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ABSTRACT
We are facing an increasingly difficult challenge in spectrum man-
agement: how to perform real-time spectrummonitoring with strong
coverage of deployed regions. Today’s spectrum measurements are
carried out by government employees driving around with special-
ized hardware that is usually bulky and expensive, making the task
of gathering real-time, large-scale spectrum monitoring data ex-
tremely difficult and cost prohibitive. In this paper, we propose
a solution to the spectrum monitoring problem by leveraging the
power of the masses, i.e. millions of wireless users, using low-
cost, commoditized spectrum monitoring hardware. We envision
an ecosystem where crowdsourced smartphone users perform auto-
mated and continuous spectrum measurements using their mobile
devices, and report the results to a monitoring agency in real-time.
We perform an initial feasibility study to verify the efficacy of our
mobile monitoring platform compared to that of conventional mon-
itoring devices like USRP GNU radios. Results indicate that com-
moditized real-time spectrum monitoring is indeed feasible in the
near future. We conclude by presenting a set of open challenges
and potential directions for follow-up research.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

Keywords
Spectrum monitoring; Crowdsourcing

1. INTRODUCTION
Radio spectrum is one of the most sought-after resources in the

world. In the US, public spectrum auctions by the government gen-
erate billions of dollars for the right to utilize spectrum bands. Out-
side of spectrum auctions, spectrum rights are viewed as commod-
ity valuable enough to motivate the outright purchase of a company,
as was the case for Sprint’s purchase of Clearwire Communica-
tions, and the ongoing rumors of a takeover of Dish Networks.
But despite the value placed on wireless spectrum, there is sur-

prisingly little attention paid to an increasingly difficult challenge:
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real-time spectrummanagement in deployed settings, e.g. measure-
ments, fault detection and diagnosis, and attack and anomaly detec-
tion. In next generation wireless devices, the density of spectrum
usage will continue to grow over both the geographic and frequency
domains. The biggest challenge will be coverage, as current mon-
itoring tools and mechanisms will not scale to cover the deployed
physical networks, as well as the increasing range of spectrum fre-
quencies being used.
As a compelling example of spectrum monitoring applications,

consider the problem of spectrum enforcement. As context, the
US government has opened up TV whitespaces to accommodate
wireless broadband across the country, and could allocate more fre-
quency bands for the same purpose [22]. Yet despite advances in
algorithms, hardware and software platforms, research on whites-
paces has not addressed spectrum enforcement, i.e. how do we
detect and locate unauthorized users whose transmissions may in-
terfere and disrupt transmissions from authorized spectrum users?
An effective spectrum enforcement system is indispensable to

an efficient spectrum system. Without it, malicious users can freely
“misuse” spectrum without authorization. For example, an unau-
thorized usage of Verizon’s spectrum band can easily disrupt its
normal cellular service, leading to dissatisfied customers and rev-
enue losses [1]. Similarly, misuse of TV whitespaces can disrupt
existing users and violate basic assumptions and guarantees funda-
mental to the operation of whitespace systems.
The challenges facing spectrum enforcement are typical of those

faced by spectrummonitoring applications. First, perhaps the biggest
challenge is how to gather detailed spectrum measurements with
strong coverage of deployed regions [15]. Second, given the dy-
namics of wireless performance and mobility of users, these mea-
surements should be “real-time,” i.e. either on-demand or periodic
with a high frequency. In contrast, today’s spectrum measurements
are carried out by government employees driving around with spec-
trum analyzers and specialized hardware that is usually bulky, ex-
pensive, and difficult to operate1. Add to this the budgetary and
resource constraints of governments around the world, and it is
clear that gathering real-time, large-scale spectrum measurements
requires a new approach.
Crowdsourcing and Commoditized SpectrumMonitoring. Our
solution to the spectrummonitoring problem is to leverage the power
of the masses, i.e. millions of wireless users, by commoditizing
spectrum monitoring hardware. Instead of bulky, specialized hard-
ware sensors, we want to explore the use of cheap hardware ex-
tensions to millions of smartphones already deployed in the wild.
Our goal is to evaluate the feasibility of commodity smartphone
sensors for spectrum measurement, in a possible ecosystem where
crowdsourced smartphone users perform automated and continu-
1Based on the NTIA presentation at the 2014 WSDR workshop.



ous spectrum measurements using their mobile devices, and report
the results to a monitoring agency in real-time. Unlike traditional
spectrum monitoring tools, our crowdsourced mobile devices can
provide improved coverage over wide areas with minimum infras-
tructure cost.
Our current prototype leverages commodity mobile devices (An-

droid smartphones and laptops) and portable RTL-SDR devices as
spectrum sensors. With a price tag less than $20, the RTL-SDR
device is easy to replace and effectively disposable. The device can
scan spectrum activities between 52-2200MHz, covering a wide
range of today’s wireless networks. Finally, the device is com-
patible with open-source GNU radio software suites and can take
advantage of a large variety of signal processing blocks.
Initial Feasibility Study. We performed initial measurements to
compare the efficacy of our low-cost monitoring platform to that of
conventional monitoring devices like USRP GNU radios. Our find-
ings are encouraging. First, RTL-SDR radios on smartphones only
have around 10dB sensitivity loss compared to USRP radios with
laptops. In practice, this means that an RTL-SDR device might not
pick up weak transmission signals, which can be easily compen-
sated by the significant increase in coverage offered by our crowd-
sourcing approach. Second, while RTL-SDR radios have limited
sensing bandwidth, i.e. 2.4MHz compared to USRP’s 20MHz, they
can still scan a 240MHz frequency band in less than 2s, or cover
the entire TV Whitespace (408MHz) within 2.9s. And we can fur-
ther reduce sensing time and improve its accuracy by partitioning
sensing frequency among neighboring crowdsourcing users or ag-
gregating their monitoring results in time and frequency.
Based on these results, we believe a real-time spectrum mon-

itoring system via crowdsourcing and commoditized hardware is
indeed feasible in the near future. However, deploying a practical
system requires significant efforts to overcome a number of techni-
cal challenges. We conclude by identifying a set of open challenges
and potential directions for follow-up research. To the best of our
knowledge, we are the first to propose a real-time spectrum moni-
toring system using crowdsourcing and commodity mobile devices.

2. REAL-TIME SPECTRUMMONITORING
An effective spectrummonitoring system requires significant amounts

of measurement data that is comprehensive in coverage area, accu-
rate, and up to date. We propose to achieve this using crowdsourced
spectrum monitoring and measurements. In the following, we first
discuss the specific challenges of spectrum monitoring, and then
present the concept and key components of our proposed design.

2.1 Key Challenges
While a variety of designs and tools can address part of the spec-

trummonitoring problem, many are impractical in realistic settings.
These present significant challenges to our target design.

• Cost – we cannot rely on fixed or dedicated monitoring hardware
such as spectrum analyzers or USRPGNU radios, because provid-
ing adequate coverage of wide areas would require unacceptably
high infrastructure costs.

• Responsiveness – we cannot rely on periodic spectrum scans or
offline processing of third party measurements. Such systems
would be slow to react to changing transmissions, and misbehav-
ing transmitters can easily detect and evade them.

• Coverage – we cannot simply use systems that extend a small set
of measurements using abstract models. Those results would eas-
ily breakdown in real outdoor environments, where fading, obsta-
cle blocking and changing physical conditions would render most
propagation models highly inaccurate for our purposes.

(a) RTL-SDR/Laptop (b) RTL-SDR/smartphone

Figure 1: RTL-SDR connected to a laptop or a smartphone

2.2 System Overview
Our proposed system addresses the above challenges by integrat-

ing two components: a crowdsourcing measurement framework
that gathers spectrum measurement data in wide areas, and a low-
cost mobile platform that allows crowdsourced users to perform
spectrum measurements automatically in real-time. Next, we intro-
duce the high-level concepts of the two components.
Spectrum Measurement via Crowdsourcing. To obtain ade-
quate coverage for our real-time spectrum monitoring system, we
explore a scalable and systematic approach of aggregating individ-
ual user effort, i.e. crowdsourcing. Today, crowdsourcing services
have been widely used to achieve complex measurement tasks at
a small fee. For example, Facebook crowdsources content mod-
eration tasks to filter out pornographic and violent media posts;
TaskRabbit outsources a family’s household errands or a company’s
long-term and short-term projects to others in the neighborhood.
Recently, researchers have successfully used crowdsourcing mea-
surements to collect a large-scale human mobility GPS trace from
users around the globe [28].
In our proposed framework, we break the large-scale spectrum

monitoring task into simple measurement tasks that can be accom-
plished by individual users using their mobile devices. Specifically,
individual users monitor and collect spectrum activities in their lo-
cal neighborhood and submit their results in real-time to a spectrum
monitoring agency. The agency then aggregates these monitoring
results to produce a more complete view of the spectrum usage in
a wide area. Furthermore, as these crowdsourcing users move (and
possibly change) dynamically, our system can also obtain elasticity
required for monitoring spectrum usage across wide areas.
One practical challenge we face in this component is how to en-

sure adequate coverage during the early deployment phases, when
the number of active transmitters and users are both low. We will
discuss potential solutions to this challenge in Section 5.
Commoditized Measurement Platform. Another key feature of
our design is a low-cost, lightweight mobile measurement platform
that enables crowdsourcing users to automatically collect spectrum
measurement data. The platform has just two hardware compo-
nents: a commodity mobile device, e.g. smartphones/tablets/lap-
tops, and a cheap and portable Realtek Software Defined Radio
(RTL-SDR) that connects to smartphones/laptops via a USB cable.
The RTL-SDR behaves as a “spectrum analyzer” and collects raw
spectrum usage signal in the wild, while the mobile host behaves as
a “data processor” and translates the raw data into a data stream that
is more compact (for easy storage and transmission) and meaning-
ful for the monitoring system. Figure 1 illustrates two prototypes:
the RTL-SDR connected to a laptop and a smartphone.
More specifically, the RTL-SDR device [2] is a DVB-T dongle

that operates in the frequency range of 52-2200MHz and supports
a maximum sample rate of 2.4MHz. The portable device can trans-
fer on the fly raw I/Q samples to the host it is connected to. We
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Figure 2: Impact of sensing sensitivity on noise and signal measurements, as well as signal detection accuracy, using USRP/laptop,
RTL-SDR/laptop, and RTL-SDR/smartphone.

chose this device for our initial implementation because of its cost,
availability, portability, and its coverage in radio frequency. The
device is widely available and costs <$20, and thus can be mass-
distributed to crowdsourcing users at a marginal cost.
We also built necessary software to interconnect the two hard-

ware components. For smartphones, we built an Android app on
top of the existing RTL-SDR code 2, which enables the smartphone
to command the RTL-SDR device in real-time, i.e. scanning a spe-
cific frequency range at a specific sampling rate for a specific time
duration. The app does not require any special driver-level support
or root access. For the laptop version, we leverage the open-source
project PyRTLSDR 3. After obtaining the raw I/Q samples from the
RTL-SDR device, the mobile host performs FFT to produce power
spectrum density map of the collected signal. These can be used
to identify active transmissions or detect useful features related to
spectrum misuse detection [23].
One key concern is whether the spectrum measurements col-

lected by this low-cost hardware can provide the same level of fi-
delity and accuracy like those obtained from sophisticated hard-
ware like USRP GNU radios. We have performed initial feasibility
study on this issue, which we will discuss next.

3. INITIAL FEASIBILITY RESULTS
In this section, we evaluate the feasibility of using low-cost mo-

bile platform (RTL-SDR) for spectrum monitoring. Compared to
sophisticated hardware like USRP GNU radios, the RTL-SDR de-
vice has two key limitations:

• Limited Sensing Sensitivity: While USRP outputs 14-bit4 quadra-
ture samples, RTL-SDR outputs 8-bit quadrature signal samples.
Because of this resolution difference, RTL-SDR is less sensitive
to weak signals and can fail to detect them.

• Limited Sensing Bandwidth: While USRP supports up to 20MHz
bandwidth, RTL-SDR can only support up to 2.4MHz. In order to
monitor a frequency band wider than 2.4MHz, RTL-SDR needs
to sweep the band sequentially. This means that it can fail to de-
tect certain short-term (or on/off) transmissions that occupy only
a portion of the frequency band.
Next, we perform measurement studies to understand the implica-
tions of these limitations on spectrum monitoring. Specifically, we
evaluate and compare three monitoring platforms: a USRP N210
radio connected to a laptop, a RTL-SDR radio connected to a lap-
top (Figure 1(a)), and a RTL-SDR radio connected to a smartphone
(Figure 1(b)). All three platforms use the same antenna model and
all three antennas are co-located. Note that the comparison between
2https://github.com/keesj/librtlsdr-android
3https://github.com/roger-/pyrtlsdr
4USRP can output 32-bit float quadrature samples, but its accuracy
is fundamentally limited by its 14-bit DAC sampling.

the last two platforms allows us to understand the potential artifact
of using smartphones as mobile hosts for spectrum monitoring.
We performed experiments on two frequency bands: an aeronau-

tical telemetry band centered on 1512MHz and a TV Whitespace
band centered on 690MHz. We have confirmed via a spectrum
analyzer that both bands are vacant at our test area. For the TV
Whitespace band, we have also confirmed its availability using the
Google Spectrum Database Tool5. On each of the two bands, we
used another USRP radio as the transmitter to be detected and used
the three monitoring devices to detect its presence. To create sig-
nals of different strength, we either vary the USRP’s transmission
power or the distance between the USRP transmitter and the three
monitoring devices.

3.1 Impact of Sensing Sensitivity
We start from quantifying the sensing sensitivity difference be-

tween USRP and RTL-SDR using noise and signal measurements.
For a fair comparison, we configure all three monitoring platforms
to operate on a 2.4MHz band. We then translate such difference in
the context of spectrum monitoring as the probability of miss de-
tecting the target transmission. Since our experiments on 1512MHz
and 690MHz lead to the same conclusions, we only show the results
for 1512MHz due to the space limitations.
Signal and Noise Measurements. We first look at the noise
power reported by each platform when there is no active transmis-
sion, i.e. the USRP transmitter is off. Since each platform has a
different noise floor, we focus on examining the variance of the
noise power as a function of the sensing duration. Figure 2(a) plots
the standard deviation of the noise power as we increase the sens-
ing duration from 0.1ms to 2ms. We make two key observations.
First, compared to USRP, the two RTL-SDR based platforms re-
port higher noise variance. This is mostly due to the radio, since
using laptop rather than smartphone as the mobile host only leads to
marginal improvements. Second, the increase in noise variance can
be compensated by increasing the sensing duration. Once the sens-
ing duration increases beyond 1ms, the RTL-SDR based platforms
perform similarly to the USRP platform. In the rest of the experi-
ments, we set the sensing time to 1ms on each 2.4MHz channel.
Next, we perform signal measurements by turning on the USRP

transmitter to emit OFDM signals continuously. We vary the trans-
mit power to create signals of different signal-to-noise-ratio (SNR).
Figure 2(b) plots the measured SNR values as we vary the transmit
power. Due to RTL-SDR’s limited sensitivity, the corresponding
two monitoring platforms report lower SNR values (≈13dB lower
for RTL-SDR/smartphone, and ≈8dB lower for RTL-SDR/laptop)
compared to the USRP platform. The difference is pretty consistent
across a wide range (20-45dB) of SNR values.

5https://www.google.com/get/spectrumdatabase/



We found that one cause for the additional 5dB SNR loss of RTL-
SDR/smartphone over RTL-SDR/laptop is that the smartphone’s
microUSB interface does not provide enough power to the RTL-
SDR radio. After connecting the radio to an external power source,
the SNR value increases by 3dB. We plan to explore the cause for
the leftover 2dB loss in a future work.
Impact on Spectrum Monitoring. Our above results show that
the limited sensitivity of RTL-SDR leads to 8-13dB loss in SNR
reports, which means that it cannot capture weak signals reliably.
In the context of spectrum monitoring, such limitation translates
into the need for stronger coverage – monitoring devices “close” to
a transmitter can detect its presence.
To further understand this impact, we consider a simple moni-

toring task for a single monitoring device. It needs to detect all
signals with SNR values higher than 0dB while maintaining a false
alarm rate below 1%. Again we use a separate USRP transmitter to
create two types of signal events: “active” or “silent.” During “ac-
tive”, the USRP transmitter emits signals continuously at a fixed
transmit power and gain, while during “silent” it does not trans-
mit anything. We then use the three platforms to capture the signal
for 1ms and detect the type of the current event based on the cap-
tured signal strength. For each platform we apply a signal strength
threshold to ensure 1% false alarm rate, and report the resulting
miss detection rate in Figure 2(c) as a function of the signal SNR
measured by the USRP platform. We see that the USRP platform
can reliably detect signals with SNR≥ -2dB, which increases to
7dB for RTL-SDR/laptop and 10dB for RTL-SDR/smartphone. For
the 1512MHz band, such 12dB difference translates into roughly
50% loss in distance [27], which means that the coverage require-
ment for a monitoring system using RTL-SDR/smartphone devices
needs to be 50% denser than that using USRP/laptop. This should
be easily achievable using crowdsourcing.
Addressing the Sensitivity Limitation. There are two potential
approaches. First, with crowdsourcing, we can deploy many mon-
itoring devices in an area to reduce the sensitivity requirement on
each individual device. Second, certain signal features, e.g. pilot
tones [13] or cyclostationary features [6], are much more reliable
signal indicators than energy, which can potentially relax the per-
device sensitivity requirement. However, these methods are more
complex than energy detection. We plan to investigate the feasibil-
ity of realizing them on commodity smartphones in a future work.

3.2 Impact of Sensing Bandwidth
Next, we investigate the impact of RTL-SDR’s limited sensing

bandwidth, i.e. 2.4MHz compared to USRP’s 20MHz. To moni-
tor a frequency band wider than 2.4MHz, the monitor device must
scan the band sequentially in segments of 2.4MHz. Intuitively, the
overall scan delay is the product of the number of segments and the
sum of the scan time per segment (1ms based on our earlier result)
and the time required to switch between frequency segments.
To examine the scan delay, we configure the two RTL-SDR de-

vices to monitor a wideband of bandwidth between 24MHz and
240MHz, with a sensing duration of 1ms per 2.4MHz segment.
We configure the USRP device to monitor the same band. For ref-
erence, we also configure an extra USRP monitoring device with a
sensing bandwidth of 2.4MHz, in order to compare the frequency
switching time of RTL-SDR and USRP radios. Figure 3(a) shows
the scan delay for RTL-SDR/smartphone and USRP/laptop. The re-
sult of RTL-SDR/laptop is the same as that of RTL-SDR/smartphone
and thus omitted for clarity. We see that for both platforms, the
scan delay increases linearly with the total bandwidth, which is as
expected. Yet the scan delay of RTL-SDR is two times higher than
USRP (2.4MHz) because its frequency switching delay is higher.
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Figure 3: Impact of sensing bandwidth in terms of (a) scan-
ning delay and (b) signal detection error rate, using RTL-
SDR/smartphone and USRP/laptop platforms.

Our experiments show that the switching delay of RTL-SDR is up-
per bounded by 50ms with a median of 16ms while USRP takes
a stable value of 3ms. Overall, RTL-SDR radios can finish scan-
ning a band of 240MHz bandwidth within 2s. Consider today’s
TV Whitespace (68 channels of 6MHz each), it would only take a
RTL-SDR device 2.9s to scan the entire band (68×6=408MHz).
Impact on Spectrum Monitoring. We quantify the impact
of RTL-SDR’s sensing bandwidth on spectrum monitoring by the
amount of signal detection errors it can lead to. We assume the
frequency band to be monitored can be divided into multiple seg-
ments of 2.4MHz. For simplicity, we assume each segment expe-
riences independent signal events, modeled by a random ON/OFF
process. We then compare the accuracy of RTL-SDR/smartphone,
USRP/laptop (2.4MHz), USRP/laptop (20MHz) for detecting the
status of these segments. A segment is occupied if the energy de-
tected is above 15dB. To eliminate the impact of RTL-SDR’s sen-
sitivity loss, we configure the transmit power such that the signal
SNR is 30dB at the measurement locations.
Figure 3(b) plots the detection error rate for monitoring a 24MHz

band and a 120MHz band. We vary the mean ON-OFF period
between 1s and 10s, mapping to different signal occurrence fre-
quency. For the 24MHz band, RTL-SDR/smartphone achieves<10%
detection error even when detecting highly dynamic signal events
(1s average ON-OFF period). As the band becomes wider (120MHz),
the error rate can reach 35% if the signal is highly dynamic.
Overcoming the Bandwidth Limitation. Our results show that
the bandwidth limitation of RTL-SDR/smartphone can lead to mod-
erate detection error when monitoring a wideband with highly dy-
namic signals. There are two potential solutions to this problem.
First, leveraging crowdsourcing, we can either divide each wide-
band into several narrowbands and assign users to specific narrow-
bands, or aggregate results from multiple users with asynchronous
scans. Second, we can leverage novel sensing techniques, e.g.
QuickSense [25] or BigBand [10], which apply efficient signal search
algorithms to perform wideband sensing using narrowband radios.
The challenge here is how to realize these sophisticated algorithms
on RTL-SDR/smartphone devices, which is our ongoing work.

4. RELATEDWORK
Spectrum Sensing & Monitoring. Existing efforts have pro-
duced advanced spectrum sensing mechanisms on both narrow-
band [3, 18, 26] and wideband signals [10, 14, 20, 25] at individ-
ual nodes. Furthermore, researchers have also developed compres-
sive sensing (e.g. [14, 20]) and collaborative sensing techniques
(e.g. [8]) to improve sensing robustness and scale. Our work differs
from these efforts by using crowdsourced low-cost mobile hard-
ware to collect large-scale spectrum measurements.
Our work also differs from existing spectrum measurement plat-

forms [8, 12] that require specialized and costly spectrum analyz-



ers. The use of low-cost mobile platform is a key factor for at-
tracting a large volume of crowdsourcing users without significant
infrastructure cost. Finally, our work differs fromWiSense onWiFi
bands [17] since our system does not require any smartphone kernel
modification and can monitor a wider range of spectrum.
Crowdsourcing and Wireless Measurements. Recent efforts
have leveraged crowdsourcing to collect large-scale wireless mea-
surements, enabling them to characterize wireless signal propaga-
tion and user mobility [7, 16, 28], to understand network perfor-
mance and coverage [9, 11, 21], and to improve indoor localization
accuracy [19, 24]. Our work adopts a similar crowdsourcing ap-
proach but focuses on achieving real-time spectrum monitoring us-
ing low-cost mobile measurement platforms. In addition, a number
of recent works in the HCI community are relevant to our work, in
that they provide the proof of concept for fast work and responses in
crowdsourcing systems. Two recent projects studied how workers
can respond quickly by either preemptively scheduling tasks [5], or
by keeping users on retainer [4]. Our work can leverage a similar
methodology to enable real-time monitoring of spectrum usage.

5. ADDITIONAL CHALLENGES
Our initial results indicate that a real-time spectrum monitoring

system is indeed feasible in the near future. Transforming this con-
cept into a practical system, however, faces several challenges and
requires large research efforts. Next, we discuss several key chal-
lenges and potential research directions to address them.
Achieving Adequate Coverage. With crowdsourcing, a practi-
cal challenge is how to ensure adequate coverage, especially during
the early deployment phases, when the number of active transmit-
ters and users are both low. One potential solution is to adopt a
combined in-network and out-of-network mechanism where spec-
trum measurements come from two distinctive groups of users.
First, passive measurements will be collected from each wireless
service provider’s own user population, by energy-efficient back-
ground software running on mobile devices. These providers are
active spectrum users who seek reliable spectrum usage to support-
/augment their services, and thus are incentivized to participate in
spectrum monitoring and enforcement. Second, on-demand mea-
surements from users of other networks can be requested as neces-
sary to augment passive data. Here, a local network entity estimates
the coverage from in-network users. If the coverage is below our
desired coverage density, it preemptively generates crowdsourcing
requests to all out-of-network users in the region.
Minimizing Measurement Overhead. By performing spectrum
measurements on mobile devices with limited battery resources,
a practical design must account for energy consumption to attract
crowdsourcing users. One approach is to schedule measurements
based on user context, e.g. location, device placement (hand, pocket),
user movement speed/direction, statistics of observed signals, and
density of nearby transmitters. The design must also consider the
overhead (in energy and bandwidth) required to upload measure-
ments to the monitoring agency (in real-time). This means that we
must identify the minimum form of measurement data per user that
can be aggregated to produce a real-time map of spectrum usage.
One can also explore novel data compression algorithms that com-
press spectrum reports on the fly without missing significant events.
Handling Measurement Noise. Our initial results show that the
use of mobile monitoring devices introduces noises into monitor-
ing data. This, combined with potential human operation errors,
can affect the accuracy of spectrum usage characterization. One
potential solution for handling measurement noise is to take into
account noisy data as part of the signal modeling and estimate the

actual measurement data. Existing models such as Gaussian pro-
cess, Bayesian and Kalman filters can take noisy data as input, and
produce confidence levels on signal estimations.
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