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ABSTRACT
This paper presents a battery-free wearable eye tracker that
tracks both the 2D position and diameter of a pupil based
on its light absorption property. With a few near-infrared
(NIR) lights and photodiodes around the eye, NIR lights se-
quentially illuminate the eye from various directions while
photodiodes sense spatial patterns of reflected light, which
are used to infer pupil’s position and diameter on the fly via
a lightweight inference algorithm. The system also exploits
characteristics of different eye movement stages and adjusts
its sensing and computation accordingly for further energy
savings. A prototype is built with off-the-shelf hardware
components and integrated into a regular pair of glasses. Ex-
periments with 22 participants show that the system achieves
0.8-mm mean error in tracking pupil position (2.3 mm at the
95th percentile) and 0.3-mm mean error in tracking pupil
diameter (0.9 mm at the 95th percentile) at 120-Hz output
frame rate, consuming 395µW mean power supplied by two
small, thin solar cells on glasses side arms.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile devices; • Computer systems organization → Sen-
sors and actuators;
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1 INTRODUCTION
Eye movement is a vital biological marker. Continuous eye
tracking is critical for understanding its correlation with
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Figure 1: Integrating our eye tracker into a regular pair of glasses.
The system relies on NIR lights and photodiodes for eye tracking and
is powered by two thin solar cells on the glasses arms.

cognitive processes [43, 46, 63], identifying health issues
(e.g., mental disorders, cognitive dysfunctions) [35, 37, 53],
and assessing the effectiveness of clinical treatments [58]. It
is also crucial for the development of human-to-computer
interaction by allowing hands-free, attentive user interfaces,
and the apprehension of user affective states [62].
Supporting above applications requires eye tracking at

the sub-millimeter level with high tracking rates, because
eye movement manifests rapid (e.g., 500◦/s or 25-cm/s) scan-
ning, referred to as saccades, mixed with eye fixations (≈
200 milliseconds on average). Real-time, accurate measures
of these eye movement stages are essential. As examples,
measuring the risks of schizophrenia requires eye tracking
with less than 3◦/1.5-mm error and at least 120 Hz to extract
saccadic eye movement [53]; when tracking user’s attention
in augmented-reality glasses (e.g., Microsoft HoloLens), 2◦/1-
mm tracking error maps to 3.5-cm deviation on an object
one meter away from the user [1]. Additionally, to support
long-term usage, the eye tracker needs to be portable and
low-power, eliminating the need for frequent charging.

Existing wearable eye trackers still fall short in achieving
these goals, mainly because of the inherent conflict between
tracking performance and energy consumption. The com-
mon approach uses cameras to capture eye images and ap-
plies intensive image processing to identify pupil position
and size. As a result, high-end eye trackers entail a prohib-
itive cost (e.g., $15K+ for a Tobii wearable eye tracker [7]),
and often require external battery packs that can be cum-
bersome to carry for day-to-day eye monitoring. Recent
studies [44, 45, 77] have lowered the energy consumption
of camera-based wearable eye trackers, with the latest de-
sign [45] projected to consume tens of milliwatts at tracking
rates above 100 Hz . A recent work [41] examines eye track-
ing without cameras for virtual reality, further lowering
energy consumption, yet at the cost of much higher tracking
error (10◦/5-mm mean error).
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We set out to further push the envelope in this work. We
seek a low-cost design of wearable eye tracker that can oper-
ate at high tracking rates (above 100 Hz) with sub-millimeter
accuracy while consuming power at microwatt levels. With
the overall power consumption hundreds of times lower than
the state-of-the-art [44, 45, 77], the eye tracker can ultimately
be powered by energy harvested from ambient environment
(e.g., indoor lighting) and thus require no battery. It eases the
integration of the eye tracker into a regular pair of glasses
without any battery source (Figure 1).

We achieve these goals with two key design elements.
First, like [41], our approach is camera-less at the core, lever-
aging low-cost (e.g., $1), small photodiodes on the lens frame
to sense light reflected by the eyeball. The reflected light
is used to infer the pupil position based on pupil’s light ab-
sorption property [74]. Our approach differs from [41] in
that it extends the application scenario to regular glasses
and augmented reality glasses, by addingmultiple small (e.g.,
5 mm2) near-infrared (NIR) light emitting diodes (LEDs) as
controlled light sources around the eye. NIR LEDs, as point
lights, in turn emit ultra-short light pulses onto the eye from
different directions, while photodiodes sense reflected NIR
light from their vantage points. We optimize the layout and
tilt angles of LEDs and photodiodes to mitigate the interfer-
ence of eyelashes. Aggregating spatial patterns of reflected
light under different NIR lights allow us to boost the accuracy
of inferring pupil’s position and diameter with a lightweight
inference algorithm based on supervised learning.

The second element and main contribution of this work is
the design principle of adapting eye tracker’s sensing and com-
putation based on current eye movement characteristics. Prior
studies [19] reveal that pupil either is almost stationary (eye
fixation), or follows a path with relatively constant speed
(smooth pursuit), or moves rapidly with little predictability
(saccades), or is covered by the eyelid during a blink. It im-
plies that eye movement is predictable in most cases except
saccades. During stages (e.g., fixation, smooth pursuit) with
predictable movement, this predictability can be exploited
to adjust the frequency of light sensing and pupil inference
for significant energy savings without sacrificing tracking
accuracy. It is particularly beneficial for eye tracking at high
rates (above 100 Hz), since each eye movement type/stage
can last hundreds of milliseconds [19, 61], corresponding to
at least tens of inference results within each stage.

The challenge of realizing this design principle is to timely
detect transitions of movement stages so that sensing and
computation are adapted correctly. Additionally, we need to
avoid error propagation as we exploit movement predictabil-
ity for pupil inferences. Inspired by prior works on eye move-
ment detection and analysis, we consider pupil movement
trajectory, velocity, and acceleration within a small time win-
dow to detect movement stages. We compare these metrics

to adaptive thresholds using the constant false alarm rate
(CFAR) algorithm [66] to ensure robust detection against
varying noise levels. We adjust the rates of sensing and in-
ference at multiple levels for immediate detection of stage
transition. We also interleave predictive inferences with full-
fledged inferences that clear accumulated errors periodically.
We design and fabricate a prototype with off-the-shelf

hardware. The prototype consists of a thin (0.8-mm) cus-
tomized printed-circuit board (PCB) hosting 6 NIR LEDs and
12 photodiodes (Figure 8(a)), a micro-controller (MSP432),
and an energy harvester with two thin small solar cells at-
tached to the side arms of the glasses. We integrate it to a
regular pair of glasses and test it with 22 participants across
a variety of activities. Our key findings are as below:
• Our system achieves 0.8-mm mean accuracy (with 2.3 mm
at the 95th percentile) in tracking pupil’s 2D position, and
0.3-mmmean accuracy (with 0.9 mm at the 95th percentile)
in tracking pupil’s diameter;
• Eye movement stages (blinks, fixations, saccades) are de-
tected with 92.1% precision and 91.9% recall across users,
with the F1 score of 0.92;
• The system produces a pupil inference result in position
and size within 600 µs, potentially supporting tracking
rates above 1.7 KHz;
• With efficient adaptation, the system consumes 395 µW
on average across various user activities while supporting
120-Hz output frame rate, and thus can be powered by
two thin solar cells on the side arms of the glasses.

2 METHODOLOGY AND CHALLENGES
The rationale of our camera-less eye tracking stems from
pupil’s light absorption effect when the light source and
optical receiver are not aligned in the optical axis. As a hole
in the center of the iris, pupil allows light rays to enter the
eye and strike the retina. Acting as a retroreflector, retina
reflects light back to the light source [74], leaving a receiver
off the optical axis of the light source perceiving no reflected
light from the pupil. This property has been exploited by
past works [26, 47] that seek a dark pupil in captured images.
We exploit this effect for eye tracking without cameras.

Specifically, we consider the use of small photodiodes around
the eye to sense light reflected by the eyeball and capture
changes in reflected light caused by pupil movement. A re-
cent study [41] applied a similar methodology in the context
of virtual reality (VR), where a dual-sided light sensing unit
on the VR lens senses incoming screen light and reflected
light from the eye. This design handles incoming light varia-
tions by modeling the relationship between sensed incoming
light and reflected light. The calibration of the model is possi-
ble in VR, where VR screen is the sole light source in a fixed
direction and can play judiciously-designed VR content to



(a) Pupil movement (b) Pupil size variation
Figure 2: Examining pupil’s light absorption effect with a NIR LED
and 16 photodiodes around the eye. (a)-(b) show changes in reflected
NIR light (ADC readings directly related to the NIR power) when the
pupil moves from center to bottom (a) and a center pupil dilates (b).

shorten the calibration for a user. Applying this design for
general glasses, however, is infeasible, given the uncontrolled,
diverse nature of ambient light sources. Front sensors cannot
provide representative samples of ambient light coming in
unknown directions. Also, calibrating the model in diverse
ambient light conditions entails heavy overhead.
To address this problem, we consider sensing with NIR

light, given that ambient light contains much weaker energy
in NIR than visible light. We add a NIR LED as a controlled,
point light source near the eye. It emits a low-power1, imper-
ceptible NIR light beam onto the eye in a known direction,
while a set of NIR photodiodes circling the eye sense NIR
light reflected by the eyeball after both specular and diffuse
reflections. Each photodiode has a limited field-of-view and
thus perceives the light reflected only by a small region of
the eye. As the pupil moves, it weakens the light reflected in
its direction; as the pupil narrows or widens during constric-
tion or dilation, it absorbs less or more light, resulting into a
global rise or fall of reflected light. Thus, pupil movement
and pupillary response result in changes in reflected light,
providing the basis for tracking pupil’s position and size.

Experimental Validation. To examine the effect of pupil’s
light absorption in the glasses context, we conduct exper-
iments with off-the-shelf NIR LED and photodiodes. We
fabricate a PCB hosting 16 photodiodes (BPV22F) and 1 NIR
LED (VSMY2943)2 arranged in a 3.2-cm circle. The LED is
placed at the bottom and transmits at 0.1 mW/sr following
the eye-safety standard [28]. The PCB also contains four
amplifiers connecting to photodiodes. We attach the board
to the front of the left lens of a regular pair of glasses and
connect the board to a micro-controller (MSP432 w/ 14-bit
ADC) that samples data from photodiodes at 200 KHz.

Figure 2 illustrates the reflected NIR light changes upon
pupil movement or pupil size variation (e.g., dilation). We
see that as the pupil moves from the center to bottom, bot-
tom/top photodiodes perceive declines/increases in NIR light
intensity because a bottom pupil absorbs more light rays.

1NIR irradiance power at or below 0.96 mW/cm2 (i.e., 0.42 mW/sr) at eye
surface is considered eye-safe [28].
2LEDs and photodiodes have peak spectrum sensitivity at 940 nm.

Pupil dilation, on the other hand, leads to the global decline
of reflected light intensity as the pupil absorbs more light.
We further examine the impact of ambient light, since

ambient light sources also emit energy in the NIR spectrum.
In the experiment, we switch off the NIR LED in the PCB and
collect photodiode data with a user wearing the prototype
under nine light conditions (Table 6). In all settings except
direct sunlight, photodiode readings are below 150, which
is close to the noise level given the maximum ADC value
(12400) at the micro-controller with a 2.5-V reference voltage.
It indicates that indoor ambient NIR light has a negligible im-
pact on the system. In §6.6, we will examine the eye-tracking
performance under various ambient light conditions.

Challenges. To achieve high-performance eye tracking
using the above methodology, we face two main challenges.
First, unlike an image sensor or camera, a photodiode does
not provide any spatial resolution within its field-of-view,
rather, only a combined light intensity. Thus, a sub-millimeter
pupil movement or size variation can result in negligible
differences in reflected light intensities sensed by the pho-
todiodes, which severely limits the system’s sensing reso-
lution and accuracy. Furthermore, movement of other com-
ponents (e.g., eyelashes, eyelids) in the eye area also affects
reflected NIR light and interferes with eye tracking. Second,
even though photodiodes consume low power, realizing high
tracking rates with microwatt-level power consumption is
still challenging. Existing methods commonly reduce the
sleep duration to achieve high tracking rates [41, 44, 45]. This
methodology significantly increases the power consumption
to at least a few milliwatts, which is orders of magnitude
higher than the amount of power one can harvest from ambi-
ent environment (e.g., radio signals, light, thermal or kinetic
energy) [73]. An alternative method is to interpolate pupil
positions based on samples under a low tracking rate. For
rapid eye movement during saccades, however, such simple
interpolation can cause tracking errors up to 10 mm [15].

In the next two sections, we will describe our solutions to
addressing these two challenges.

3 MULTI-LIGHT EYE TRACKING
Our first design element comprises designs of both the sens-
ing hardware and the inference algorithm to achieve sub-
millimeter tracking accuracy. At the high level, we propose
to combine multiple NIR lights and an array of photodiodes.
NIR lights are sequentially switched on (with 10-µs switch-
ing delay) to emit a short (e.g., 60-µs), directional light beam,
while photodiodes sense the spatial pattern of changes in
reflected light under each NIR light. We then aggregate these
sensing data, extract features, and feed them to a lightweight
regression algorithm to infer pupil’s position and diameter
on the fly. We next describe each component in detail.



(a) Layout (b) Changes in reflected light intensity
Figure 3: Sensing with multiple NIR lights around the eye. (a) shows the layout of 6 NIR LEDs and 12 photodiodes around the left eye, viewing
from the back of glasses lens. We do not place LEDs or photodiodes near eye’s upper lateral canthus corner to mitigate inferences from eyelashes.
(b) shows changes in reflected light caused by pupil movement when each LED is individually on.

3.1 Sensing with Multiple NIR Lights
We aim to boost the system’s spatial sensing resolution so
that it is capable of differentiating sub-millimeter pupil move-
ments and size variations. A straightforward method is to
increase the number of photodiodes while shrinking each
photodiode’s field-of-view to reduce its spatial ambiguity.
The sensing regions of these photodiodes jointly cover the
eye surface and can be coupled with one NIR light illuminat-
ing the eye. With N photodiodes, this method provides N
data points at each time instance for pupil inference. Thus,
it requires a large number of photodiodes to achieve fine-
grained tracking, raising concerns on both the eye tracker’s
form factor and its power consumption on sensing.
To gather sensing data with a minimal number of hard-

ware elements, we coupleM NIR lights3 with N photodiodes,
providingM × N data points with (M + N ) hardware com-
ponents at each time instance. NIR lights and photodiodes
circle the eye along the boundary of the glasses lens. We
judiciously design their layout considering the asymmetry
of the eye area. Specifically, we observe that eyelashes also
reflect NIR light and interfere with our sensing. Thus, we
do not place photodiodes at the top corner. We also do not
place NIR light near the lateral canthus corner, as it is further
from the eyeball and light rays from this direction mostly
illuminate the corner skin. Figure 3(a) illustrates the layout
of NIR lights and photodiodes4. We slightly tilt the NIR lights
and photodiodes so that they better face the eyeball.
We regulate NIR lights and photodiodes as follows. NIR

lights in turn emit ultra-short, directional light beams from
complementary directions onto the eye. Under eachNIR light,
photodiodes sense reflected light at their vantage points,
gathering a spatial pattern of changes in reflected light. By
separating NIR lights in the time domain, for a given pupil
status, we obtain separate snapshots of reflected light pat-
terns under different NIR lights. Two pupil statuses may lead

3In our context, an NIR LED with low radiant power and low duty cycle
consumes power similar to that of a photodiode.
4We omit results on the impact of LED/photodiode layout in the interest of
space. Detailed results can be found in our technical report [42].

to similar spatial light patterns under one light while exhibit-
ing different patterns under another light. The combination
of these patterns/snapshots refines sensing resolution and
reduces spatial ambiguity. As an example, Figure 3(b) com-
pares spatial patterns of reflected light changes caused by a
pupil moving from the center to two positions at the bottom
under each light. Given the proximity of the two bottom po-
sitions, reflected light patterns are very similar under some
LEDs (e.g., LED 2 and 3) while differing more under others
(e.g., LED 4). Aggregating these patterns of all lights better
differentiates pupil statuses.

3.2 Inferring Pupil Position and Size
WithM × N data points (light intensity values) from the

photodiodes at time t , the next step is to infer the 2D co-
ordinate of the pupil center and pupil diameter at t . We
solve the problem with supervised learning to train offline
a personalized model capturing the relationship between
the sensing data and pupil status. With the trained model,
we then compute pupil position and diameter based on the
current sensing data. Specifically, we choose boosted trees
regression algorithm [22, 29] that optimizes a sequence of
regression trees with weights associated to leaves (decisions).
Each new tree helps in correcting errors made by the previ-
ously trained tree. The key benefit of boosted trees regres-
sion is its low complexity during real-time inference, which
involves only comparison and addition operations. In our
experiments, the time complexity of boosted tree regression
is less than 10% and 25% of that using feed-forward neural
networks and support vector machines (SVMs), respectively5.
Also, the space complexity of boosted tree is less than 10%
of that for SVMs, making it suitable for a low-power micro-
controller. Random forest is another candidate because of its
low computation overhead. However, boosted trees achieve

5As for tracking accuracy, we observe that boosted trees actually outperform
more complex alternatives, with 3-mm and 0.2-mm smaller mean error than
neural networks and SVMs, respectively. We hypothesize that it is because
our scenario does not offer high-dimensional andmassive volume of training
data for these alternatives to excel.



exceptionally higher accuracy than random forest when di-
mensionality is low (e.g., < 4000) [20] and is calibrated [21],
making boosted tree regression a better fit in our context.

Offline Training. We train a separate boosted trees model
for pupil’s coordinate in x and y axis, and pupil diameter
z, respectively. To train the models for a user, we collect
5-minute data where we instruct the user to stare at a ball on
the computer screen and follow its moving trajectory. The
user wears our eye tracker that collects light-sensing data,
as well as a wearable NIR camera that captures eye images
(§6). We later manually label camera images to obtain the
ground truth of pupil’s 2D positions and leverage the Pupil
Labs [5] to acquire the ground truth of pupil diameter.
WithM × N data points from light sensing at time t , we

extract a feature vector Ft with (M × N +M ) dimensions,
which contain the spatial variations of reflected light across
photodiodes under each NIR light, as well as the mean re-
flected light intensity under each light. Specifically, let si, j,t
denote the reflected light intensity perceived by photodiode
i under NIR light j at time t . We then compute the mean
reflected light intensity across all photodiodes under light j
as sj,t . We compose Ft as:

Ft = {(si, j,t − sj,t ), sj,t |1 ≤ i ≤ N , 1 ≤ j ≤ M }. (1)

We use the feature vectors Ft and pupil’s coordinate or diam-
eter to train a tree ensemble of K trees with maximum depth
h. We leverage five-fold cross-validation to fine-tune K and
h and set K ,h to 50 and 5 respectively, as they achieve the
best tradeoff between computation complexity and accuracy.

Online Inference. As light sensing data arrive on the fly,
we compute the feature vector as Eq. (1) and feed the feature
vector to the trained tree ensembles to compute pupil’s coor-
dinate in each axis and pupil size separately. Similar to the
random forest, each tree will have a prediction score, and
the pupil’s coordinate is the summation of the K scores.
To improve the energy efficiency of running online in-

ference on a micro-controller (MCU), we eliminate most
floating-point operations during online inference. Regres-
sion with boosted trees has a large number of floating-point
comparisons and additions. Since all features are integers,
we convert all comparisons to integers when deploying the
regression model to the MCU. For additions, we approxi-
mate floating-point numbers by keeping three digits after
the decimal point. By left shifting 10 bits, we first scale these
floating-point number up to 1024 times and then store the re-
sults as integers. Somemultiplication and division operations
can be replaced by shift operations when the multipliers and
dividers are multiples of two.
4 ADAPTIVE EYE TRACKING
The second design element further optimizes the energy effi-
ciency of the eye tracking system at amacro level. It examines

the sequence of inferred pupil positions to determine the cur-
rent eye movement stage/type. It then exploits the movement
characteristics during the current movement stage to adjust
the sensing and computation on pupil inference. It further
saves system energy without sacrificing tracking accuracy.
Next, we describe eye movement types and characteristics.
We then introduce our adaptation strategy.

4.1 Eye Movement Patterns
Human eyes do not look at scenes with fixed steadiness. Eye
movement falls into one of these four types/stages:
• Fixation is the stage when gaze focuses on a single lo-
cation with little pupil movement (below 0.5◦). Fixation
lasts 150 ms to 500 ms [34, 52, 56, 61, 69].
• Smooth pursuit is the eye movement following a smooth
trajectory with relatively constant velocity (30◦/s on aver-
age), i.e., zero acceleration [17].
• Saccade is rapid eye movement in jumps with varying
velocity, which can reach 700◦/s [14] with the minimum of
40◦/s [10]. A saccade lasts around 200 ms on average [27].
• Blink is the closing and opening of an eyelid to help
spread tears and clean the surface of the cornea and con-
junctiva [49]. A blink lasts 100 to 400 ms [2] and occurs
4 to 26 times per minute [13], depending on the activity
(e.g., reading, conversation).

As examples, Figure 4 plots pupil’s 2D positions and the time
series of velocity in various stages. They are samples from
our dataset collected by a remote Tobii eye tracker [8].
Continuous eye movement is a sequence of transitions

among these stages. As revealed by early research [33], when
scanning a scene or reading, human eyes move in jerks and
stop several times, resulting into a series of fixation points
with saccadic movements or smooth pursuit in between. The
same holds when people look at a picture [76] or watch a
movie [30]. Figure 4(d) shows a snippet of eye movement
sequence as an example, where the movement from location
A to B contains two fixation stages, connected by saccadic
and smooth pursuit movements.
This interesting eye movement pattern motivates us to

quantify the percentage of each movement stage/type for
a variety of common activities. We conduct a user study
with 12 participants (10 males and 2 females, 18 to 50+ years
old). We examine two types of scenarios: 1) screen viewing,
where each participant sits in front of a laptop screen and
performs various tasks including fast reading, slow reading,
playing video games, and watching movies; 2) conversation,
where participants are in a meeting and freely look around
the environment or stare at other users. We collect partic-
ipant’s eye movement data at 60 Hz using a remote Tobii
eye tracker [8]. Our dataset contains half-an-hour data for
each user in scenario 1) and 15 minutes for scenario 2). The
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(a) Fixation
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Figure 4: Pupil position (top) and velocity (bottom) during fixation, smooth pursuit, saccade, and mixed eye movement.

frames of eye blinks are detected and marked by the To-
bii eye tracker. We then classify remaining movements into
different stages based on their movement velocity and ac-
celeration [10]. Specifically, we apply a prior method [52],
where movements with velocity below 5◦/s are marked as
fixation, those with velocities from 5◦/s to 40◦/s and accelera-
tion below 1◦/s2 are smooth pursuit, and those with velocities
above 40◦/s are saccades. With fixed thresholds, this method
can misclassify some movement stages; the results, however,
can still indicate the high-level distribution of these stages.
Table 1 shows the percentage of each movement stage

for each activity, averaged across all participants. We also
include the standard deviation in parentheses. Our main
observation is that regardless of the activity, the majority
(80%+) of eye movements are in fixation or smooth pursuit,
where fixation occupies a slightly larger portion (43 – 45%)
than smooth pursuit (40 – 41%). The small standard devia-
tion numbers indicate that the pattern is consistent across
participants. One reason that a significant portion of our eye
movements is fixations is that it takes time for eyes to fixate
on the area of interest, and the brain acquires information
during fixations [30]. The observation also aligns with prior
studies on eye fixation patterns [16, 34]. In comparison, only
9 – 15% of eye movements are in saccades, even for tasks
(e.g., fast reading) when users rapidly move their eyes all
the time. During saccades, the information from the eye is
mostly suppressed, and the eye will slow down its velocity
to acquire information within areas of the scene [30]. Finally,
less than 2% of eye movements are blinks.

Fixation (%) Smooth pursuit(%) Saccade(%) Blink(%)
Slow reading 48.32 (1.57) 40.54 (1.72) 9.71 (0.5) 1.43 (0.11)
Fast reading 45.25 (1.07) 41.52 (1.27) 11.34 (0.37) 1.89 (0.13)

Watching movies 43.84 (2.47) 41.31 (1.56) 14.07 (0.59) 0.78 (0.06)
Playing games 45.6 (4.22) 41.22 (3.97) 12.22 (1.3) 0.97 (0.09)
Conversation 60.85(5.35) 32.64(0.69) 5.26 (0.33) 1.25 (0.12)

Table 1:Average percentages of eye movement stages for five ac-
tivities across 12 participants. We also include standard de-
viations in parentheses.

We further examine the predictability of eye movement
in each stage (except blink). Using the dataset collected in
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 Figure 5: Errors of pupil position by linear interpolation.

the user study, we downsample the data at 30 Hz and apply
linear interpolation to infer pupil positions in the skipped
frames. Figure 5 compares errors of inferred pupil positions
across movement stages. We observe that for fixation and
smooth pursuit, the mean errors are below 0.5◦ with the 95th
percentiles below 1◦, whereas for saccades, the mean error is
2.5◦ with 95th percentile above 4◦. These results confirm the
movement predictability within fixation and smooth pursuit.
Saccadic movements in comparison are less predictable.
Overall, the fact that fixation and smooth pursuit domi-

nate the majority of eye movements is encouraging. It in-
dicates that exploiting the movement predictability within
these stages can lead to a significant energy saving with-
out sacrificing tracking accuracy. Next, we will describe our
adaptation strategy in detail.

4.2 Adaptation based on Eye Movement
The characteristics of different eye movement stages are in-
formative to the eye-tracking system’s operation. During eye
fixation and smooth pursuit, prior pupil positions are highly
predictive of the future. Thus, the system can predict the
next sequence of pupil positions fairly accurately using pre-
dictive inference, without needing to switch on NIR lights and
photodiodes to gather sensing data and run the full-fledged
pupil inference algorithm. During an eye blink, sensing and
pupil inference can be switched off as eyelids cover the pupil
and sensing data are no longer relevant. Full-fledged sensing
and pupil inference need to be performed at high rates only
for saccadic eye movements.
The challenge of such an adaption is twofold. First, we

must timely detect the entry and exit of a moving stage so
that sensing and inference are adapted correctly. Quick detec-
tion of a movement stage also allows more future inferences
within this stage to benefit from predictive inference for



Figure 6: System flow of adaptive eye tracking.
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Figure 7: Reflected light intensity changes when the user
blinks the eye. The red box represents a blinking instance

more energy savings. Second, since predictive inference re-
lies on prior inference results, it inevitably introduces errors
that can accumulate and propagate to future inferences.
We address these challenges as follows. First, we apply

efficient mechanisms to detect each eye movement stage.
We dynamically adjust our detection threshold based on the
current noise level so that the detection is robust against
noise-level changes. Second, once detecting the entry of a
movement stage, we interleave predictive inference with the
full-fledged sensing and pupil inference. We strategically
adjust the frequency of running the latter at multiple lev-
els. It helps periodically clear the accumulated error from
predictive inference while ensuring quick detection of the
transition to the next stage. Next, we begin with an overview
of the system flow, followed by the detection and adaptation
strategy for each eye movement stage.

System Flow. As shown in Figure 6, the system samples
reflected light intensity values from photodiodes. Based on
the sampled data, it first detects whether a blink occurs. If so,
the system is switched off for the blink duration. Otherwise,
it runs the full-fledged inference algorithm (§3.1) to infer
pupil position. Based on pupil position trajectory, velocity,
and acceleration, the system detects the eye movement stage
and adjusts the rate of sensing and inference accordingly,
with predictive inference to provide inferences for skipped
frames. Full-fledged sensing and inference are performed at
output frame rate only for saccadic movements. Algorithm 1
lists the details6 We next explain each step in detail.

Blink Detection & Adaptation. We exploit the spatial
correlation of reflected light changes across photodiodes to
detect blinks. Unlike pupil movement that weakens reflected
light in some directions while strengthening it in others, a
blink causes uniform changes in the reflected light across
most photodiodes. Because eyelids reflect light when the

6We divide the sensing rate by two or four, because such divisions can be
implemented as bit shifts, which run faster and consume less power.

Algorithm 1:Adapting the rate of sensing and inference.
input :1) velocities in 40-ms window:V x ,Vy ; 2) acceleration:

at ; 3) fixation thresholds: vxf ,v
y
f ; 4) threshold factors

for CFAR: αsaccade , αblink ; 5) reference samples and
test samples: Rsaccade ,Rblink ; 6) the number of
LEDs and photodiodes:M , N ; 7) output frame rate r

output :Eye movement state st , the rate of full-fledged
inference r ′

blinkcounter = 0;
for i ← 1 toM do

for j ← 1 to N do
if si jt −min(Ri jbl ink ) >
αblink · (median(Ri jbl ink ) −min(Ri jbl ink )) then

blinkcounter + +;
end

end
end
if blinkcounter > M × N /2 then

st = blink;
r ′ = 0; switch off the system for 200 ms;

end
else if V x < vxf & Vy < v

y
f then

st = fixation;
r ′ = r/4;
Tf = duration();// fixation duration (ms)

if Tf > 200 then
r ′ = r/2;

end
end
else if at > αsaccade ·median(Rsaccade ) then

st = saccade; r ′ = r ;
end
else

st = smooth pursuit; r ′ = r/2;
end

eyelid covers the pupil, it results into stronger reflected light
perceived by photodiodes; when eyelid opens, pupil contin-
ues absorbing light and causes a significant drop in reflected
light intensity for most photodiodes. As a result, eyelid dur-
ing a blink creates a pulse in the time series of reflected light
intensity perceived by most photodiodes. Figure 7 illustrates
an example for four photodiodes when a NIR light is on,
where each line represents the time series of perceived light
intensity at a photodiode.

Based on this phenomenon, blink detection boils down to
detecting a dramatic change in reflected light across most
photodiodes. A simple method is to compare photodiode
signals to a fixed threshold and examine if most photodiodes
perceive signal jumps. To set a proper threshold, however,
is difficult, as it is subject to the current noise level that can
vary both spatially and temporally. We address this problem



by applying the constant false alarm rate detection (CFAR)
to estimate an adaptive threshold on the fly. CFAR is widely
used in the radar systems to detect dramatic signal changes
in the noisy background [66] and has been applied in the eye
tracking context [11, 51]. In a nutshell, CFAR estimates cur-
rent noise level by examiningm reference samples around
the current test sample (i.e., current sensing data in our con-
text). It excludes n samples (i.e., guard samples) adjacent to
the test sample to avoid corrupting the noise estimate with
the test sample. By adapting the threshold, CFAR maintains
a constant probability of false alarm.
We slightly adjust CFAR in our context, as traditional

CFAR considers reference samples with the test sample in
the center [66], whereas here test sample is the latest sensing
data. Thus, we considerm samples before the test sample
as the reference samples. Let si jt denote the test sample, i.e.,
the light intensity value at photodiode i when NIR light j
is on. The set Ri jbl ink of reference samples for this pair of
photodiode and light contains si jt−n−m , s

i j
t−n−m+1, . . . , s

i j
t−n−1.

Then a blink is detected if the following condition holds for
at least half of the light-photodiode pairs:

(si jt −min(Ri jbl ink )) > α ·(median(Ri jbl ink )−min(Ri jbl ink )), (2)

where α is the threshold factor. It is calculated as [51]:

α = f (1 − Pf a )/f (1/2), (3)

where f is the error function7, and Pf a is the false alarm rate.
In our implementation, we setm, n, and Pf a as 20, 10, and
1e−2 respectively.

Once detecting a blink, the system switches to the idle
mode for 200 ms without performing any sensing or infer-
ence, given that a blink lasts around 250 ms on average [2].
After 200 ms, the system continues sensing and full-fledged
inferencing at its output frame rate r . Based on the inferred
pupil positions, we next introduce the detection of different
pupil movement stages and corresponding adaptation.

FixationDetection&Adaptation. Inspired by prior stud-
ies [34, 56, 61], we detect fixation using a threshold-based
method. Since the mean fixation duration is around 250 ms,
we examine pupil positions within a 40-ms sliding window
(or 6 frames @120Hz) to determine the entry of fixation. Let
(xt ,yt ) denote the pupil’s position at time t , and T be the
time interval between two adjacent inferences. We estimate
pupil’s movement velocity in x− and y− axis at time t as:

vxt =
xt − xt−2

2T
, v

y
t =

yt − yt−2
2T

. (4)

If both velocities are below threshold vxf and vyf respectively,
then the fixation test at time t is passed. If such test is passed
for all positions in the sliding window (i.e., from time t to
7f is a Gaussian error function in our implementation as we observe that
sensor errors follow a zero-mean normal distribution.

(t − 5) @ 120Hz), then the system marks the current stage as
fixation. We setvxf as 5◦/s andvyf as 3◦/s, based on prior stud-
ies [38, 67, 69] and our experiments8. The system keeps con-
ducting this fixation test for every subsequent pupil position.
It exits the fixation stage whenever the test fails, ensuring
that the system can timely detect the exit of fixation.
Upon the detection of the entry to fixation, the system

lowers the frequency of conducting sensing and full-fledged
inference to r/4 for the next 200 ms, where r is the output
frame rate of inference results. The skipped frames in be-
tween are provided by predictive inference to maintain the
output frame rate as r . Predictive inference for fixation is
simply the previous pupil position given that pupil rarely
moves. Within the 200 ms, if the fixation test fails at any time
point, the system immediately treats it as the exit of fixation
and returns the frequency of sensing and inference to r . If
the fixation stage remains after 200 ms, statistically pupil is
likely to exit fixation anytime soon. To ensure timely detec-
tion of exit, the system increases the frequency of sensing
and full-fledged inference to r/2.

Upon the detection of the exit of fixation, the system fur-
ther examines whether the current movement is saccadic
using the method we next describe.

Saccade Detection & Adaptation. Saccade detection is
based on sudden, significant jump in acceleration. We use
acceleration rather than velocity because the velocity ranges
of smooth pursuits and saccades overlap [11]. Instead of set-
ting a fixed threshold for the acceleration, we also apply the
CFARmethod to estimate the proper threshold on the fly and
detect the entry of a saccade. In comparison to a fixed thresh-
old, the adaptive threshold is more robust against noises that
can change both spatially and temporally. If the threshold is
too high, many saccades will be treated as smooth pursuits,
which degrades tracking accuracy. If the threshold is too
low, the system will miss many smooth pursuits and thus
opportunities for energy saving. CFAR adapts the thresh-
old to maintain a constant probability of false alarm, which
balances the tracking performance and energy efficiency.
Specifically, let at denote current acceleration (i.e., test

sample) at one axis. We derive the adaptive acceleration
threshold for each axis by estimating the noise level around
at . Similarly to blink detection, the set Rsaccade ofm refer-
ence samples contains at−n−m ,at−n−m+1, . . . ,at−n−1. Then
the entry of a saccade is detected if the following condition
holds in both x− and y− axis:

at > α ·median(Rsaccade ), (5)

where α is the threshold factor calculated as Eq. (3). We
set m, n, and Pf a as 20, 10, and 1e−3 respectively in the

8Adaptive thresholds bring negligible gains for fixation detection because
velocity is near zero.



implementation. To minimize the computation overhead, we
rectify at by an absolute value operator. With this simple
design, online saccade detection mainly involves computing
the median of m numbers in Rsaccade . We leverage a red-
black tree and a circular buffer to minimize the overhead.
Once detecting a saccade, the system maintains the fre-

quency of sensing and full-fledged inference as r . Otherwise,
the system marks the current stage as a smooth pursuit, sets
the full-fledged inference rate as r/2 and applies linear inter-
polation as the predictive inference to infer skipped frames.

5 PROTOTYPE IMPLEMENTATION
We have built a compact and lightweight (< 25 g) prototype
using off-the-shelf hardware components. The prototype
comprises three units (Figure 8).

Light-Sensing Unit. We design and fabricate a thin (0.8-
mm) PCB (< 10 g) that hosts 6 NIR LEDs (VSMY2943) and 12
photodiodes (BPV22F), both with peak spectrum sensitivity
at 940 nm.We slightly tilt LEDs and photodiodes so that each
LED’s 3dB-beam covers 70% of eye surface and each photodi-
ode perceives 50% of eye surface within its 3dB field-of-view.
We choose BPV22F for two reasons. First, its spectral sensi-
tivity range is narrow (80 nm) and far from the visible light
spectrum, which filters out ambient visible light interference.
Second, with ±60◦ 3dB field-of-view, it can perceive more
reflected light rays from the eye even at a short distance (< 2
cm). We choose VSMY2943 because it leverages Vishay’s new
surface emitting technology, which saves up to five times
energy compared with standard emitter technology [9]. We
add a current flow control component to trigger LEDs se-
quentially and limit the radiant intensity to 0.1 mW/sr, which
is much lower than the infrared irradiance standard for eye
safety [28]. We add three 4-channel, low-power amplifiers
(OP481) to amplify signals from photodiodes. Each amplifier
contains a built-in low-power supply (4 µA per amplifier at
maximum), low-offset voltage (1.5 mV), and low-bias current
(3 nA), which help further reduce the power consumption of
the sensing unit and improve the signal-to-noise (SNR) ratio.

Computing Unit. We use a MINI-M4 FORMSP432 board 9

to digitize analog signals from amplifiers, extract features, de-
tect eye movement stages, and infer pupil positions. MSP432
is an ultra-low-power MCU with 80 uA/MHz in the active
mode. It embeds a low-power ADC with 400 uA at 1 Msps.
During signal digitization, we leverage the embedded Direct
memory access (DMA) in MPS432 to maximize ADC rate
and reduce energy consumption. Inference results are stored
in the MCU. They can also be transmitted to other devices

9We have removed all irrelevant components (e.g., USB bridge and LED
indicators) on the MINI-M4 FOR MSP432 board.

through a UART port or battery-free wireless transmissions,
which we leave to future work.

Energy Harvester. The system harvests energy from am-
bient light to power all its operations. We choose light be-
cause of its higher energy density compared to other energy
sources [73]. The harvester leverages two 11.4× 3.7 cm Thin-
film solar cells (LL3-37), which provide high short-circuit
current with improved harvesting efficiency [71]. Also, as
thin (0.2 mm), bendable films, they are lightweight and flexi-
ble to attach to the side arms of glasses (Figure 1).

The harvested energy can vary due to user movement (e.g.,
walking, head movement) and ambient light fluctuations.
It can even occasionally fall below the system’s required
power. To deal with energy fluctuations, we use a buck-
boost DC/DC converter (LTC3016) and a super-capacitor
(0.22 F). LTC3016 stabilizes the output voltage (at 3.3V), while
the super-capacitor stores extra energy when the harvested
energy exceeds the currently consumed power. The stored
energy can supply the system when the instantaneously
harvested power is insufficient.

6 PROTOTYPE EXPERIMENTS
We recruit 22 participants (8 females) to evaluate our proto-
type10. Two of them wear contact lens. Table 2 summarizes
participant information.

Eye Color Skin Color
Black Blue Green White Yellow Black

# of Users 16 5 1 6 11 5
Table 2: Participant information.

Experimental Setup. We augment our prototype with a
small infrared camera (PI NoIR [4]) to acquire the ground
truth. Specifically, we install the camera in front of the eye
(2.5 cm away) using a 3D-printed holder glued to our pro-
totype (Figure 9)11. We connect the camera to a Raspberry
Pi board and set the frame rate to its maximum (120 FPS)
and image resolution to 320×240. To synchronize camera
images and light sensing data, we add three NIR LEDs (940
nm) next to the camera and program these LEDs to emit an
8-ms light pulse at the beginning of each experiment. It leads
to a sudden brightening of the image and a rise in photodiode
readings. We exploit this feature to identify the first camera
image frame and the first sample of light sensing data. We
conduct a separate experiment with 12 out of 22 participants
to evaluate the pupil diameter inference. In the experiment,
the camera runs at 60 FPS with image resolution of 640×480.
With this augmented prototype, we collect training and

testing data from each participant. The training phase lasts 5
minutes, where each participant wears our prototype, sits in
10We obtained IRB approval for our study from the local institution.
11In the future, we will consider using remote cameras (e.g., front cameras
of smartphones or laptops) to ease the collection of ground truth.



(a) Light-sensing unit (front and back) (b) Computing unit (c) Energy-harvesting unit
Figure 8: Circuit boards of each unit in our prototype.

Figure 9: Augmenting our prototype with a
NIR camera capturing the ground truth.

front of a computer screen, and stares at a moving red ball
on the screen. The red ball is programmed to move along
a smooth zigzag path scanning the screen. This maximizes
the number of pupil positions in our training data during
this short data-collection period. Overall we have collected
roughly 35,000 frames on average per participant (769,710
frames for all participants). To obtain the ground truth, we
manually label the pupil center and blink status in each image
frame. We leverage the Pupil Labs [5] API to extract the pupil
shape (e.g., oval) and derive the pupil diameter as the length
of the oval’s long axis. To improve labeling accuracy, we skip
blurred or overexposed images. We use light sensing data
and the ground truth to train a personalized inference model
for each participant. The offline training is done on a desktop
(iMac 2012) and the computation takes less than 10 seconds.

In the testing phase, each participant performs the five
activities in Table 1 (§4.1) while wearing our prototype run-
ning the trained personalized model. Our system computes
and stores inferred pupil positions and diameters on the fly.
Each activity lasts one minute, during which participants
can freely move their heads and choose the content or scene
to view. In total, we have collected 721,846 frames for testing.
Similarly, we obtain the ground truth through manual label-
ing. We then compare them to our online inference results
to evaluate the prototype’s tracking performance.

Error Metric. Similar to a recent work [45], our error
metric is the distance deviation between inferred and ground-
truth pupil center or diameter. We do not choose angular
error as the metric because deriving the gaze vector from an
image accurately (e.g., < 0.5◦ error) requires either multiple
cameras to extract optical axis of the eye, or high-resolution
images (e.g., 640×480) to locate the glint position on the
image. Our hardware setup has only one wearable camera
with image resolution of 320×240 at 120 FPS (the output
rate of our inference). Thus, estimated gaze vectors are less
accurate than labeled pupil centers and diameters.

6.1 Accuracy & Precision

Overall Accuracy. We consider two variants of ourmethod
for comparison: 1) running sensing and inference at 120 Hz

without the adaption in §4, and 2) applying adaptation with
fixed thresholds for detecting eye movement stages. The first
variant serves as an upper bound to examine possible sacri-
fice in accuracy by adding predictive inference. The second
variant examines the contribution of adaptive thresholds.

Figure 10(a) plots CDFs of tracking errors of pupil po-
sitions for all participants. Overall, our system achieves
0.8-mm mean tracking accuracy with 2.3 mm at the 95th-
percentile and 4 mm as the maximum. Comparing it to the
variant without any adaptation, we observe the negligible
difference (< 0.01 mm). It indicates that our adaption mecha-
nism properly skips sensing and inference during predictive
eye movements and thus entails minimal sacrifice on track-
ing accuracy. Comparing to the variant with fixed thresholds,
our method is most effective in improving the tail perfor-
mance, with a reduction of 0.77 mm at the maximal error and
0.4 mm at the 95th percentile. The reduction is moderate
because adaptive thresholds are only applied for detecting
blinks, saccades, and thus smooth pursuit. The reduction in
tracking error for these types of eye movements, however,
is valuable, since measures of these movements are effective
clinical metrics [23, 35]. Our results show adaptive thresholds
are effective in identifying eye movement transitions.
Figure 10(b) plots the CDF of tracking errors in pupil di-

ameter. The mean error is 0.3 mm with 0.9 mm at the 95th-
percentile and 3.4 mm as the maximum. We observe slightly
larger errors during saccades. The reason is that reflected
light is affected by both pupil size variation and pupil move-
ment. During saccades, the impact of pupil movement on
reflected light is more significant than that of pupil size vari-
ation, which degrades the accuracy of size inference. Cur-
rently, we train a separate model for inferring pupil position
and size. In the future, we will consider a joint model [55] to
combine pupil position and size in the training phase.

Error Spatial Distribution. We analyze the distribution
of tracking errors in the spatial domain and plot the average
tracking error for each pupil center position in Figure 10(c).
We observe that for 80%+ positions, the mean tracking error
is less than 1 mm. The larger errors mostly occur when the
pupil moves to the vision boundary. In these scenarios, the
pupil is partially occluded, which degrades the accuracy.
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(d) User activity
Figure 10: Accuracy of tracking pupil position (a) and diameter (b) based on the results of all participants. (c) plots the spatial distribution of
pupil position errors and (d) shows the error across activities.
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Figure 11: Pupil position error for each participant.

User Activity. Our eye movement patterns can vary across
activities, which in turn affect the manner our system adapts
its sensing and inference. To gain a better understanding
of the impact of user activity, we analyze tracking accuracy
across different activities. For each activity, we aggregate
the results across participants and plot the average tracking
error in Figure 10(d). We also include error bars covering 90%
confidence intervals. We observe that tracking errors during
gaming and watching movies are slightly higher than others.
Further analysis shows that the percentages of saccadic eye
movements are much higher during these activities (13%
and 12% respectively). As a result, the mean velocity and
acceleration of pupil movement are at least three times higher
than that of other activities. With 120-Hz tracking rate, it
takes at least 8.3 ms for the system to detect transitions of
pupil movement stages, which introduces errors in capturing
rapid transitions. In §8, we will discuss our plan to increase
the tracking rate without raising the energy budget.

User Diversity. We further analyze how tracking accu-
racy is affected by individual differences in skin/eye color
and eye movement pattern. We aggregate each participant’s
inference results and plot in Figure 11 the average and 90%
confidence interval as the error bar. We observe that the
differences in mean pupil position errors are within 0.8 mm
across participants. In comparison, the results of user 1 are
the most accurate (0.5-mm mean, 1 mm at the 95th per-
centile), while that of user 4 have the largest error (1.3-mm
mean, 3.2 mm at the 95th percentile). Analysis of user 4’s
data reveals that this participant has the highest mean pupil
acceleration and velocity, leading to higher tracking errors.

Precision. We also examine the system’s precision, a mea-
sure of stability and reliability of pupil position inferences
under a fixed gaze. It reflects the ability of the eye tracker
to reliably reproduce a measurement and has been widely
adopted by existing eye-tracking research [31]. Precision is

computed by the root mean square (RMS) from the succes-
sive data points when the user looks at a fixed point. The
mean precision for our system is 0.4 mm and the large errors
mostly occur around the vision boundary.

6.2 Detection of Eye Movement Types
Next, we evaluate the accuracy in detecting various eyemove-
ment stages (blinks, fixation, and saccade). In Table 3, we
list the precision, recall, and F1 score based on the data of
all participants. Precision is the ratio of correctly detected
blink instances within all detected blink instances. Recall is
the ratio of detected blink instances within all actual blink
instances. The F1 score is the harmonic average of precision
and recall. Overall, all movement stages are detected with
90%+ accuracy. For blink detection, some false detections are
due to the sudden movement of the glasses frame. It causes
drastic signal changes at most photodiodes and can trigger
the system to treat it as a blink mistakenly. For fixation detec-
tion, its errors are related to tracking errors of pupil position,
since a fixation is detected based on the pupil movement
velocity (3◦/s or 1.5 mm/s). Large errors in pupil position
(e.g., > 1.5 mm, 15% of the tracking results in Figure 10(a)) can
cause wrong fixation detection. Additionally, for all tested
activities (Table 1) with all participants, we observe blinks,
fixations, and saccades occupy 1.19%, 49.37%, and 8.16% of
the total frames, leaving 41.27% for smooth pursuits. The
result aligns with prior observations in Table 1. It confirms
that regardless of user activities, eye movement is predictable
in the majority of cases because of its jerky nature.

# of Frames Precision Recall F1
Blink 8,589 (1.19%) 0.933 0.947 0.94

Fixation 356,375 (49.37%) 0.921 0.916 0.92
Saccade 58,902 (8.16%) 0.918 0.935 0.93
Table 3: Accuracy of detecting eye movement types.

6.3 Latency
We next examine tracking latency, which is defined as the
duration to produce a pupil inference. Table 4 lists the la-
tency of each key step to produce an inference. Overall, pupil
inference and the movement detection run fairly fast, and
the light sensing step dominates the latency. The light sens-
ing step includes sequentially switching on each NIR LED
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CIDER: 1.8 mJ
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(b) Comparison to existing systems
Figure 12: Power consumption across activities with and without the
adaption in §4. We also compare it to existing low-power eye trackers.

while photodiodes sense reflected light under each LED. The
latency comes from three components: 1) 40 µs for the pinout
setups on the micro-controller; 2) 360 µs for acquiring a set
ofM × N (= 72) data points, given that the micro-controller
samples at 200 Ksps; and 3) 10-µs delay before switching to
another LED, which helps photodiodes and amplifiers better
respond to NIR light intensity change. The inference com-
putation takes 160 µs to infer a pupil position. For higher
efficiency, inference subtasks are executed during each 10-µs
switching delay. It results in an overall latency of 560 µs for
one inference, potentially supporting tracking above 1.7 KHz.

Steps Light Movement Pupil TotalSensing Detection Inference
Latency (µs) 450 (± 20) <1 160 (± 5) 560 (±25)

Table 4: Tracking latency and its breakdown.

6.4 Energy Consumption
We now examine the power consumption of our prototype.
We measure the power consumption using a Monsoon power
monitor. Table 5 lists the energy consumed by the key com-
ponents to produce an inference result. Pupil inference here
refers to the full-fledged inference in §3.1. Overall, each infer-
ence consumes less than 6 µJ, with signal digitization (2.5 µJ)
and the inference algorithm (2.4 µJ) as the main contributors.
Light emission and sensing consume less than 1 µJ (< 17%
of the total consumption), where the peak power of each
NIR LED is less than 0.5 mW. We can possibly further reduce
the energy consumption with ultra-low power ADC (e.g.,
ADS7042). We leave it to future work. When the system does
not perform any sensing or computation (e.g., during a blink),
the MCU remains at the ultra-low-power mode and the light-
sensing board will be shut down. The power consumption
in this mode is less than 40 µW.

Light-Sensing Unit Micro-Controller

Photodiodes IR emitters ADC Movement Pupil
Detection Inference

Energy 0.5 (± 0.04) 0.4 (± 0.05) 2.5 (± 0.08) <0.1 2.4 (± 0.07)(µJ)
Table 5: Energy consumption for producing one pupil inference.

We then further examine the power consumption with the
adaption strategy in §4. Since the actual adaptation depends

on user activities, we plot the average power consumption
for each activity in Figure 12(a). We also include the result for
the method without any adaption (i.e., running full-fledged
sensing and inference at 120 Hz) as a baseline. The error bars
cover 90% confidence intervals. Overall, the mean power con-
sumption of our system across all activities is 395 µW, which
is 52% of the power consumed by the baseline without any
adaption. The energy saving comes from the predictive eye
movement types (i.e., fixation, smooth pursuit) and blinks.
As shown in Table 1 and §6.2, these predictive movement
types occupy 86% of all frames even in activities with rapid
eye movement (e.g., gaming). This is because of the inherent
characteristics of our eye movement (moving in jerks). Thus,
a large portion of inferences is realized as predictive infer-
ences using our adaptation scheme, leading to significant
energy savings. Across activities, the power consumption
under games and videos is slightly higher. It is because more
saccades occur during these activities and the system skips
fewer frames to run the full-fledged sensing and inference.
Next, we compare our system with four existing low-

power eye trackers (LiGaze [41], CIDER [45], iShadow [44],
and iGaze [77]), by examining their tradeoff between track-
ing accuracy and power consumption. Since each system
runs at a different tracking rate, we compare them by energy
consumption per inference. Given that some [41, 44, 77] re-
port only angular errors, we convert these angular errors to
distance deviations for a fair comparison. In particular, we
leverage an emmetropic human adult eye [12], where the
normal horizontal rotation range of an eye is [-35◦, 35◦], and
the pupil horizontal movement is within [-18 mm, 18 mm].
Thus, 1◦ angular error maps to 18

35 mm distance deviation.
Figure 12(b) shows the comparison. We observe that the
power consumption of our system is several orders of magni-
tudes lower than existing methods without sacrificing much
in tracking accuracy. Our system’s tracking performance
is comparable to CIDER, which achieves the best tracking
performance using cameras.

6.5 Energy Harvesting
Finally, we evaluate the energy-harvesting unit in typical
room settings and show its capability to power the entire
system indoors. Although solar energy harvesting has been
studied extensively in the literature, to the best of our knowl-
edge, there have been no systematic measurements with
setups similar to ours (solar cells vertically placed on the
glasses side arms) under various user activities. We test four
ambient light settings, with light intensity ranging from 300
lux to 900 lux: 1) a 60 m2 office with four fluorescent lights
on the ceiling (2.6-m height). The light intensity at day and
night is 700 lux and 500 lux, respectively, at a 70-cm high
table; 2) the same office as 1), where we add three LED floor
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Figure 13: Harvested power from indoor lighting in four settings
while a user wearing our prototype is sitting, standing, or walking.

lamps emitting lights from sides; 3) the same office as 1),
where we only turn on the floor lamps. The light intensity
at day and night is 500 lux and 300 lux, respectively, at a
70-cm high table; 4) a 18 m2 lab space with LED panels on the
ceiling. The light intensity at day and night are 900 lux and
800 lux, respectively, at a 70-cm high table. We choose these
settings based on the recommended light levels by the US
national research & development center [6] and Illuminating
Engineering Society (IES) [3]. The illumination for normal
office work, library, laboratories is recommended to be above
500 lux. The 300-lux setting is below the standard and is used
only to test low-light conditions. In each setting, we test sce-
narios when the user is sitting, standing, or walking while
wearing our prototype with solar cells on the glasses arms.

Figure 13 plots the harvested power in each setting. We
have three observations. First, both light source positions
and user activities affect the amount of energy we can har-
vest. Since most indoor lights are on the ceiling, when users
stand up or walk, solar cells are closer to light sources and
harvest more energy. For floor lamps, some of their emitted
light rays are perpendicular to the solar cells on glasses arms,
allowing more power to be harvested. Second, across the
luminary types, our energy harvester acquires more power
under fluorescent lights than LEDs. As a less efficient lumi-
nary type, fluorescent lights radiate more heat and contain
more infrared light, which can be converted to energy more
efficiently by solar cells. Third, the harvested power is above
the system’s requirement (395 µW) in most settings when
ambient light is above 500 lux, except at night when the user
is sitting on a chair. Under the low-light condition (e.g., 300
lux), the super-capacitor, which stores surplus energy from
other light conditions, can compensate for the power gap.
For example, after one-hour normal usage in setting 2 during
the daytime, the surplus power in the super-capacitor can
support the system for one hour in setting 3 at night.

6.6 Practical Considerations

Glasses Movement. Glasses can slightly move during
reading or user movement (e.g., walking). To analyze its
impact on system performance, we instruct a participant to
wear our prototype and to slightly move the glasses frame
from the normal position on the nose by various offsets up
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Figure 14: Impact of practical factors on tracking performance.

to 2 cm, where with 2-cm offset, the glasses frame is on the
tip of the participant’s nose. Figure 14(a) shows the mean
tracking error of the pupil position, where error bars cover
90% confidence intervals. We see that the error increase is
very small when the offset is within 8 mm. In these cases, the
eye center changes up to 2 mm in the camera’s view, and the
sensing data changes up to 2%, compared with that without
any offset. Thus, the regression model can handle these small
deviations in features/labels. However, for larger offsets (e.g.,
2 cm), the eye center can move up to 15 mm in the camera
view and sensing data can change up to 20%, leading to much
larger errors. To enhance the system’s robustness against
glasses movement, we can collect more training data with
various glasses offsets. We leave it to future work.

Ambient Light. We also test system performance under
nine ambient light conditions with various types of light
sources, light directions, and light intensity levels. Table 6
shows the mean and standard deviation of sensor readings12
when a user wears our prototype with all NIR LEDs switched
off. Thus, these data indicate ambient NIR energy levels in
various indoor settings. Figure 14(b) shows the tracking er-
ror of the pupil position, including 90% confidence inter-
vals, in each light condition. Overall, our system is robust
across these conditions, except strong direct sunlight (104
lux), which contains strong NIR energy. NIR energy radiated
by indoor light sources or indirect sunlight has a negligible
impact on our system. In these settings, the ambient NIR en-
ergymaps to sensor readings within 100 to 150, whereas with
our NIR LEDs, sensor readings vary between 1500 and 11000
in the dark environment. However, direct sunlight maps to
sensor readings up to 2500, which can saturate sensors when
our NIR LEDs are on and degrade the tracking performance.
To mitigate this problem, we can adapt the sensor gain to
avoid saturation. We leave it to future work.

7 RELATEDWORK

Eye Tracking Systems. We divide existing eye-tracking
systems into three categories based on their methodologies:

1) Camera-based: Most existing eye trackers use cameras.
To achieve robust tracking indoors, existing methods rely on
NIR LED to illuminate eyes and highlight the pupil [26, 48,
50, 54, 79]. Prior works have also examined the use of camera
1212400 is the maximal reading with 2.5-V reference voltage.



# Type of Light Light Source Ambient Light Sensing Data
Source Position Intensity (Lux) (Mean/Std.)

1 LED Light Uniform 300 5 / 1

2 LED Light Uniform, Front 600 7 / 2Back, Left, Right
3 Fluorescent Light Uniform 600 30 / 7
4 Incandescent Light Uniform 600 47 /11
5 LED Light Uniform 800 35 / 9
6 Non-direct Sunlight Window 1000 85 / 16
7 Non-direct Sunlight Window 2000 141 / 26
8 Direct Sunlight Window 5000 934 / 86
9 Direct Sunlight Window 10000 2526 / 205

Table 6: Impact of ambient light on the NIR sensors of our prototype.

images under visible light [32, 39, 40, 57]. With the rise of
wearable devices, several efforts have examined eye tracking
in the wearable context [44, 45, 77]. Specifically, iGaze [77]
leverages eye tracking to infer user attention on web brows-
ing. The system achieves 5◦ tracking accuracy and 30-Hz
tracking rate, but consumes over 1.5-W power. iShadow [44]
and CIDER [45] sample image pixels to reduce the camera’s
power consumption and computational overhead. The latest
design [45] achieves 0.44-mm mean accuracy with 7-mW
power at 4 Hz. The energy consumption is still a few orders
of magnitudes higher than the energy that can be harvested
from ambient environment. Our method further reduces the
energy consumption by replacing cameras with photodiodes
and adapting eye tracking based on eye movement types.
2) Photodiode-based: Prior works have also examined the

use of low-cost photodiodes for eye tracking. In [36, 59, 75],
authors leverage a flying-spot laser and a photodiode to
selectively image landmarks on the eye for eye tracking.
In [65], Sarkar et. al design a customized MEMS mirror that
guides laser rays to scan and track the cornea. Their method
provides high accuracy (<0.4◦) and high-rate tracking (>1
kHz), using sophisticated optical lenses to control laser rays.
In [68], authors embed a customized photodiode array into
an LCD display for eye tracking. In comparison, our method
does not require specialized hardware and uses off-the-shelf
photodiodes/LEDs. A recent work [41] designs a low-power
eye tracker in VR using low-cost photodiodes to sense screen
light. The design relies on the modeling of the relationship
between incoming screen light and reflected light. It is ap-
plicable to VR with a closed space where the screen is the
sole light source at a fixed direction/distance. Generalizing
it to regular glasses or augmented glasses in open spaces is
difficult, given the uncontrolled and diverse nature of sur-
rounding ambient light sources. Training the model entails
heavy overhead and introduces tracking errors. Our work
addresses the problems using multiple NIR light sources. It
improves tracking accuracy and robustness. More impor-
tantly, our work proposes an adaptation strategy to further
reduce power by exploiting eye movement patterns.
3) Non-Vision: Other eye tracking systems rely on the

magnetic field or Electro-oculogram (EOG) sensors. In [60],
David et. al use a contact lens with a scleral coil to track

pupil with 1◦ tracking accuracy. In [18, 72], Bulling et. al use
EOG sensors on wearable glasses to detect eye movement.
Our method differs in that our system is less intrusive and
consumes significantly lower power.

Eye Movement Analysis. Existing eye movement detec-
tion relies on dispersion, velocity, and acceleration thresh-
olds [25, 64]. Suppes et. al present one dispersion-threshold
algorithm to identify fixations as groups of consecutive points
within a particular dispersion or limited region [70]. Smeets
and Hooge [67] present a multipass velocity-based saccade
detection in which they detect saccade peaks in the first pass
and find the onset/offset in the second pass. In [11, 51, 52],
adaptive thresholds are used for saccade detection to deal
with differences in users, recording situations, and noises.
Extensive works also have analyzed user behaviors using
eye movement detection. In [24, 30, 34], the authors extract
user’s reading patterns of texts, video, and web search using
fixation duration and saccade frequency. In [23], Trevor et.
al leverage saccade behaviors to detect early Alzheimer’s
disease. A recent work leverage saccade patterns for authenti-
cation [78]. We are inspired by these works. Our work differs
in that we apply movement detection methods to adapt eye
tracker’s operations based on eye movement stages.

8 CONCLUSION AND FUTUREWORK
We designed and implemented a battery-free wearable eye
tracker using low-cost NIR lights and photodiodes. We rec-
ognize the limitations of our current study and summarize
the future work. First, our current design focuses on indoor
scenarios where ambient NIR light is relatively weak. We
will extend the design to outdoor scenarios, by dealing with
the strong NIR in sunlight, which can saturate NIR photo-
diodes and interfere with light sensing. We consider adding
adaptive amplifiers to adjust the gain of amplifying signals.
Second, tracking at 120 Hz, our system is unable to detect
micro-saccades. We will seek to further boost the tracking
rate while maintaining a similar energy budget. One method
is to detect motion stages using less sensing data so that
we can frequently turn off sensors to save energy. Finally,
going beyond small-scale studies, we plan to conduct longer-
term deployment with our prototype and examine various
health monitoring applications. We will continue optimizing
the circuit for a more miniaturized look, and consider its
integration on regular glasses with various shapes.
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