nature of



these constraints not only provides a fertile breeding ground
for collusion, but also complicates the auction design [25].

To understand and address bidder collusion in spectrum
auctions, our study seeks to answer two key questions:

(1) Is bidder collusion, particularly small-size collusion, a
big threat to dynamic spectrum auctions?

(2) If so, how can one design auctions tactically to deal
with them, and what is the cost for adding such robustness?

To examine the impact of bidder collusion, we start from
experimenting on a state-of-the-art truthful spectrum auc-
tion design [25]. We show that a simple collusion pattern
involving only two bidders can easily improve the group’s
utility, no matter how others bid. Now bidders have incen-
tive to collude and cheat, many collusion groups will form,
degrading auction revenues by up to 50%.

To resist collusion, we take a proactive prevention ap-
proach, because uncovering collusion groups is hard due to
its tacit nature and the complex auction structure. Specif-
ically, we redesign the auction rules to diminish the gain
of collusion groups, leaving bidders little or no incentive to
collude. In this context, it is proven that the only solu-
tion to suppress collusion of any group size and any type
of collusive strategy is a trivial posted-price design, which
unfortunately leads to unbounded loss in revenue [11]. To
reduce the cost, we consider a “soft” approach that targets
small-size collusion of any type and suppresses the gain of
collusion probabilistically [11, 20]. This approach is shown
to be highly effective and cost-efficient in conventional large-
scale auctions. Existing designs [11,20], however, target con-
ventional auctions without reusability. Directly applying or
extending them to dynamic spectrum auctions either breaks
the collusion resistance or creates excessive interference.

The Athena Spectrum Auction. We propose Athena,
a new framework for collusion resistant spectrum auction
design. Like [11,20], Athena applies soft collusion resistance
to address collusion groups of small-sizes, while minimizing
the cost in auction revenue for achieving such resilience. Dif-
ferent from [11,20], Athena operates under the complex bid-
der interference constraints and exploits spectrum reusabil-
ity to service a large number of small networks. While recent
work [23, 24] also considers spectrum reuse, it only handles
three specific types of small-size collusion and requires ex-
ponential complexity to ensure the collusion resistance. Dif-
ferent from [23, 24], Athena handles all types of small-size
collusion, and achieves both collusion resistance and rev-
enue guarantee using computationally-efficient algorithms,
making it a low-cost and deployable solution for large-scale
spectrum auctions.

The key challenge in our design is that bidders now can ex-
ploit the localized interference constraints to build collusion
that conventional designs cannot handle. Athena addresses
this challenge using a 3-stage “Divide, Conquer, and Com-
bine” process. Using an allocation algorithm, Athena first
divides bidders into segments, removing interference con-
straints within each segment. Athena then suppresses“intra-
segment collusion”within each segment using a classical ran-
domized mechanism to select potential winners within the
segment. Finally, and most importantly, Athena combines
results from all the segments to judiciously select winning
segments, preventing “inter-segment collusion” (when bid-
ders across different segments collude) from affecting auction
outcomes. As a result, bidders in Athena auction have lit-
tle incentive to collude, because, regardless of their collusive

bidding strategy, neither cheating within each segment nor
cheating across multiple segments will produce much gain.

Integrated Evaluation. When evaluating Athena, we
encountered the issue on reasoning how bidders will evalu-
ate the spectrum and bid in the auction, which is also an
open problem in the field of economics [18]. We approach
the solution of this problem by combining theoretical analy-
sis with experimental evaluation. We first analytically prove
Athena’s properties, and then examine Athena experimen-
tally under illustrative bid distributions. Using the following
two case studies, we evaluate Athena by its effectiveness in
resisting collusion and the cost of achieving such robustness.

• Case Study I: To examine Athena’s effectiveness in re-
sisting collusion, we first analytically prove that, for any
bids, Athena achieves the (t, p)-truthfulness of [11, 20]. It
ensures that with a probability p or higher, no colluding
group of size t or less can gain any benefit. The same
(t, p)-truthfulness holds when multiple collusion groups are
present, as long as each group is of size t or less. The choice
of (t, p) determines the level of collusion resistance. To verify
this effect experimentally, we identify some collusion pat-
terns that are effective in truthful auctions, and examine
their effectiveness under Athena. Our results confirm that
these collusion groups cannot improve their group utilities.
Together, the analytical proof and the illustrative examples
offer solid verifications on Athena’s collusion resistance.

• Case Study II: To understand the cost of Athena’s col-
lusion resistance, we consider a different scenario. Aware of
Athena’s collusion resistance, bidders now have no incentive
to cheat but bid by their true valuations. In this “ideal” sce-
nario, we compare Athena’s revenue to that of the truthful
auction without any collusion resistance. The difference in
revenue indicates the necessary cost for adding such collu-
sion resistance. We first prove that for any bids (or valua-
tions), Athena’s revenue is within a bounded distance from
the optimal. Next, using several valuation distributions, we
examine the revenue loss experimentally in greater detail.
Results show that the cost scales gracefully with the level
of collusion resistance (t, p), but remains small <15% for
(t = 4, p = 0.8).

Summary of Contributions. Targeting emerging large-
scale dynamic spectrum auctions, our work makes two key
contributions. First, we show that existing spectrum auc-
tion designs are highly vulnerable to bidder collusion, espe-
cially small-size collusion that is easy to form and hard to be
detected. Although each small collusion group leads to mi-
nor impact on auction outcome, many collusion groups, to-
gether, can significantly damage auction performance. Sec-
ond, we present Athena, a new collusion-resistant spectrum
auction design. Athena effectively resists small-size collu-
sion by diminishing its gain statistically, leaving bidders lit-
tle or no incentive to collude. Different from prior solutions,
Athena not only restores collusion resistance, but also en-
ables spectrum reuse, achieves revenue guarantee, and does
so with polynomial-time complexity. To our best knowledge,
Athena is the first large-scale spectrum auction design that
achieves such general and cost-efficient collusion resistance.

2. PRELIMINARIES
As background, in this section we introduce the emerging

large-scale dynamic spectrum auctions, and provide a brief
overview of bidder collusion in conventional auctions.



Figure 1: A sample network area that describes
bidder conflict conditions. Two bidders conflict
with each other if they are directly connected.
WCN groups are marked in red. W and C are
conflicting neighbors.
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Figure 2: WCN collusion is effective in large-scale spectrum
auction like VERITAS [25]. (a) It can effectively improve
group utility, giving bidders incentive to collude. (b) The
impact on revenue is small when only one collusion group is
present, but increases to 50% when 800+ collusion groups are
present in an auction system with 4000+ bidders.

2.1 Dynamic Spectrum Auctions
In dynamic spectrum auctions, many small networks com-

pete for a limited range of spectrum. The auctioneer period-
ically auctions off K spectrum bands to n (n >> 1) bidders
who submit their bids privately. Without loss of generality,
we consider cases where each bidder requests one band and
accepts any one of the K bands. Each bidder has a private
valuation of the spectrum band derived via either economic
modeling [1, 15] or external network survey.

One unique requirement of these new auctions is that the
auctioneer must determine auction results based on the in-
terference constraints among bidders. Interfering bidders
cannot receive the same spectrum band, while others can
reuse the same band. The requirement of “spectrum reuse”
leads to two properties of dynamic spectrum auctions:

• Local competition. Each bidder competes locally
with its conflicting neighbors rather than all others.
This local competition makes dynamic spectrum auc-
tions fundamentally different from conventional auc-
tions, and imposes significant design challenges.

• Large scale. Each spectrum auction can serve a large
number of bidders with a small set of spectrum bands.
Consider an auction with 4000 bidders where each bid-
der has only up to 5 conflicting peers. In this case, each
single spectrum band can allow 1140+ bidders to win
the auction without conflicting with each other.

2.2 Bidder Collusion
Collusion occurs in an auction when a group of bidders co-

ordinate their bids to manipulate auction outcomes, gaining
unfair advantage. Multiple collusion groups may appear in
one auction, but each collusion group is rational – they rig
the bids only if this can improve the group utility , defined
as the sum of individual member’s utility [11]. A bidder’s
utility is defined as her true evaluation of the goods minus
the price paid if she wins the auction, and otherwise 0.

Despite being legally banned, collusion has appeared in
several past commercial auctions, especially those designed
without collusion resistance in mind [2, 5, 6, 8, 12]. In those
cases, one or multiple collusion groups managed to lower
the auction price significantly. Empirical analysis on these
auctions, interestingly, reveals that most collusion groups
were small (<6 players per group) [2, 6]. This is mainly
because they are easy to form but hard to detect in large-
scale practical systems. Similarly conclusion was drawn for
commercially deployed P2P systems where many collusion

groups exist among 160,000+ participants, but the dominant
collusion groups were 2–4 players in size [19].

3. COLLUSION IN SPECTRUM AUCTIONS
In this section, we use network experiments to examine the

formation and the impact of bidder collusion in emerging
dynamic spectrum auctions. We show that the property
of local competition provides a fertile breeding ground for
collusion, making small-size collusion particularly effective
in raising bidder utility and degrading auction revenue.

3.1 Collusion Patterns
We start from identifying representative collusion patterns

in large-scale spectrum auctions and examining their effec-
tiveness in raising group utility. Because the pattern de-
pends on the auction design, we use a well-known large-scale
spectrum auction design, VERITAS [25], as an illustrative
example. This is due to three considerations. First, VERI-
TAS enables spectrum reuse and supports large-scale small
networks. Second, VERITAS is a truthful auction that ef-
fectively discourages individual cheating. Rational bidders
now have no incentive to cheat individually, and will attempt
to collude. Third, VERITAS is a representative design of
truthful spectrum auctions. It introduces “critical neighbor”
based pricing to achieve truthfulness, which has been used
widely by recent designs of spectrum auctions [25,26]. In the
following, we show that bidders can exploit the local pricing
dependency in VERITAS (and many other truthful designs)
to form highly effective collusion groups.

We introduce a simple 2-bidder collusion, referred to as
the Winner Critical Neighbor (WCN) collusion. Each WCN
group contains two members, bidder W and C, where C is
the critical neighbor of W in the VERITAS auction. The
collusion works as follows: W bids high to maximize its
chance to become an auction winner, while C bids extremely
low. In VERITAS, an auction winner will be charged by the
bid of its critical neighbor. Therefore, if W wins the auction
and if C is still his critical neighbor, W will be charged by
the bid of C, and the total group utility (W’s true valuation
minus C’s bid) will increase significantly.

WCN collusion group can be formed with relatively low
overhead. A bidder only needs to identify its critical neigh-
bor (e.g. by studying past auction outcomes). Since inter-
ference is a local effect, the critical neighbor must be in its
neighborhood. Then the bidder just needs to contact and
incentivize the partner via side-payment. In Figure 1 we



mark the effective WCN groups on a sample graph that rep-
resents the bidder conflict condition. We see that a large
number of WCN groups can be formed locally with W and
C located in proximity to each other.

To examine the effectiveness of WCN, we simulate a set of
VERITAS auctions with 4000 bidders and 1 spectrum band.
In each experiment we randomly place the bidders in a given
area, and generate the bidder conflict constraints following
the graph interference model. With our experimental set-
tings, each bidder sees 5 conflict neighbors in average, map-
ping to a high degree of spectrum reuse. We assume that
without any collusion, the bids are integers randomly dis-
tributed in the range of [1, 100]. After identifying their crit-
ical neighbors, bidders start to form WCN collusion groups
where each C reduces her bid to 1 when C is a loser or C’s
critical value plus 1 (the minimal bid for C to win) when C is
a winner. Our experiment results show that in each auction,
800+ WCN groups can effectively increase their group util-
ities. In Figure 2(a) we plot the group utility improvement
of each collusion group when all other groups are colluding
in 100 experiments. These results show that many bidders
have incentives to collude, since WCN collusion is easy to
form and remains highly effective.

3.2 Impact of Collusion
We now examine the impact of collusion from the auc-

tioneer’s perspective, focusing on the loss of auction rev-
enue because of collusion. Intuitively, given the scale of the
auctions, one would think that small-size collusion will not
produce any visible effect. We verify this intuition using the
same experiments described in the above. Our main conclu-
sion is that the revenue loss from collusion depends heavily
on the number of collusion groups.

• When one collusion group is present. Figure 2(b)
shows the distribution of revenue loss when a single
WCN collusion group is present. We examine the dif-
ference in revenue before and after a collusion group
rigs the bids. As expected, the loss is almost negligible
(<0.3%). This is again because each WCN’s impact is
local – the original winner now pays significantly less,
but the bid change has minimum effect on others.

• When multiple collusion groups are present.
Figure2(b) also plots the distribution of revenue differ-
ence before and after all (800+) WCN collusion groups
rig their bids as long as each improves its group utility
by colluding. We see that collusion produces signifi-
cant impact, reducing VERITAS’s revenue by 45–50%.
In practice, multiple collusion groups are likely coexist,
because once bidders notice the incentive to collude,
they will independently form colluding groups.

Summary of Findings. Our study shows that the
unique requirement of spectrum reuse and resulted local
competition provide large incentives for bidders to collude.
Even simple, small-size collusion groups of 2-bidders can
gain unfair improvements in group utilities. As a result,
many small-size collusion groups will form. Although each
collusion group leads to small impact, together they will
damage the auction revenue and fairness significantly. While
our analysis only considered a representative collusion strat-
egy, more collusion patterns will emerge given the com-
plex conflict conditions among bidders, leading to more sig-
nificant damages. These observations motivate us to find
mechanisms that effectively resist bidder collusion, espe-
cially small-size collusion.

4. RESISTING COLLUSION
An auction can resist collusion in two ways: either de-

tect and punish colluders harshly, or redesign the auction
to discourage bidders from colluding. For large-scale spec-
trum auctions, the detect-and-punish approach is difficult
and costly given the complex interference conditions and
the network scale. Legally proving collusion did happen is
also hard because the collusion is tacit. Therefore, we focus
on the second approach.

Proactive Prevention. The concept behind proactive
prevention is that (rational) bidders collude only if they can
improve the group utility. If an auction is designed to pre-
vent any collusion group from improving their group utility,
rational bidders will have little or no incentive to cheat.

Ideally, an auction should diminish the gain of any collu-
sion group, regardless of its size and form of collusive bidding
strategy. Unfortunately, it is proven that the only solution is
a trivial posted price method, which can lead to arbitrarily
large loss in auction revenue [11]. Therefore, conventional
designs have been using a soft approach that ensures with a
high probability, no collusion group can gain in group util-
ity [11,20]. The probability, in general, depends on the size
of the collusion group and the auction design.

Inspired by [11, 20], we consider the soft approach in de-
signing collusion-resistant spectrum auctions. Our design,
however, faces two new challenges. First, existing designs [11,
20] do not consider heterogeneous bidder conflict constraints
and local competition. When being directly applied or ex-
tended to spectrum auctions, they either suffer severe in-
terference or lose the desired collusion resistance. Second,
existing designs [11, 20, 23, 24] often require the optimal al-
location to enforce collusion resistance. Distributing spec-
trum with spatial reuse, however, is a NP-hard problem.
In large-scale spectrum auctions, we can only consider ap-
proximate solutions. Unfortunately, it has been shown that
many prior works lose their desired economic property by
replacing the optimal allocation with an approximate solu-
tion [4, 13,23–25].

A Case for Divide and Conquer. A closer look at the
problem shows that the above challenges are triggered by the
complex bidder conflict constraints. To overcome these chal-
lenges, we propose to decouple the collusion-resistance design
from the complex interference constraints, using the concept
of divide and conquer. First, we divide bidders into differ-
ent segments such that bidders in each segment are free of
interference constraints and can use a single spectrum band
simultaneously. Second, inside each segment, the auction
process (i.e. determining prices and winners) falls back to
that of the conventional ones and can be “conquered” using
existing solutions [11, 20]. Finally, the auctioneer selects K
winning segments, one for each band, and assigns winners
in each segment a spectrum band. Via the decoupling, this
design successfully reduces a complex auction design into a
form that can be handled by conventional solution.

This design, however, cannot fully address collusion, be-
cause it only enforces collusion resistance within each seg-
ment but not globally. It is effective towards any collu-
sion group involving bidders from the same segment (intra-
segment collusion), but cannot diminish gain of a collu-
sion group involving bidders from different segments (inter-
segment collusion). Therefore, we need an extra layer of col-
lusion resistance to effectively suppress both intra- and inter-
segment collusion. This is the basic idea behind Athena,
which we will introduce next in detail.



Bidders’ bids & 
conflicting 
constraints

Divide
Enable spectrum

reuse

Conquer
Resist intra-segment 

collusion 

Combine
Resist inter-segment 

collusion
Winning 

segment Φ1
(final auction 

winners & 
prices)

Partition bidders into 
multiple interference-

free segments 

In each segment, 
apply random 

rounding to select 
winners and price

Estimate segment’s 
revenue, select K 
winning segments

Segment Φ1

Segment Φ2

Segment Φ1
(winners + price)

Segment Φ2 
(winners + price)

Figure 3: Athena’s 3-stage decision process: Divide, Conquer, and Combine.

5. ATHENA
We propose Athena, a new collusion resistant spectrum

auction design. Like [11, 20], Athena applies soft collusion
resistance to address small-size collusion, ensuring that with
a very high probability, no small-size collusion groups gain
from cheating. Different from [11, 20], Athena operates un-
der the complex bidder interference constraints and exploits
spectrum reusability to serve a large number of bidders.
Different from [23, 24], Athena resists any collusive bidding
strategies using computationally efficient algorithms, mak-
ing it a low-cost and deployable solution.

Athena uses a 3-stage process: Divide, Conquer, and Com-
bine (Figure 3). It first applies a spectrum allocation algo-
rithm in Divide to enable spectrum reuse, and then applies
two layers of collusion-resistant designs in both Conquer and
Combine to resist intra-segment and inter-segment collusion.
Next we describe Athena’s design towards its two goals: en-
abling spectrum reuse and diminishing collusion gain. We
also define and prove Athena’s collusion resistance.

5.1 Enabling Spectrum Reuse
After collecting bids, Athena first divides bidders into

multiple non-overlapping segments based on their interfer-
ence constraints. Bidders in each segment do not conflict
with each other and can use the same spectrum band simul-
taneously without any interference. To do so, Athena uses a
spectrum allocation algorithm to virtually assign one spec-
trum band to bidders without limiting the number of bands
used. It then groups bidders assigned to the same band into
a segment. An important requirement is that the bidder
partition must be independent of their bids. Otherwise bid-
ders can rig bids to manipulate the segment formation and
the auction result.

The outcome of this stage is a set of V bidder segments,
Φ1, Φ2, ..., ΦV , where V depends only on the underlying bid-
der conflict constraints, but not their bids or the number of
spectrum bands to be auctioned.

5.2 Diminishing Collusion Gain
The pattern of collusion can be divided into two cate-

gories: intra-segment collusion formed by members in the
same segment, and inter-segment collusion formed by those
in multiple segments. To resist both types, Athena embeds a
collusion-resistance design into both Conquer and Combine,
where Conquer determines potential winners and prices in
each segment, and Combine selects winning segments.

Addressing Intra-segment Collusion. In the first
step, Athena processes each segment individually and se-
lects potential winners, while diminishing the impact of any
local collusion group. For each segment, Athena determines
a price, and selects bidders bidding no less than this price as
the potential winners. Because bidders in each segment are
free of interference constraints, enforcing collusion-resistance

in each segment is much simper and can use existing solu-
tions [11, 20]. Focusing on soft resistance, we use the t-
Truthful with Probability (tCP) solution from [11]. The
general idea of tCP is to randomize the winner selection
such that the result becomes relatively insensitive to bid
changes. In this case, small-size collusion groups (of size t
or less), with a high probability p, cannot rig their bids to
change the pricing. For each segment Φm, its p is a function
of t and the selection configuration (cm, αm). We briefly
outline the procedure of tCP in the Appendix. The detailed
procedure can be found in [11].

The outcome of this step is that each segment Φm pro-
duces a price Γm and a set of N(Γm) potential winners who
bid no less than Γm. These winners will become auction
winners and be charged with Γm if the segment is selected
in the next step.

Addressing Inter-segment Collusion. In this step,
Athena selects winning segments while diminishing the im-
pact of any collusion group built across segments. Because
only K out of V (K ≤ V ) segments will be assigned with
a spectrum band, Athena must carefully select winning seg-
ments so that no collusion group can rig their bids to ma-
nipulate the auction outcome.

Intuitively, the selection should be straightforward. To
maximize auction revenue, Athena should pick segments that
produce the highest revenue. That is, Athena should rank
each segment Φm by its potential revenue Γm · N(Γm), and
select the K segments with the largest revenue. This design,
however, cannot fully address collusion. We prove this using
a sample collusion pattern of two bidders.

Consider bidders A∈ Φ1 and B∈ Φ2. When they do not
collude and submit their original bids, Φ1 uses a price Γ1 =
10 and has 201 winners, and Φ2 uses a price Γ2 = 5 and
has 401 winners. Thus Φ1 is the winner by having higher
revenue (10·201 ≥ 5·401). Now assume A reduces its bid
from 11 to 9. Although it does not change Φ1’s price Γ1,
the number of winners in Φ1 reduces to 200 and Φ2 becomes
the winner. Now B becomes the winner and increases its
utility from 0 to 15. B can easily transfer side-payment to
incentivize A to set up the collusion.

The above collusion is effective because bidders can ma-
nipulate the potential revenue produced by each segment
and hence affect the segment selection result for their own
gains. As long as bidders know that they can gain in group
utility by colluding, they will be incentivized to collude even
though they may not know the optimal collusive strategy in
most cases. However, such random collusion from multiple
groups can damage the auction revenue significantly.

Athena overcomes this vulnerability using a new method
to estimate the segment revenue. Specifically, Athena re-
places the original absolute revenue Γm · N(Γm) with an
estimated revenue:

R̂(Γm) = Γm × gc(N(Γm)), (1)



where gc(·) is a randomized rounding function parameterized
by c to randomly round N(Γm). The rounding ensures that
∀x > 0 and ∀y ∈ [x−t, x+t], with probability (1−logc

x+t
x−t

),

gc(y) only depends on x and t, but not y [10]. That is, the

rounding makes R̂(Γm) insensitive to both N(Γm) and Γm

that can be affected by collusive bids. Because the estimated
revenue is only used to select winning segments, the impact
of such rounding is minimum.

5.3 Athena’s Collusion Resistance
Athena achieves the following soft collusion resistance:

Definition 1. An auction achieves the (t, p)- truthful-
ness if with a probability of p or higher, no collusion group of
size t or less can improve its group utility by rigging the bids.
This holds even if multiple collusion groups are present, as
long as each group is of size t or less.

Theorem 1. Athena achieves the (t, p)-truthfulness with
p = 1 + logcmin

(1− λt/(lmin − t)) where lmin is the number
of winners of the smallest segment that runs tCP, cmin and
λ are auction parameters. When t/lmin << 1, p = 1 −
O(t/lmin).

The proof is in the Appendix. In the above, λ = 2cmaxαmin

αmin−1
,

cmin = min{c1, ..., cV }, cmax = max{c1, ..., cV }, αmin =
min{α1, ..., αV } when all V segments run tCP. And (cm, αm)
are the tCP configuration in segment Φm.

One restriction in Athena is that any segment Φm, in or-
der to run tCP, must be large enough to ensure αm > 1 [11].
After some computation, we can formally define the restric-
tion as follows: if all V segments run tCP, then the segment
with the least number (lmin) of winners must have more
than ltCP winners, where

ltCP � 2cmaxt

1 − (cmin)p−1
+ t > t. (2)

Hence we have lmin > ltCP > t. In some cases, certain
segments cannot satisfy the ltcp requirement. For these seg-
ments, Athena uses posted price to select winning bidders.
Because posted price achieves hard collusion-resistance, it is
easy to show that Athena’s collusion resistance only depends
on segments that run tCP.

6. FINE-TUNING ATHENA
Having demonstrated Athena’s collusion resistance, in this

section we focus on fine-tuning Athena to improve its auction
revenue. The configuration procedure is independent of bids
so that bidders cannot manipulate their bids to affect the
configuration results and hence the auction outcomes.

6.1 Athena with Uniform Segments
We start from the simplest case where segments are of

the same size, so they either all run tCP or all run posted
price to decide winners in each segment. Intuitively, one
would prefer tCP to posted price if the ltCP constraint is
met, because tCP guarantees a revenue with a distance of
cmαm to the optimal [10]. When cmαm is high, however,
using tCP could produce lower average revenue than that
of posted price. When an auction uses the average revenue
as its performance criterion, it should carefully configure
cm,αm in each segment m running tCP. In this simple case,
because the segments are of equal length, and that cm and
αm do not depend on the bids, we have cm = cmin = cmax,
and αm = αmin, ∀m. From [10], the value of cm depends

Algorithm 1 Athena-Configuration(t, p, N, Y )

Input: 1) (t, p) requirement; 2) Y = min(V, K) for V segments
and K channels; 3) Y largest segments sizes N = {Ni|i ≤ Y }.
Output: (ltCP , αtCP )

1: Rank segments by sizes: N1 ≥ N2... ≥ NY

2: for m = 1 to Y do
3: Set lmin ← lm = �Nm

2
�, cmax ← cm by (3), cmin ← c1

4: Set αm = αmin by (4), ltCP by (2)
5: if (lm < ltCP ) or (αmin ≥ θtCP ) then
6: //Estimate revenue when all run posted price

7: E(m) =
PY

i=1 EP (Ni), cm = 0
8: else
9: //Estimate revenue when m segments run tCP

10: E(m) =
Pm

i=1 EtCP
αmin(Ni) +

PY
i=m+1 EP (Ni)

11: end if
12: end for
13: m∗ =argmaxmE(m)
14: if cm∗ > 0 then
15: (ltCP , αtCP ) = (lm∗ , am∗)
16: else
17: All run posted price
18: end if

only on the size of the segment and the resistance level t.
From Theorem 1, the choice of αm depends on t, p, cmin,
cmax and lmin.

Given such dependency, we configure Athena as follows:

1. By [10], configure cm as

cm = argmaxx[(
lm − t

lm + t
− 1

x
)/ ln(x)], (3)

where the number of winners lm is estimated as half
number of bidders in the segment. Compute ltCP

as (2), if lm ≥ ltCP , go to step 2, otherwise run posted
price.

2. By Theorem 1, use cm to derive αmin; set αm = αmin.

αmin =
(1 − (cmin)p−1)(lmin − t)

(1 − (cmin)p−1)(lmin − t) − 2cmaxt
� αtCP .

(4)

3. Compute a threshold θtCP where if αm ≥ θtCP , then
using tCP with (cm, αm) will in average lead to lower
revenue than that using posted price. Given the size
of the segment, the value of θtCP is derived statisti-
cally using a bid distribution. To ensure collusion re-
sistance, the choice of θtCP cannot depend on the ac-
tual bids. In addition, since the auctioneer in general
does not have good knowledge of the bid distribution,
Athena assumes the uniform random distribution and
computes the expected revenue of a segment with size
x as EtCP

α (x) = α−1(1−α−1)x when it runs tCP using
α, and EP (x) = x/6 when it runs posted price. From

these we can derive θtCP = (3 +
√

3). The detailed
derivations are omitted due to the space limitations.

4. If αm < θtCP , then all the segments use tCP with
(cm, αm), otherwise they use posted price.

The configuration is independent of the actual bids. This is
necessary to ensure collusion resistance, preventing bidders
from manipulate the mechanism used in each segment thus
the price and winner selection.



6.2 Athena with Non-Uniform Segments
When segments are of different sizes, the configuration

becomes more complex due to the interdependency across
segments. For all the segments that run tCP, we will set
αm = αtCP to maximize the auction revenue. But this also
means that the value of αtCP is constrained by the smallest
segment running tCP. By including a smaller segment, lmin

decreases and αtCP increases (according to (4)), thus the
revenue from these segments decreases. Hence we need to
judiciously set the virtual clearing scheme in each segment.

The principle guiding Athena configuration is the fact that
the choice of segments running tCP is monotonic in size. If
a segment of size L runs tCP, then a segment of size larger
than L should also run tCP. Using this principle, Athena
first sorts the segments by their sizes, and searches for the
best number of segments running tCP that produces the
best average revenue. For K segments, there are only K
choices, so that the computation is of low complexity. Algo-
rithm 1 lists the detailed process. Again the configuration
is independent of the bids to ensure collusion resistance.

The interdependency across segments also creates a dilemma
when forming segments. Creating balanced segments will al-
low more segments to use tCP but also suffer from a larger
αm and lower revenue guarantee. On the other hand, im-
balanced partition will have less segments running tCP but
those that run tCP are large in size and thus benefit from a
lower αm and higher revenue performance. In Section 7.3,
we will study the impact of segment partition in more detail.

6.3 Athena’s Revenue Bound
For a given segment partition and assuming all the seg-

ments are large enough to run tCP, we show that Athena’s
revenue is with a bounded distance to the optimal. The rev-
enue bound is stated as the following theorem. We include
the proof in the appendix.

Theorem 2. Given a segment partition, let S denote the
set of segments running tCP in Athena. For all segments in
S, while satisfying the (t, p)-truthfulness, Athena achieves an
auction revenue no less than ROPT /((cmax)2αtCP ), where
ROPT is the sum of the optimal revenue obtained by treat-
ing each segment Φm ∈ S separately, cmax and αtCP are the
auction parameters required to achieve the (t, p)-truthfulness,
as defined in Theorem 1 and (4).

The above theorem indicates that cmax and αtCP are the
two dominating factors in Athena’s revenue. From Sec-
tion 6.1, their values primarily depend on the minimum seg-
ment size lmin and the choice of (t, p). Take the case of
uniform segments as an example, Table 1 lists the values of
cmax and αtCP under various network configurations. We
see that both cmax and αtCP decrease as the segment size in-
creases. This is expected because Athena uses a statistical
method to control collusion gain. The larger the segment
size, the better the efficiency. In the case of non-uniform
segments, the values of cmax and αtCP are similar to that
of uniform segments for each given lmin.

(t, p) = (2, 0.8) (t, p) = (2, 0.9) (t, p) = (4, 0.8)
lmin cmax αtCP cmax αtCP cmax αtCP

540 1.1998 2 1.1998 3.3732 1.3636 3.1096
600 1.188 2 1.188 3.1503 1.2828 2.4792
800 1.1597 2 1.1597 2.6965 1.2381 2.2059
1000 1.141 2 1.141 2.4463 1.2089 2.0478

Table 1: cmax and αtCP under various configurations.

6.4 Athena’s Computational Complexity
Besides the spectrum allocation algorithm used in the Di-

vide step, Athena requires only polynomial time to run the
rest of its components. The following theorem summarizes
Athena’s computational complexity.

Theorem 3. Given n bidders that form V segments and
compete for K spectrum bands, the overall complexity of
Athena is O(n log(n)) on top of the complexity of the spec-
trum allocation algorithm used to partition bidders.

Proof. Athena’s complexity comes from the 3-stage pro-
cedure and the fine-tuning (Algorithm 1). Assume that n
bidders form V segments and bid for K(≤ V ) channels.
First, in the main procedure of Athena, the complexity of
Divide depends on the spectrum allocation algorithm; the
complexity of Conquer is from rounding the bids hence is
linear to the number of the bids O(n); and the Combine
stage takes O(V log(V )) time to sort the segments. Second,
in the fine-tuning of Athena, it takes O(V log(V )) to sort
the segments’ sizes and O(V ) to find the statistically opti-
mal parameter configuration. Thus by V ≤ n, the overall
complexity of Athena is O(n log(n)), plus the complexity of
the spectrum allocation algorithm. Most existing allocation
algorithms [21, 22] are of polynomial-time complexity and
can be used in Divide.

7. ATHENA EXPERIMENTS
Having verified Athena’s collusion resistance and bounded

revenue analytically under any bids, in this section we use
two case studies to examine both properties experimentally.
In the first study, we verify Athena’s collusion resistance by
identifying some collusion patterns that are effective in a
truthful auction (e.g. VERITAS [25]), and examining their
effectiveness in Athena. In the second study, we examine
the cost of collusion resistance as the revenue loss in “ideal”
cases. When bidders are aware of Athena’s robustness, they
have no incentive to cheat but bid their true valuations.
We define the cost of collusion resistance as the difference
between Athena’s revenue and that of VERITAS [25] (with-
out collusion resistance). We study the cost experimentally
using valuation distributions verified by past auction field
experiments [14].

Our experiments consider large spectrum auctions with
4000 randomly deployed bidders; each bidder in average sees
5 conflicting peers. For a fair comparison between Athena
and VERITAS, we use the greedy spectrum allocation algo-
rithm of VERITAS to divide bidders into segments. Because
VERITAS’s revenue depends heavily on the number of bands
auctioned K [25], we configure K to the one that produces
the highest revenue for VERITAS. In many cases, K = 2
and supports 2200+ winners. In the second case study, we
also compare Athena with posted price [11], which achieves
hard collusion resistance at significant revenue loss.

When configuring Athena, we consider p ∈ [0.7, 1] and
t=2, 4, 8 to focus on collusion of small group size. Note
that t is the largest size of collusion groups that the system
seeks to resist, but not the total number of colluders.

7.1 Collusion Resistance
We consider the WCN collusion that is shown to be highly

effective in VERITAS (see Section 3). For 100 auction trials
each with different bidder interference constraints, we first
identify effective WCN collusion groups in VERITAS. We
then deploy them in Athena and examine the group utility
improvement after they rig the bids.
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Figure 4 plots the cumulative distribution of the group
utility improvement for both Athena and VERITAS. We
make two observations. First, different from VERITAS, in
Athena the WCN collusion leads to no gain but significant
loss in group utility. This is because W and C in each WCN
group are located in different segments. Since only C lowers
its bid, W’s utility remains the same yet C’s utility most
likely becomes zero by bidding very low, and the group util-
ity drops significantly. Second, the loss increases with the
level of collusion resistance, p in this case. This is because
the random rounding in Athena becomes coarser as p in-
creases, leading to a lower price in each segment and higher
utilities for winners. Hence the group utility loss (due to C
not winning) varies in larger ranges. Combined with the an-
alytical proof (Theorem 1), this experimental result demon-
strates the effectiveness of Athena’s collusion resistance.

7.2 Cost of Collusion Resistance
With Athena’s collusion resistance, bidders have little in-

centive to collude, but will likely bid by their true valuation
of the spectrum. Under this stable condition, we examine
the cost of such collusion resistance by comparing the rev-
enue of Athena to that of the idealized VERITAS assuming
no one cheats. Athena’s loss in revenue in this ideal case
represents the necessary cost to ensure collusion resistance.

In Figure 5(a)-(b) we examine the cost in terms of the
cumulative distribution of Athena’s normalized revenue loss
over VERITAS, and in Figure 5(c) we examine the average
loss of revenue over different (t, p). The results are derived
over 5000 bid (valuation) generations assuming the bids fol-
low the uniform random distribution over [1,100]. As a ref-
erence, we include posted price’s performance as well as the
revenue loss in VERITAS due to the WCN collusion.

Results in Figure 5 lead to two key observations. First,
compared with posted price, Athena’s collusion resistance
comes at a much lower and “stabler” cost. The large vari-
ance in posted price’s revenue cost also confirms the an-
alytical conclusion where it does not provide any revenue
guarantee but leads to arbitrarily large revenue loss. Sec-
ond, Athena’s cost for collusion resistance scales gracefully
with the level of resistance (t, p). Compared to VERITAS,
Athena sacrifices 5%, 14% and 21% of the revenue to achieve
collusion-resistance with t ≤ 2, 4, 8, and p = 0.8, and the
cost increases to 18%, 28% and 33% when p = 0.9. Hence
Athena is more sensitive to the value of p. Nevertheless,
the revenue reduction is still much smaller than VERITAS’s
loss due to collusion (50+%). This example demonstrates
Athena’s cost-effectiveness, but also implies that the auc-
tioneer needs to carefully choose the (t, p) configuration. We
defer this question to a future study.

We also repeat the study using non-uniformly distributed
bids (valuations). We use the beta distribution, one of the
most popular models on bidder behaviors [14]. It repre-

sents scenarios where the valuation is randomly distributed
around a commonly known value with bounded support. Re-
sults in Figure 6 show a similar trend between Athena and
posted price. But Athena’s cost in revenue reduces signif-
icantly compared to the uniform distribution. This is be-
cause Athena and VERITAS react differently to bid distri-
bution. Athena applies a single-price scheme based on ran-
dom rounding in each segment, creating more winners when
the bids are clustered. In contrast, VERITAS’s revenue is
driven by the competition level, and clustered bids will not
increase the number of winners.

Gain from Athena’s Fine Tuning. We also exam-
ine how Athena’s fine-tuning configuration helps reduce the
cost of collusion resistance. We compare it with the basic
configuration that applies tCP in all the qualified segments
without optimizing α globally. Figure 7 plots the ratio of
Athena’s revenue over that of the basic configuration under
uniform and non-uniform bid distributions with (t,p) = (2,
0.9). Because the basic configuration allows all qualified seg-
ments to run tCP including those small ones, the revenue is
constrained by the smallest segment. By judiciously choos-
ing the segments to run tCP, Athena’s fine-tuning increases
revenue by 25% in average under both bid distributions.

7.3 Impact of Segment Formation
Our analytical results show that Athena’s performance

depends heavily on the segment sizes. The sizes depend
on both the spectrum allocation algorithm and the bidder
interference constraints, which we will exploit next.

We first consider three representative spectrum allocation
algorithms: Max-IS [22], Greedy [21] and random allocation.
In principle, RAND ≤ Greedy ≤ Max-IS in terms of the
allocation efficiency. Yet when combined with Athena, their
difference becomes minimum (<5%). This is because all
three algorithms produce similar-sized large segments, and
differ mostly in their small, medium-sized segments. Since
Athena’s performance depends heavily on the large segments
that run tCP, the difference among these algorithms is small.

Next, we examine whether it is always beneficial to have
balanced segments, by assuming that bidders can be par-
titioned arbitrarily and we can produce arbitrary segment
patterns. Figure 8 compares three randomly generated par-
titions of size [3500, 400, 50, 20, 10, 10, 5], [2000, 900,
500, 300, 200, 50, 50], and [1500, 800, 500, 300, 200, 200,
150, 150, 100, 50, 50], with increasing balance across seg-
ments. We also plot the ideal case where all 4000 bidders
are in one segment. Aside from the ideal case, Athena fa-
vors the most imbalanced partition, particularly when the
spectrum is limited. This is because balanced partition of-
ten leads to smaller lmin, thus larger cmax and αtCP . For
example, when the number of channels auctioned K = 2,
(cmax, αtCP ) is (1.0965, 2) in the ideal case, but it increases
to (1.2381, 2.8006) under the [1500, 800,...] partition.

The above results do not tell us in absolute terms what the
best spectrum allocation algorithm is for Athena. Relatively
speaking, however, we see that creating larger unbalanced
segments provides better revenue. We leave the quest for
the best algorithm to a future study. A nice property of
Athena is that it can use any spectrum allocation algorithm
as long as it produces segments with conflict-free bidders.

8. RELATED WORK
Collusion resistance has been widely studied in conven-

tional auctions. Prior work proposes solutions like tCP [11,
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20] for auctions where bidders either all conflict or do not
conflict at all. Athena utilizes tCP to resist intra-segment
collusion, but focuses on designing a general framework for
dynamic spectrum auctions with general bidder interference
constraints. Recent work [16] proposes a pricing game for
spectrum auctions but does not consider any spectrum reuse.

Another work considers collusion-resistance with spectrum
reuse [23, 24]. It, however, targets small-scale auctions and
only considers three specific types of collusion strategy. In
practice, collusion behaviors are highly complex and hard to
predict, especially in large-scale auctions. Different from [23,
24], Athena provides a general collusion resistance that can
address any form of collusive bidding strategy. Perhaps more
importantly, [23, 24] requires solving a NP-hard optimiza-
tion to ensure its partial collusion resistance. Athena, on
the other hand, can use any approximate spectrum alloca-
tion solution (of polynomial-time complexity), and yet still
maintains its general collusion resistance.

9. CONCLUSION AND FUTURE WORK
We propose Athena, a new spectrum auction design to re-

sist small-size bidder collusion. Using the concept of “Divide
and Conquer,” Athena decouples the problem of spectrum
allocation from that of economic mechanism design, achiev-
ing spectrum reuse, revenue guarantee, and soft collusion-
resistance. To our best knowledge, Athena is the first to ad-
dress any form of small-size collusive bidding in large-scale
spectrum auctions with spectrum reuse.

There are several directions to extend Athena. First,
Athena assumes that each bidder requests one channel. It
is worthwhile to extend Athena to allow bidders to request
multiple channels. Multi-channel bidding, however, com-
plicates collusion strategy, expanding its impact on auction
outcomes. One must carefully analyze the collusion behav-
ior and take additional precaution to suppress collusion gain.
Second, Athena can use any spectrum allocation algorithm
to form segments, yet it is beneficial to identify good allo-
cation algorithms that lead to higher auction revenue.
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Appendix

Preliminary of tCP. tCP applies to auctions where bidders
do not conflict with each other. Let Bm represent the bid set.
With tCP, the auctioneer performs the following procedure to
choose a price Γm and sets the bidders who bid no less than
Γm as winners. It starts from choosing a parameter α > 1 and
defining G = {αi|i ∈ Z} as the set of candidate prices. For each
price candidate αi ∈ G, let N(αi) be the number of bids no less
than αi in Bm. Next, tCP introduces a consensus estimation
function gc(·) parameterized by c to randomly round N(αi). It
then computes the price Γm = arg maxαi∈G

αi · gc(N(αi)). The
random rounding gc(·) makes the choice of price insensitive to
bid changes, ensuring that with high probability, Γm will not be
affected by no more than t bids. As proved in [11], tCP achieves
the (t, p)-truthfulness, where p is lower bounded by Lemma 1.

Lemma 1. A tCP auction with parameters (c, α) is (t, p)-

truthful with p = 1 + logc(1 − λt
l−t

), where λ = 2cα
α−1

, and l is

the number of winners when there is no collusion.

Proof of Theorem 1. We consider the scenario where the
auction contains multiple segments. Lemma 1 directly applies
when there is a single segment.

Proof. In “Divide,” bidders cannot rig bids to change the seg-
ment formation because the allocation is bid-independent. This
ensures the first level of collusion-resistance.

Next in “Conquer”, assume there are V segments where each
Φm uses tCP with (cm, αm) for virtual clearing and has m win-
ners (m = 1, ..., V ). cmin, cmax, αmin, lmin are defined as Sec-
tion 5.3. Consider any collusion group of size ≤ t. Let tm be the

number of its members assigned to segment Φm,
PV

m=1 tm ≤ t.
We introduce the notion of t-truthful : an auction is t-truthful if
it can diminish the gain of all forms of collusion groups of size t
or less. Thus an (t, p)-truthful auction means that it is t-truthful
with a probability of p or higher. Let PrtT

m be the probability

that Φm is tm-truthful. By Lemma 1 with λm = 2cmαm
αm−1

:

PrtT
m ≥ 1 + logcm

(1 − λmtm

lm − tm
), (5)

fPr
tT

m = 1 − PrtT
m ≤ − logcm

(1 − λm
tm

lm − tm
). (6)

By Athena’s “Combine”, if each segment Φm is tm-truthful, the
overall auction is t-truthful because collusive bids cannot affect
any Φm’s bid R̂(Γm) and thus Athena’s auction result. Let PrtT

be the probability that Athena is t−truthful, we have

PrtT ≥
V

Y

m=1

PrtT
m =

V
Y

m=1

(1 − fPr
tT

m ) ≥ 1 −
V

X

m=1

fPr
tT

m

(from (6)) ≥ 1 +
V

X

m=1

logcm
(1 − λm

tm

lm − tm
). (7)

Since logcm
(1 − λm

tm
lm−tm

) < 0, its value decreases as cm de-

creases. We have:

PrtT ≥ 1 +
V

X

m=1

logcmin (1 − λm
tm

lm − tm
)

≥ 1 + logcmin (1 −
V

X

m=1

λm
tm

lm − tm
). (8)

Let λ = 2cmaxαmin

αmin−1
. By the definitions of cmax and αmin, we

have λm = 2cmαm
αm−1

≤ λ. Using the property of function log(1 −
x y

z−y
), we reduce (8) into

PrtT ≥ 1 + logcmin (1 − λ

PV
m=1 tm

lmin − t
)

≥ 1 + logcmin (1 − λ
t

lmin − t
). (9)

By Definition 1, we see that the auction is (t, p)-truthful with
p = 1 + logcmin (1 − λt/(lmin − t)). When t/lmin is very small,

this bound is approximately p = 1 − O(t/lmin).

Proof of Theorem 2. We prove Athena achieves bounded
revenue when tCP is applied in all segments.

Proof. For each segment Φm, let R̂m be the estimated rev-
enue as (1) in Athena, Rm be the revenue achieved by Athena
if Φm is chosen, and ROPT

m be the optimal revenue achieved by
OPT in Φm. By [11], we have

Rm ≥ R̂m ≥ Rm/cm, (10)

where cm is defined in Section 5.3. Given K channels, only
min(K, V ) segments can be final winning segments. Since Athena
chooses winning segments based on their estimated revenue (See
(1)), Athena and OPT may choose different segments. Let SOPT ,
SAthena be the set of segments chosen by OPT and Athena re-
spectively, we have |SOPT | = |SAthena|. We can then compute
cmax and αtCP based on (t, p) and SAthena.

We divide SAthena into two sets Ψ1 and Ψ2, where Ψ1 = SOPT
T

SAthena, and Ψ2 = SAthena \ Ψ1. Next we prove the revenue
of Athena in both subsets is bounded.

First, for Φm ∈ Ψ1, by [11], we have Rm ≥ ROPT
m /(cmαtCP ) ≥

ROPT
m /(cmaxαtCP ). Second, to show the revenue bound of seg-

ments in Ψ2, let R̂m∗ = max{R̂m′ |Φm′ ∈ SOPT \ Ψ1}. For each
Φm ∈ Ψ2, since Athena chooses Φm rather than Φm∗ as winning

segment, R̂m ≥ R̂m∗ . So by (10) and [11], we have

Rm ≥ R̂m ≥ R̂m∗ ≥ Rm∗/(αtCP cm∗ ) ≥ ROPT
m∗ /(αtCP (cm∗ )2).

Athena’s revenue R can be computed as:

R =
X

Φm∈Ψ1

Rm +
X

Φm∈Ψ2

Rm

≥
X

Φm∈Ψ1

ROPT
m /(cmaxαtCP ) + |Ψ2| · ROPT

m∗ /(αtCP (cm∗ )2)

≥
X

m∈SOP T

ROPT
m /((cmax)2αtCP ) = ROPT /((cmax)2αtCP ),

where ROPT =
P

m∈SOP T ROPT
m is the revenue of OPT that

applies single price scheme in each segment in SOPT .
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