

Breaking Bidder Collusion in Large-Scale Spectrum Auctions

Xia Zhou and Haitao Zheng Department of Computer Science University of California, Santa Barbara

- Large number of small wireless networks now coexist
 - Dynamical demands, local wireless service

GoogleWiFi Network

- Large number of small wireless networks now coexist
 - Dynamical demands, local wireless service
- Obtaining spectrum is difficult
 - − Unlicensed band \rightarrow too crowded! \otimes
 - Licensed band → long-term usage, pricy! ☺

GoogleWiFi Network

- Large number of small wireless networks now coexist
 - Dynamical demands, local wireless service
- Obtaining spectrum is difficult
 - − Unlicensed band \rightarrow too crowded! \otimes
 - Licensed band → long-term usage, pricy! ⊗
- Dynamic spectrum distribution with spatial reuse

GoogleWiFi Network

"eBay in the Sky"

Dynamically distribute spectrum via *auctions*

- Auctioneer auctions currently unused spectrum periodically
- Bidders bid for spectrum to match their needs

"eBay in the Sky"

Dynamically distribute spectrum via *auctions*

- Auctioneer auctions currently unused spectrum periodically
- Bidders bid for spectrum to match their needs
- Key requirements:
 - Maximize spectrum distribution efficiency
- Networking

- Enabling spectrum reuse
- Resist bidder cheating

A Closer Look at Bidder Cheating

A Closer Look at Bidder Cheating

- Individual cheating
 - Change bid to gain unfair advantage
 - Solution: truthful spectrum auction designs
 - VERITAS [zhou08], TRUST[zhou09], [jia09]...

A Closer Look at Bidder Cheating

- Individual cheating
 - Change bid to gain unfair advantage
 - Solution: truthful spectrum auction designs
 - VERITAS [zhou08], TRUST[zhou09], [jia09]...
- Collusion
 - Cheat in groups, improving the group's utility
 - Popular in large-scale networks
 - Example: P2P networks
 - Few studies in dynamic spectrum auctions

Our Contributions

• Understand the impact of bidder collusion in dynamic spectrum auctions

• Propose a collusion-resistant design for large scale spectrum auctions

Outline

- Is bidder collusion a serious threat to spectrum auction?
- How to address bidder collusion?
- Evaluation
- Conclusion and future works

• Must enable spatial reuse

• Must enable spatial reuse

- Must enable spatial reuse
- VERITAS: A representative truthful spectrum auction

- Must enable spatial reuse
- VERITAS: A representative truthful spectrum auction

- Must enable spatial reuse
- **VERITAS**: A representative truthful spectrum auction
- Allocation
 - Bid-dependent greedy allocation

- Must enable spatial reuse
- *VERITAS*: A representative truthful spectrum auction
- Allocation
 - Bid-dependent greedy allocation

- Must enable spatial reuse
- VERITAS: A representative truthful spectrum auction
- Allocation
 - Bid-dependent greedy allocation
- Pricing
 - Critical neighbor: for bidder *i*, if *i* bids lower than its critical neighbor, then *i* cannot win the auction; otherwise it wins.

- Winner-Critical Neighbor (WCN) Collusion
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY \$1
 - \rightarrow Improve (B, C)'s group utility

- Winner-Critical Neighbor (WCN) Collusion
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY \$1
 - \rightarrow Improve (B, C)'s group utility

- Winner-Critical Neighbor (WCN) Collusion
 - B identifies critical neighbor C
 - B pays C to bid lower
 - B wins and pays ONLY \$1
 - \rightarrow Improve (B, C)'s group utility

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion
 - **Single Collusion group**

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion

9

- Impact on auction revenue
 - 4000 bidders, 100 random rounds, WCN collusion

Outline

• Is bidder collusion a serious threat to spectrum auction? – Yes, small-size bidder collusion is a huge threat

- Evaluation
- Conclusion and future works

- Prevention rather than detection
 - 'Needle in a hay': hard to detect small size collusion group
 - Prevention ≡ nullify collusion gain → no gain, no collusion

- Prevention rather than detection
 - 'Needle in a hay': hard to detect small size collusion group
 - Prevention ≡ nullify collusion gain → no gain, no collusion
- Soft prevention rather than hard prevention
 - Hard prevention \rightarrow unbounded revenue loss
 - Soft prevention \equiv prob.(successful collusion) < p

- **Prevention** rather than detection
 - 'Needle in a hay': hard to detect small size collusion group
 - Prevention ≡ nullify collusion gain → no gain, no collusion
- Soft prevention rather than hard prevention
 - Hard prevention \rightarrow unbounded revenue loss
 - Soft prevention \equiv prob.(successful collusion) < p
- Soft prevention while enabling spectrum reuse
 - Existing designs assume "all conflict" or "none conflicts"
 - Need new design

12

Athena Spectrum Auctions

Athena Spectrum Auctions

• Enabling spectrum reuse

• Enabling spectrum reuse

- Form bidder segments
- Bidders in each segment do not conflict

• Enabling spectrum reuse

- Form bidder segments
- Bidders in each segment do not conflict

O Diminishing collusion gain

- Form bidder segments
- Bidders in each segment do not conflict

Diminishing collusion gain

- Form bidder segments
- Bidders in each segment do not conflict

• Diminishing collusion gain

- Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment

- Form bidder segments
- Bidders in each segment do not conflict

• Diminishing collusion gain

- Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment

- Form bidder segments
- Bidders in each segment do not conflict

• Diminishing collusion gain

- Tackle collusion within a segment
 - Use collusion-resistant design (tCP) to choose potential winners in each segment
- Tackle collusion across segments
 - Add randomness to winning segment selection

Divide

Combine

Divide

Combine

1: [goldberg03]

Summary

Summary

- Athena's collusion resistance
 - (*t*, *p*)-*truthfulness*: with probability $\ge p$, no collusion group of $\le t$ bidders can improve group utility by collusion
 - Athena achieves (t, p)-truthfulness, p depends on t and the #winners in the smallest segment

Fine-Tuning Athena

- *Segment sizes* affect the choice of the pricing scheme in 'Conquer' in order to maximize revenue given (*t*, *p*)
 - Uniform segment sizes
 - Non-uniform segment sizes
 - Carefully select segments running tCP and their configurations
- Athena's revenue bound
 - When all segments run tCP, the distance of Athena's revenue to the optimal is a function of *t*, *p*, and segment sizes

Outline

- Is bidder collusion a serious threat to spectrum auction? Yes, small-size bidder collusion is a huge threat
- How to address bidder collusion?
- Evaluation

• Conclusion and future works

• **Challenge:** bidder behaviors are hard to model

- Challenge: bidder behaviors are hard to model
- **Solution:** Combine theory and experiments
 - Theory proof for any bids;
 - Experiment with typical bid patterns;

- Challenge: bidder behaviors are hard to model
- **Solution:** Combine theory and experiments
 - Theory proof for any bids;
 - Experiment with typical bid patterns;
- **Case study 1**: Effectiveness on resisting collusion
 - Can Athena diminish collusion group gain?

- Challenge: bidder behaviors are hard to model
- **Solution:** Combine theory and experiments
 - Theory proof for any bids;
 - Experiment with typical bid patterns;
- Case study 1: Effectiveness on resisting collusion
 Can Athena diminish collusion group gain?
- **Case study 2**: The cost of collusion resistance
 - How much revenue Athena needs to sacrifice for collusion-resistance?
 - Compare to VERITAS (truthful auctions)

Athena's Collusion Resistance

Athena's Collusion Resistance

• Experimental result (t = 2, p = 0.9)

– WCN collusion as an example

Athena's Collusion Resistance

• Experimental result (t = 2, p = 0.9)

– WCN collusion as an example

- **Small-size** collusion is harmful
 - Huge revenue degradation
 - Complex interference constraints amplify the impact

- **Small-size** collusion is harmful
 - Huge revenue degradation
 - Complex interference constraints amplify the impact
- Athena: efficient collusion-resistant spectrum auction design
 - Utilizes **randomization** to diminish the collusion gain, enabling reuse
 - Customizable collusion-resistance

- **Small-size** collusion is harmful
 - Huge revenue degradation
 - Complex interference constraints amplify the impact
- Athena: efficient collusion-resistant spectrum auction design
 - Utilizes **randomization** to diminish the collusion gain, enabling reuse
 - Customizable collusion-resistance
- Future work

LINK

- Extend to multi-channel request
- Explore the optimal segment formation

• Thanks!

For more information, please visit: http://link.cs.ucsb.edu/project/mercury.html

BACK-UP SLIDES

For all (t, p)

LINK

@ucsb

Comparing to Posted Price

• Assuming no bidders collude due to the awareness of the design's collusion resistance

Normalized revenue loss = $1 - \frac{\text{Revenue}}{\text{VERITAS revenue}}$

