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ABSTRACT
How to distribute radio spectrum across network nodes is
a critical problem in spectrum auctions and management.
In this paper, we consider the problem of distributing spec-
trum using SINR-driven physical interference models. We
propose Optimus, a new line of approximation algorithms
that perform within a constant distance ofmin {2α + 1, 10}
from the optimum in terms of spectrum usage efficiency,
whereα ≥ 2 is the pathloss exponent. Different from con-
ventional greedy solutions, Optimus applies a global opti-
mization mechanism that transforms the spatial interference
constraints into a set of linear constraints, reducing the origi-
nal optimization into a linear/convex/separableprogramming
problem. While linearization techniques have been applied
in prior works, Optimus makes a new and important con-
tribution by deriving a highly efficient constraint transfor-
mation applicable to general network configurations. Ex-
periments using real network measurements and sophisti-
cated propagation models show that Optimus outperforms
existing solutions by 20–50% in spectrum utilization and
is within 20% gap from the optimum. Optimus supports
a wide variety of objective functions, and is applicable to
many spectrum-driven applications such as spectrum auc-
tions and spectrum admission control.

1. INTRODUCTION
The fast, organic growth of wireless networks has

created a challenging problem: “how to distribute ra-
dio spectrum among network nodes on-demand while
avoiding harmful interference?” This spectrum distri-
bution problem differs from conventional channel allo-
cation problems because the amount of spectrum as-
signed to each network node is often unknown and must
be determined during the optimization [1]. Solving this
problem is an integral part of emerging spectrum re-
lated applications including dynamic spectrum auctions [1–
4] and management [5–7].

The majority of existing proposals take an indirect
approach: first simplify physical interference conditions
into a set of pairwise constraints (or the graph interfer-
ence model), then distribute spectrum on top of them
(or the graph model) [1,3–8]. Such simplification, how-
ever, comes at an unpleasant cost. Radio interference

is inherent accumulative and cannot be accurately rep-
resented by pair-wise constraints. As a result, decisions
made on top of the graph model could lead to inefficient
allocation or unwanted interference. Similar pitfall was
also identified in other networking problems such as link
scheduling [9–11].

In this paper, we consider the problem of distribut-
ing spectrum across many network nodes under physi-
cal interference models. Consider a dynamic spectrum
auction system [1] where access points (from the same
and different networks) request spectrum from a central
authority. The authority determines the winners and
their spectrum usage to maximize a predefined system
utility, e.g. social welfare or auction revenue. Differ-
ent from cellular networks [12,13], the node deployment
is unplanned and nodes’ coverage areas often overlap.
Their interference conditions depend heavily on local
node density and vary significantly across geographic
locations.

Such unregulated topology introduces new challenges
to spectrum distribution, posing a need for new so-
lutions. First, most existing solutions take a greedy
approach [14, 15]: allocate spectrum to nodes sequen-
tially, making the locally optimal choice at each step.
It works well under graph models or regulated topology
because the impact of a local decision can be clearly
identified. Under unregulated topology and physical
models, the impact of interference is accumulative and
hard to predict. Thus the algorithm can easily fall into
local optimum too early, making it hard to provide good
approximation guarantees. Second, other works have
developed efficient solutions by transforming the prob-
lem into linear/convex programming. These solutions,
however, must assume a regulated topology [12, 13], or
simplified interference models [1, 16–19]. Under unreg-
ulated topology and physical models, existing transfor-
mations no longer apply and there is no trivial exten-
sion. Finally, the impact of unregulated topology has
been considered in link scheduling and channel allo-
cation [10, 20, 21]. The proposed solutions, however,
assume the amount of resource (slots or channels) as-
signed to each link is known and fixed, and thus cannot
be applied to the problem of spectrum distribution we
target in this paper.
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To address these challenges, we propose Optimus, a
new framework for distributing spectrum on top of the
SINR-based physical interference model. By transform-
ing the interference constraints into linear constaints on
nodes’ spectrum usage, Optimus successfully reduces
the original NP-hard optimization problem into a vari-
ant of linear/convex programming problem. Our key
contribution is to discover an efficient linear transfor-
mation of the physical interference condition of any ar-
bitrary node topology. We also prove analytically that
this transformation leads to a feasible allocation whose
spectrum usage efficiency is within a constant bound
from the optimum.

Aside from theoretical analysis, we also evaluate Op-
timus using extensive network simulations. Because
its performance depends heavily on the underlying ra-
dio propagation condition, we consider three different
propagation environments: a standard geometric prop-
agation model, a sophisticated RF mapping software
which accounts for the terrain effect, and finally a col-
lection of measured RF signal traces from the Mountain
View Google WiFi network. These results consistently
demonstrate Optimus’s efficiency and its improvement
over existing solutions.

Overall, Optimus provides the following benefits:

• Constant performance bound – Under geo-
metric signal propagation, Optimus performs within
a constant (min{2α +1, 10}) bound from the opti-
mum in terms of spectrum usage efficiency, where
α ≥ 2 is the pathloss exponent. Prior solutions [2,
11,20] become unbounded as network size increases
or as α changes.

• High efficiency – Our network simulation results
show that Optimus is within 10-20% gap to the op-
timal solution derived via exhaustive search. Com-
pared to conventional greedy algorithms, Optimus
achieves an average gain of 30% across a large set
of topologies. In certain cases, its gain can be up
to 300%.

• Applicable to many optimization objectives
– Optimus and its analytical bounds apply to a
variety of general utility functions. Depending on
the utility functions, the central authority can ap-
ply different optimization techniques.

• Applicable to arbitrary network topology –
Optimus and its analytical bounds apply to any
arbitrary network topology. It captures the impact
of accumulative interference rather than that of
the most dominant interferer [19].

Applications of Optimus. As a specialized solu-
tion for spectrum distribution, Optimus can be directly
plugged into existing frameworks on dynamic spectrum
auctions [1,4] and spectrum management [7]. However,
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Figure 1: A set of network nodes request spec-
trum usage, each can use a flexible set of non-
contiguously aligned frequency bands. The
problem is to decide how many and which bands
each node receives to maximize a system utility.

Optimus is designed under typical assumptions of spec-
trum distribution, and thus shall not be applied to other
specialized problems. For example, Optimus requires
the available spectrum to be finely partitioned into a
large number of homogeneous bands, which is typical
in spectrum distribution but not in WiFi channel allo-
cation. Optimus assumes that the interference condi-
tion is modeled by the average or worst case SINR and
thus does not consider channel fading, time variation or
capacity constraints.

2. PRELIMINARIES
In this section, we define the problem of spectrum dis-

tribution under the SINR-driven physical interference
model. We show that this problem differs significantly
from link scheduling or conventional channel allocation
problems.

As shown in Figure 1, we consider the spectrum dis-
tribution/auction problem defined by [1, 3]. A set of
K network nodes request spectrum from a central au-
thority to support their downlink transmissions to their
users. The spectrum is finely partitioned into a large
number (M >> 1) of frequency bands, and the bands
are of the same width and experience the same statis-
tical propagation conditions. Each network node can
accept multiple bands even if they are non-contiguously
aligned in frequency. The objective is to assign bands
among network nodes to maximize a predefined system
utility subject to the interference constraints. Because
bands are homogeneous, the utility function depends on
the amount of “successful” spectrum usage each node
obtains.

Definition 1. Let A define a spectrum allocation,

A = {am,i}1≤m≤M,1≤i≤K ,

where am,i = 1 indicates that node i receives band m,
otherwise am,i = 0.

Definition 2. Under the SINR-based physical interfer-
ence model [22], a spectrum allocation A is successful

if on each band m allocated to a node i, at any location
related to i’s network operation, the received signal to
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interference and noise ratio is above a threshold β:

If am,i = 1, then SINRm,i ≥ β, ∀m ∈ [1, M ], i ∈ [1, K]

The value of SINRm,i depends on the specific network
scenario and the targeted interference model, but it gen-
erally follows the following format:

SINRm,i ,
Si∑

j 6=i am,j · Ij,i + N
. (1)

In our scenario, SINRm,i is the minimum SINR on
band m across all the points in i’s coverage area. In
this case, Si is the minimum received signal strength
across i’s coverage area, Ij,i is the maximum interfer-
ence strength a node j can produce to any receiver in
i’s coverage area, and N is the noise level. More specif-
ically, let Pi denote i’s transmit power, Qj,i (j 6= i)
denote the smallest pathloss from node j to any re-
ceiver in i’s coverage area, and Qi,i denote the max-
imum pathloss from i’s transmitter to any receiver in
its own coverage area. Then we have Si = Pi/Qi,i and
Ij,i = Pj/Qj,i.

Definition 3. Let Vi represent the amount of spectrum
a node i obtains from a successful spectrum allocation:
Vi(A) =

∑
m am,i if A is successful. A volume vector

V = {V1, V2, ..., VK} is achievable if it can be achieved
by some successful spectrum allocation.

Definition 4. A spectrum distribution problem is to
find a successful allocation A and its V to maximize a
system utility U(V) = U(V1, V2, · · · , VK).

Example utilities include spectrum utilization U(V) =∑K
i=1

Vi, auction revenue U(V) =
∑K

i=1
Vi ·bi(Vi) where

bi(.) is the unit price, and proportional fairness U(V) =∑K
i=1

log Vi.

This definition shows that the spectrum distribution
problem differs significantly from link scheduling, be-
cause the amount of spectrum assigned to a node Vi

is unknown prior to the optimization and must be de-
termined during the optimization. Therefore, although
existing works on link scheduling have developed solu-
tions within provable bounds [10, 20, 21, 23], they are
not applicable to the spectrum distribution problem we
target in this paper.

3. A CASE FOR CONSTRAINT TRANSFOR-
MATION

In this section, we present the high-level design prin-
ciples behind Optimus. We start by examining existing
solutions for spectrum distribution under both physical
and graph models. Interestingly, most existing solutions
use greedy allocations, and have developed efficient al-
gorithms that provide tight approximation bounds un-
der graph interference models [6, 24]. In general, a
greedy strategy starts from an empty allocation and
allocates bands to nodes sequentially. To each node,

the algorithm decides how many and which bands to al-
locate, assuring that each new allocation will not make
the SINRs of allocated nodes fall below β. The algo-
rithm stops when no more allocation can be made.

Using two examples, we show that greedy solutions
are not well-suited for distributing spectrum under phys-
ical interference models. The first example applies the
above greedy solution to the network in Figure 1. It
first assigns band 1 to both node a and b, making their
SINRs very close to β. Now it cannot assign the same
band to any other distant nodes without disrupting a
or b’s SINR. But if the algorithm had not assigned the
band to b, it could assign the band to more than two ad-
ditional nodes. This example shows that because inter-
ference is accumulative, it is extremely hard to predict
the interference a node receives from future allocation
stages. Without this information, the algorithm is likely
to make suboptimal decisions early in the process, and
cannot reach a good solution.

In the second example we consider distributing spec-
trum to maximize node fairness. Using greedy alloca-
tion, it is difficult to determine the number of bands
assigned to each node – assigning too many or too few
bands to nodes will both degrade the fairness. This ex-
ample shows that the problem of distributing spectrum
is different from the link scheduling problem where the
amount of resource assigned to each node is predefined.
For our spectrum distribution problem, the number of
bands each node should receive is an optimization pa-
rameter depending on the global utility, and thus can-
not be determined locally.

From the above two examples, we also observe two
key design principles:

• Consider network-wide accumulative interference:
When allocating spectrum to a node, the algo-
rithm should consider the potential accumulative
interference to and from the entire network.

• Consider network-wide node spectrum usage: When
determining the amount of spectrum allocated to
each node, the algorithm should jointly consider
the network-wide {Vi}1≤i≤K in order to maximize
the system utility.

Constraint Transformation. The above two de-
sign principles push for a global planning technique. An
ideal solution is constraint transformation. The original
spectrum distribution is hard because of the complex
interference constraints. But if we can transform them
into a set of simpler constraints, we can find a feasible
solution (at the cost of some performance degradation
from simplifying the constraints).

We illustrate this concept using a simple example con-
sisting of two network nodes a and b. Suppose a and
b’s mutual interference is strong enough that they must
use different spectrum. In this case, the impact of inter-
ference can be represented by Va + Vb ≤ M and any Va
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and Vb satisfying this constraint can be realized using
a successful allocation. Now if the goal is to allocate
spectrum to a and b to maximize a revenue defined by:
R = 2Va +Vb, then the solution is Va = M , Vb = 0; and
if the goal is to maximize fairness, then the solution is
Va = Vb = M/2.

The concept of constraint transformation has been
applied to resource allocation problems in cellular net-
works. Existing solutions, however, must assume a sim-
plified physical interference model such as using a regu-
lated topology [12,13], or only considering a single dom-
inant interferer for each node [19], or applying a graph
interference model [16]. Therefore, a key challenge in
this paper is to define a set of linearized interference
constraints to best represent the complex physical in-
terference model under arbitrary network topologies.

4. OPTIMUS
Using the concept of constraint transformation, we

present Optimus, a new framework of spectrum distri-
bution under the SINR-driven interference model. Op-
timus applies a global planning technique – it trans-
forms the interference constraints into a set of linear
constraints on the volume vector V = (V1, V2, · · · , VK),
reducing the original NP-hard problem into a tractable
problem. Optimus’s key contribution is to define a
set of linearized interference constraints from the com-
plex physical interference model under arbitrary net-
work topology.

One requirement of Optimus is that the worst case
pathloss Qi,j = Qj,i, so that the allocation algorithm
will converge. For cases where Qi,j 6= Qj,i, Optimus
replaces Qi,j and Qj,i with max{Qi,j , Qj,i} so that its
solution will not violate the original SINR requirement.
In Section 6 we use measured RF signal traces to eval-
uate the impact of this requirement.

4.1 The Linearized Interference Constraints
Finding a linearized representation of the physical

interference condition is highly challenging, especially
when the network topology is unregulated and contains
a large number of nodes. To avoid harmful interference
and unnecessary loss of efficiency, we must judiciously
define the new constraints. They must be stricter than
the original ones so that the corresponding V is achiev-
able by a successful allocation. They must account for
the accumulative interference across the network, and
introduce as little performance degradation as possible.
They should ideally be linear constraints so that ef-
ficient algorithms like linear/convex programming can
be applied to find the utility-maximizing V.

With these requirements in mind, Optimus replaces
the original physical interference constraints defined in
Section 2:

If am,i = 1, then SINRm,i ≥ β, ∀m ∈ [1, M ], i ∈ [1, K]

with the following linearized constraints on V:

Vi +
∑

j 6=i

Vj ·
I+

j,i

Imax
i

≤ M, ∀1≤i≤K

where Imax
i =

Si

β
− N, I+

j,i = min(Imax
i , Ij,i) (2)

These constraints are driven by a local adjustment
algorithm that assigns spectrum bands to nodes to min-
imize their perceived interference. In the following, we
introduce a theorem that validates the new interference
constraints, and the local adjustment algorithm. The
same algorithm will be used in Optimum for allocating
spectrum bands among nodes after finding the utility-
maximizing V.

Theorem 1. If V = (V1, V2, · · · , VK) satisfies the
constraints defined in (2) then V can be achieved by
a successful spectrum allocation.

Proof. We prove Theorem 1 by describing the al-
location algorithm that finds a successful allocation for
each V that satisfies the constraints. As shown in Algo-
rithm 1, each node i iteratively selects Vi bands with the
smallest aggregated interference, and repeats the pro-
cess until no adjustments can reduce the interference at
any node. We show that Algorithm 1 achieves the fol-
lowing two properties, which directly imply Theorem 1.
The proofs of Lemma 1 and 2 are in the Appendix.

Lemma 1. Algorithm 1 will converge.

Lemma 2. Each V satisfying the condition defined
by (2) can be achieved by a successful allocation using
Algorithm 1.

Algorithm 1 Min-Interference Band Adjustment

1: Consider any V that satisfies (2).
2: Start from an allocation where each node i is allo-

cated Vi random bands;
3: Let ωm,i =

∑
j 6=i am,j · Ij,i be the aggregate inter-

ference at i. Choose for each i, Vi bands with the
lowest ωm,i, and adjust to these bands;

4: Repeat 2 until no more adjustments can be per-
formed.

4.2 The New Optimization Problem

With the new linear constraints, the original utility-
maximization problem reduces to

max
V

U(V) = U(V1, V2, · · · , VK) (3)

subject to Vi +
∑

j 6=i

Vj ·
I+

j,i

Imax
i

≤ M, ∀1≤i≤K .
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Utility Function Solution

Spectrum utilization U(V) =
∑K

i=1
Vi, linear programming,

Proportional fairness U(V) =
∑K

i=1
log(Vi), convex programming because (

∏
Vi)

1/N is a convex function of Vi.

Max-min fairness U(V) = minK
i=1 Vi, linear programming by introducing an auxiliary variable u and converting

the optimization into: maxV u subject to ∀1≤i≤K , u ≤ Vi, Vi +
∑

j 6=i Vj ·
I+

j,i

Imax
i

≤ M.

Auction revenue U(V) =
∑K

i=1
ViBi, linear programming if Bi is a constant [3], separable programming if

Bi is a piecewise linear function of Vi [1].

Table 1: Optimus with Various Utility Functions

When M >> 1, Vi is in general very large, and can
be treated as a real number in (3). For example, when
M = 1024 [25], Vi is usually higher than 100, and the
rounding error is less than 1%. In this case, if U(·) is a
linear or convex function of Vi, then (3) becomes a linear
or convex programming problem with highly efficient
solutions. Similar observation was found in [1], where
finding a revenue-maximizing allocation in a 4000+ bid-
der auction takes less than 90 seconds. Table 1 summa-
rizes a set of popular utility functions and the tools used
to solve them.

By solving (3), we derive the utility-maximizing Vopt

subject to the new linearized interference constraints.
We then apply the corresponding {⌊Vi⌋} into Algorithm
1 to derive a successful allocation A.

4.3 Putting it All Together
Built on the above analysis, we now describe the pro-

cedure used by Optimus to solve the original spectrum
distribution problem. Specifically, Optimus consists of
three steps:

Step 1) Transform the original physical interference model
into a set of linear constraints among {Vi}, de-
scribed by (2).

Step 2) Solve the utility-maximization allocation problem
based on the new constraints in 1), derive the op-
timal Vopt, and use Algorithm 1 to allocate spec-
trum bands to nodes based on Vopt.

Step 3) On top of the solution from 2), apply iterative
improvements based on the physical interference
model for additional performance improvement. This
is because the linear constraints defined by (2) are
sufficient conditions for achievable volume vectors,
and are thus stricter than the original constraints.
The iterative improvements use the original con-
straint and work as follows: starting from an ini-
tial allocation derived from the previous step, it-
eratively allocates unused bands to nodes. In each
iteration, choose a node i probabilistically, and as-
sign one more band to i without making any allo-
cated node’s SINR fall below β. The probability
of choosing a node i is proportional to Vi. Repeat
until no more bands can be allocated.

5. PERFORMANCE BOUNDS
In this section, we evaluate Optimus in its analytical

performance bound. We focus on examining the perfor-
mance bound achieved from using the linear constraints
in (2) rather than the original constraints. Because the
conclusion depends on the signal propagation model, we
start from the most typical geometric signal propaga-
tion, and then consider arbitrary signal propagation.

Intuitively our evaluation would also depend on the
utility function U . Using the methods of [26], we can
show that the spectrum distribution problem is NP-
hard for typical utility function such as spectrum uti-
lization, auction revenue, social welfare and fairness.
Thus, instead of confining our findings to any specific
utility function, we examine Optimus in terms of its
achievable volume vector V compared to the optimal so-
lution. This metric can map directly to a utility bound
under a variety of utility functions, including utiliza-
tion, max-min, and auction revenue.

Geometric Signal Propagation. In this case, the
pathloss from node j to node i can be modeled as Qj,i =
dα

j,i, where dj,i is the geographic distance from node j
to node i’s operating area (see Definition 2, Section 2),
and α ≥ 2 is the pathloss exponent. We assume the
system uses linear power assignment, where the worst-
case receive power in each node’s area is the same: Si =
S [23]. Then when M >> 1, Optimus performs within
a constant bound (min{2α + 1, 10}) to the optimum:

Theorem 2. Suppose the optimal solution can achieve
V, then Optimus can achieve at least ⌊ 1

min{2α+1,10}V⌋.

Proof. The proof uses the following lemma on the
necessary condition for achievable volume vectors.

Lemma 3. Any volume vector V = (V1, V2, · · · , VK)
achievable by a successful allocation, must satisfy

∀i, Vi +
∑

j 6=i

Vj ·
I+

j,i

Imax
≤ (min{2α + 1, 10}) · M (4)

where Imax , Imax
i is uniform since Si is uniform.

The proof of Lemma 3 is in the Appendix.
Now it is easy to prove Theorem 2 using Lemma 3 and

Theorem 1. Note that the necessary condition (4) and
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the sufficient condition (2) only differ in the coefficient
of M . Therefore, for any allocation vector V achiev-
able under M bands, from Lemma 3, V must satisfy
(4), which exactly means that ⌊ 1

min{2α+1,10}V⌋ meets

the sufficient condition (2). So Optimus can achieve
⌊ 1

min{2α+1,10}V⌋.

From Theorem 2, we see that Optimus achieves a
constant bound from the optimum achievable allocation
vector. The bound is 5 for α = 2, 9 for α = 3, and
is no larger than 10 for any α. Compared to existing
solutions [2,20], our performance bound is constant and
significantly smaller.

Arbitrary Signal Propagation. With this general
model, the optimization becomes much more difficult.

Theorem 3. Suppose U(V) =
∑K

i=1
Vi, for any num-

ber of bands M , no polynomial time algorithm can ap-
proximate the optimal solution within a constant factor,
unless P = NP .

Proof. Due to space limit, we only provide a sketch
of the proof. It follows a standard technique that re-
duces the Maximum Independent Set (MIS) problem
into the spectrum distribution problem. Since MIS is
hard to approximate [27], so is this problem.

6. EVALUATION
In this section, we perform network simulations to

examine the effectiveness of Optimus in the context of
centralized spectrum distribution. We compare three
algorithms that directly operate on the physical model.

• OPT: The optimal allocation via exhaustive search.
It takes 70 hours to compute for a 40-node in-
stance.

• Greedy: It chooses random nodes and random
available bands to allocate, until no more bands
can be further allocated. In general, this algo-
rithm does not provide any performance bound.
We also consider another greedy-based algorithm
GAHT [2]. It uses a plane-division pattern to con-
trol the process of greedy allocation.

• Optimus: Our proposed algorithm.

The performance of all three algorithms depends heav-
ily on the underlying RF propagation environment. Thus
we consider three different environments built from prop-
agation models and real network measurements. Ta-
ble 2 summarizes the parameters used in each environ-
ment.

• GEO: It simulates the geometric propagation sce-
nario. The pathloss from node j to node i can
be modeled as Qj,i = dα

j,i, dj,i is the largest geo-
graphic distance from node j to node i’s coverage
area, and α ≥ 2 is the pathloss exponent.

For our experiments, we randomly deploy a num-
ber of nodes in a 2000m× 2000m area. Assuming
a SINR threshold β=10dB, we adjust each node’s
transmission power to ensure that it has a coverage
area of 50m without considering interference.

• SPLAT! [28]: It is a RF simulator using sophis-
ticated radio propagation models, incorporating
both terrain and environmental factors.

For our experiments, we randomly distribute 200
nodes (APs) in a suburban area. The whole area
is treated as a 200 × 200 grid with 40000 loca-
tion points. For each point, the trace contains the
corresponding GPS coordinates and the received
signal strength from each AP. We treat each point
as a potential user location, and associate each
user with the AP from which this user receives the
strongest signal. We adjust the coverage area so
that each user’s received signal to noise ratio is
3dB above the threshold β.

• GoogleWiFi Trace [29]: This trace was collected
in October 2007 [29], covering 168 APs in the Moun-
tain View GoogleWiFi network. The trace consists
of the GPS coordinates of each measured location
and the set of beacons received from multiple APs
at this location. Each beacon records the signal
strength, noise, band ID, and AP ID. The trace
does not report all the beacons transmitted by the
168 APs, because beacons received with low sig-
nals cannot be decoded correctly and thus their
signal strengths are recorded as zeros.

In our experiment, we treat measured points as
user locations, and use the signal strength in each
beacon as the signal or interference power. We as-
sociate each user with the AP carrying the strongest
signal. This produces 151 APs with at least one
user associated.

The three environments exhibit very different char-
acteristics. Table 3 summarizes the statistical distribu-
tion of Ij,i/Imax

i , where Imax
i is the maximal interfer-

ence that AP i and its users can sustain to guarantee
SINRi ≥ β. We divide the range into four cases. Given
K APs in total, (0, 1

K−1
) is the case where accumula-

tive interference has negligible impact since even with
all other (K−1) APs transmitting on the same channel,
they still cannot make AP i’s SINRi below β. [ 1

K−1
, 1)

is the case where accumulative interference could af-
fect the allocation performance. From Table 3, we see
that in GEO accumulative interference has significant
impact. In SPLAT!, the interference power displays a
higher variance, but most of them are too weak to gen-
erate impact. In GoogleWiFi, the majority of (weak)
interference power are discarded due to the measure-
ment artifact.

In SPLAT! and GoogleWiFi, most Ii,j and Ij,i are
not equal due to irregular RF propagation. Figure 2
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Parameter GEO SPLAT! GoogleWiFi
Number of bands 100 200 100

Range of node (di,i) 50 meters N/A N/A
Simulation area 2000m× 2000m 18900m× 19500m 3200m× 4300m

Pathloss exponent (α) 2, 3 2 N/A
TX power (Pi) 5 dBm 23 dBm/200 mW 23 dBm/200 mW

Noise power (N) -102.5 dBm -98 dBm -98 dBm
SINR threshold (β) 10 dB 10 dB 20 dB

Table 2: Network parameters used in three different propagation environments.

GEO
SPLAT! GoogleWiFi

Original After adjustment Original After adjustment
0 0% 0% 0% 94.59% 92.68%

(0, 1

K−1
) 15.04% 71.18% 63.69% 0% 0%

[ 1

K−1
, 1) 84.56% 10.66% 13.27% 0.02% 0.02%

[1,∞] 0.40% 18.16% 23.04% 5.39% 7.30%

Table 3: Distribution of Ij,i/Imax
i in terms of four ranges before and after replacing Ii,j and Ij,i with

max{Ii,j , Ij,i}. In GEO, the adjustment does not affect the interference distribution because Iij is
symmetric. The range of [ 1

K−1
, 1) is where accumulative interference could impact the allocation

performance,.K is the number of nodes.
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Figure 2: The level of asymmetry of Iij in both
SPLAT! and GoolgeWiFi.

plots the CDF of the normalized difference between the
two, showing that the normalized difference exceeds
70% in half the instances. Because Optimus requires
Qi,j = Qj,i which implies that Ii,j = Iji when Pj = Pi,
we replace Ii,j and Ij,i with max{Ii,j , Ij,i} as the al-
gorithm input. For both OPT and Greedy, we skip
the adjustment. To estimate the impact of asymme-
try, Table 3 also lists the interference distribution after
the adjustment. Interestingly, the adjustment produces
minimum impact on the interference distribution.

In the following, we present the results that compare
Optimus, OPT, and Greedy. To measure the allocation
performance, we set the optimization objective as the

spectrum utilization, U =
∑K

i=1
Vi, and evaluate the

solutions by the utility (spectrum utilization). In the
following, we refer to Ux as the spectrum utilization
generated by the scheme x.

6.1 Optimus vs. OPT
To examine Optimus’s efficiency, we first compare it

to OPT. Since OPT requires exponential complexity,
we use small-scale networks with 40 nodes and 100 ran-
domly generated topologies. We plot the performance
gap to OPT, defined by:

σ = UOptimus/UOPT , (5)

where UOPT represents the utilization of OPT with the
original Ii,j value as input. To further explore the im-
pact of the asymmetry of Ii,j in both SPLAT! and Gool-
geWiFi, we also evaluate σSym, the gap to OPT by re-
placing both Ii,j and Ij,i with max(Ii,j , Ij,i).

GEO. Figure 3 (a) shows the CDFs for α = 2 and
α = 3 across 100 topologies. We see that Optimus
consistently achieves more than 90% of the utilization
compared to OPT. This is because Optimus applies the
two design principles in Sec. 3, avoiding most perfor-
mance traps. This result demonstrates the efficiency of
Optimus’s globalized optimization and its performance
guarantee.

Another key observation comes from comparing the
results of α = 2 and α = 3. The performance gap of
Optimus is higher when α = 3. This is because Opti-
mus becomes more conservative as α increases. A larger
α means that the interference at each node will more
likely be dominated by the strongest interferer and be-
come localized. Thus by weighting Ij,i by Vj (from (2)),
Optimus intends to overestimate the effect of accumu-
lative interference, leading to conservative allocations.

SPLAT! and GoogleWiFi. From the results in
Figure 3 (b) and (c) , we arrive at two key observations.
First, in average Optimus achieves 80% − 85% utiliza-
tion of OPT, demonstrating its efficiency under irreg-
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Figure 3: Comparing Optimus to OPT in small-scale networks. x-axis denotes σ = UOptimus/UOPT ,
the gap to OPT with original Ii,j , or σSym = UOptimus/UOPTSym

, the gap to OPT with symmetric Ii,j .
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Figure 4: Comparing Optimus and Greedy in large scale networks. y-axis denotes ρ, the gain of
Optimus over Greedy and 90% confidence interval.

ular propagation conditions. Second, the performance
gap varies in a larger range than that in GEO. This is
mainly because the propagation conditions in these two
cases are close to GEO with larger α, where the inter-
ference is either very strong or very weak (Table (3)).
In these cases, Optimus’s interference constraint trans-
formation becomes too conservative.

One might also suspect that the increased perfor-
mance gap is also triggered by the asymmetry of Ii,j .
To examine this effect indirectly, we examine the gap
between Optimus and OPTsym where for both algo-
rithms the Iij is symmetric. Interestingly, the perfor-
mance gap remains similar to that to OPT, showing
that the asymmetry does not have a large impact. This
can be explained by the interference distribution in Ta-
ble (3) where for both SPLAT! and GoogleWiFi, con-
verting Iij and Iji does not produce significant change
to the interference distribution.

6.2 Optimus vs. Greedy
To understand Optimus’s advantage over existing greedy

solutions, we use following performance metric:

ρ = UOptimus/UGreedy.

GEO. We start by considering a network of 100
nodes. Table 4 lists the distribution of ρ over 100 ran-
dom topologies, where Optimus achieves an average
gain of 1.5. In 17% of the cases, the gain exceeds 2.

ρ [1, 1.2) [1.2, 1.5) [1.5, 2) > 2
Occurance 11% 38% 34% 17%

Table 4: The distribution of ρ over 100 random
topologies.

In Figure 4 (a) we plot the gain of Optimus to Greedy
as a function of the network size. We make three obser-
vations. First, Optimus consistently outperforms Greedy
with an average gain of 1.5–2. The gain increases to a
factor of 3 for 5% of the cases. Second, the gain in-
creases slightly with the network size, from 1.5 for 100
nodes to 2+ for 400 nodes. This is because as the net-
work size increases, the impact of accumulative inter-
ference elevates, and a “bad” greedy decision is more
likely to prevent efficient allocation. In contrast, Opti-
mus is not affected by the increased level of interference
because it explicitly considers the accumulative inter-
ference across the entire network.

SPLAT! and GoolgeWiFi. Given the original
network deployments in these two cases, we keep the
network density the same, and generate networks with
various sizes by sampling different areas. For each net-
work size, the result is averaged over 50 sampled areas.

Figures 4(b)-(c) plot the gain ρ in its average value
and the 90% confidence interval. We obtain two key
observations. First, the average gain in both cases is
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Figure 5: Optimus outperforms the greedy algo-
rithm [2] in terms of performance lower bound.
Both algorithms provide provable approxima-
tion bounds without applying additional im-
provements.

smaller compared to that in GEO. This is because both
SPLAT! and GoogleWiFi display almost binary inter-
ference conditions. The interference power is either
very strong or very weak (see Table 3). In this case,
Greedy performs well because in each allocation step,
it can estimate the impact of the interference to future
step. However, Optimus still achieves 10% − 20% gain
over Greedy. Second, the gain in GoolgeWiFi is slightly
smaller compared to that in SPLAT!. This is due to the
measurement artifact in GoogleWiFi trace, where most
of the weak Ii,j were treated as zeros (Table 3). This
further diminishes the impact of accumulative interfer-
ence and thus the gain of Optimus.

6.3 Optimus vs. Greedy with Performance Bound
To evaluate the effectiveness of Optimus’s performance

bound, we compare Optimus to GAHT [2], a greedy so-
lution that provides performance guarantee but does
not perform additional iterative improvements to sat-
urate the allocation. For a fair comparison, we use
Optimus-Lite, i.e. Optimus without the iterative im-
provement, but achieves the same analytical performance
bound. GAHT achieves a performance bound as a func-
tion of the pathloss exponent α and the SINR thresh-
old β. The bound is larger than 80 under our default
settings with α = 2.5. We note that GAHT cannot
be applied to α = 2. In contrast, Optimus achieves a
bound of 6.7 under the same settings (see Theorem 2).
To further understand the performance bound, we com-
pare the actual spectrum utilization of Optimus-Lite
and GAHT under GEO model in Figure 5. We observe
that Optimus-Lite has an average gain factor of 11 un-
der both α = 2.5 and 3.5.

7. RELATED WORK
We classify the most relevant literatures on the phys-

ical model into the following three categories.
First, recent works on link scheduling have considered

the physical interference models, and have developed

efficient algorithms that achieve provable bounds from
the optimum [20,21]. Some also jointly considered time
scheduling with power control and achieved approxima-
tion bounds [10, 23]. As discussed earlier, the problem
considered in this paper differs significantly from the
link scheduling problem because Vi is unknown prior
to the optimization. Consequently, we adopt a very dif-
ferent approach (constraint transformation) to solve the
new problem. A recent work [11] also used linearization
to solve the problem of joint scheduling and routing for
capacity-maximization. Our work applies this general
approach but focuses on deriving a linearization suited
for spectrum distribution. Our solution also achieves
constant bounds that remain small for different α and
network sizes. On the other hand, we note that despite
the key differences, these two problems share similar
hardness results: both can be approximated within a
constant factor under geometric signal propagation but
become inapproximable under arbitrary signal propa-
gation [21].

Second, another research problem using physical in-
terference models is the resource allocation in cellular
networks. As mentioned before, most solutions in this
category apply linear/convex programming based on a
simplified physical interference model such as using a
regulated topology [12, 13], or only considering a single
dominant interferer for each node [19], or applying a
graph interference model [16]. Several works have also
jointly considered channel allocation with multi-carrier
diversity, rate selection and power control. Due to its
complexity, most solutions focus on heuristic-based al-
gorithms (e.g. greedy) without considering approxima-
tion guarantees [14,15,17]. Different from these cellular
network solutions, the main contribution of Optimus is
to discover a linear transformation of the physical in-
terference model under unregulated topology, and to
analytically show that it guarantees an achievable allo-
cation and provides a constant approximation ratio.

Third, a recent work on spectrum distribution [2]
proposes two efficient greedy allocation algorithms. As-
suming geometric signal propagation and uniform trans-
mit power, these algorithms achieve a provable approx-
imation ratio. But the ratio becomes unbounded when
the pathloss exponent α approaches 2. While our prob-
lem formulation is inspired by this work, Optimus ap-
plies a different mechanism (i.e. global planning) and
achieves a constant (≤ 10) approximation ratio. In Sec-
tion 6 we also verify the gain of Optimus using network
simulations. Finally, a prior work [8] proposed an indi-
rect solution to build a conflict graph from the physical
interference model, and then apply a graph-based allo-
cation algorithm. This work, on the other hand, shows
that the graph optimization is a fundamentally hard
problem. In this paper, we propose an alterative solu-
tion that directly operates over the physical interference
model.
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8. CONCLUSION AND FUTURE WORK
In this paper we consider the problem of spectrum

distribution using physical interference models. We pro-
pose a new line of algorithms using interference trans-
formation that perform within a constant bound from
the optimum and support a wide-range of optimization
goals. Experiments show that in average our solution
outperforms existing solutions by 20–50% in utilization,
and is within 20% gap from the optimal solution.

In its current design, Optimus operates on instanta-
neous SINR measurements or assumes that SINR mea-
surements are static over time. In practice the sig-
nal propagation experiences shadowing and fading, so
SINRs are time-varying. Therefore, how to measure the
signal and interference levels reliably and how to com-
pensate for their time dynamics are both interesting
open research problems.

In Optimus we use a threshold model to map from
SINR to the channel quality, in accordance with the
widely-accepted formalization of the physical model [22].
This assumption also makes the optimization problem
tractable. We notice that a recent work [30] in link
scheduling has used a more realistic model, namely the
graded SINR model, and designed efficient scheduling
algorithms with constant approximation bounds. In-
spired by this effort, it is an interesting future work to
extend Optimus under the graded SINR model, pos-
sibly by finding a constraint transformation suited for
this model.

Acknowledgement
This research was supported by the National Science
Foundation under grants CNS-0915699, CNS-0832090
and CNS-0721961, and by a research gift from Samsung.

9. REFERENCES

[1] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and
S. Suri, “A general framework for wireless
spectrum auctions,” in Proc. of IEEE DySPAN,
2007.

[2] A. Subramanian, M. Al-ayyoub, H. Gupta,
S. Das, and M. Buddhikot, “Near-optimal
dynamic spectrum allocation in cellular
networks,” in Proc. of IEEE DySPAN, 2008.

[3] X. Zhou, S. Gandhi, S. Suri, and H. Zheng, “eBay
in the sky: strategy-proof wireless spectrum
auctions,” in Proc. of MobiCom, 2008.

[4] X. Zhou and H. Zheng, “Trust: A general
framework for truthful double spectrum
auctions,” in Proc. of INFOCOM, 2009.

[5] E. Rozner, Y. Mehta, A. Akella, and L. Qiu,
“Traffic-aware channel assignment in enterprie
wireless networks,” in Proc. of ICNP, 2007.

[6] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta,
P. Bahl, and Y. Yuan, “Load-aware spectrum

distribution in wireless LANs,” in Proc. of ICNP,
2008.

[7] L. Cao and H. Zheng, “SPARTA: Stable and
efficient spectrum access in next generation
dynamic spectrum networks,” in Proc. of
INFOCOM, 2008.

[8] L. Yang, L. Cao, and H. Zheng, “Physical
interference driven dynamic spectrum
management,” in Proc. of IEEE DySPAN, 2008.

[9] J. Gronkvist and A. Hansson, “Comparison
between graph-based and interference-based
STDMA scheduling,” in Proc. of MobiHoc, 2001.

[10] T. Moscibroda, R. Wattenhofer, and Y. Weber,
“Protocol Design Beyond Graph-Based Models,”
in Proc. of HotNets, 2006.

[11] D. Chafekar, V. S. A. Kumar, M. V. Marathe,
S. Parthasarathy, and A. Srinivasan,
“Approximation algorithms for computing
capacity of wireless networks with SINR
constraints.” in Proc. of INFOCOM, 2008.

[12] H. Kim, Y. Han, and J. Koo, “Optimal
subchannel allocation scheme in multicell
OFDMA systems,” in Proc. of VTC, 2004.

[13] W. C. Lee, “Spectrum efficiency in cellular,”
IEEE Trans. Vehicular Technology, vol. 38, no. 2,
pp. 69–75, 1989.

[14] I. Koutsopoulos and L. Tassiulas, “Channel
state-adaptive techniques for throughput
enhancement in wireless broadband networks,” in
Proc. of INFOCOM, 2001.

[15] Z. Han, F. R. Farrokhi, Z. Ji, and K. J. R. Liu,
“Capacity optimization using subspace method
over multicell OFDMA networks,” in Proc. of
WCNC, 2004.

[16] M. Hellebrandt, F. Lambrecht, R. Mathar,
T. Niessen, and R. Sta, “Frequency allocation and
linear programming,” in Proc. of VTC, 1999.

[17] A. Abrardo, A. Alessio, P. Detti, and M. Moretti,
“Radio resource allocation problems for OFDMA
cellular systems.” Computers & Operations
Research, vol. 36, no. 5, pp. 1572–1581, 2009.

[18] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu,
“Impact of interference on multi-hop wireless
network performance,” in Proc. of MobiCom,
2003.

[19] G. Li and H. Liu, “Downlink radio resource
allocation for multi-cell OFDMA system,” IEEE
Trans. Wireless Commun., vol. 5, no. 12, pp.
3451–3459, 2006.

[20] G. Brar, D. M. Blough, and P. Santi,
“Computationally efficient scheduling with the
physical interference model for throughput
improvement in wireless mesh networks,” in Proc.
of MobiCom, 2006.

[21] O. Goussevskaia, R. Wattenhofer, M. M.
Halldorsson, and E. Welzl, “Capacity of arbitrary
wireless networks,” in Proc. of INFOCOM, 2009.

10



[22] P. Gupta and P. R. Kumar, “The capacity of
wireless networks,” IEEE Transactions on
Information Theory, vol. 46, no. 2, pp. 388–404,
2000.

[23] T. Moscibroda, Y. A. Oswald, and
R. Wattenhofer, “How Optimal are Wireless
Scheduling Protocols?” in Proc. of INFOCOM,
2007.

[24] C. Peng, H. Zheng, and B. Y. Zhao, “Utilization
and fairness in spectrum assignemnt for
opportunistic spectrum access,” Mobile Networks
and Applications (MONET), vol. 11, pp. 555–576,
May 2006.

[25] R. Rajbanshi, A. M. Wyglinski, and G. J.
Minden, “An efficient implementation of
NC-OFDM transceivers for cognitive radios,” in
CrownCom, 2006.

[26] O. Goussevskaia, Y. A. Oswald, and
R. Wattenhofer, “Complexity in geometric
SINR,” in Proc. of MobiHoc, 2007.

[27] J. Hastad, “Clique is hard to approximate within
n1−ǫ,” in Proc. of FOCS, 1996.

[28] SPLAT!, “A terrestrial rf path analysis
application for linux/unix,”
http://www.qsl.net/kd2bd/splat.html.

[29] J. Robinson, R. Swaminathan, and E. Knightly,
“Assessment of urban-scale wireless networks with
a small number of measurements,” in Proc. of
MobiCom, September 2008.

[30] P. Santi, R. Maheshwari, G. Resta, S. Das, and
D. M. Blough, “Wireless link scheduling under a
graded SINR interference model,” in FOWANC,
2009.

APPENDIX
Proof of Lemma 1
For every allocation A, define a metric F (A) (Recall
that Qi,j = Qj,i is the pathloss between i and j):

F (A) =
M∑

m=1

∑

1≤i<j≤N

am,i · am,j ·
Pi · Pj

Qi,j
.

When node i adjusts from a band m to a band m′,
changing A to A′ only if ωm′,i < ωm,i. That is,

∑

j 6=i

am′,j · Ij,i <
∑

j 6=i

am,j · Ij,i.

Multiply both sides by Pi, and recall Ij,i = Pj/Qi,j,

∑

j 6=i

am′,j
Pi · Pj

Qi,j
<

∑

j 6=i

am,j
Pi · Pj

Qi,j
. (6)

Because A′ differs from A only by adding m′ to i and
removing m from i, we have

F (A) − F (A′) =
∑

j 6=i

am,j
Pi · Pj

Qi,j
−

∑

j 6=i

am′,j
Pi · Pj

Qi,j
> 0

(7)

This shows that F (A) decreases strictly after an ad-
justment. Because the number of distinct allocations is
finite, the proposed adjustments will converge.

Proof of Lemma 2
For each {Vi}1≤i≤K satisfying (2), let A represent the
spectrum allocation when Algorithm 1 converges. We
need to show the allocation is successful, i.e., ∀m,i,

If am,i = 1, then SINRm,i ,
Si∑

j 6=i am,j · Ij,i + N
≥ β.

Let ωm,i =
∑

j 6=i am,j · Ij,i represent the aggregate in-
terference at node i on band m, and recall the definition
of Imax

i in (2). It is easy to see that SINRm,i ≥ β is
equivalent to ωm,i ≤ Imax

i . So we are left to prove:

If am,i = 1, then ωm,i ≤ Imax
i . (8)

Let us call a band m blocked for node i if ωm,i > Imax
i .

To show that A satisfies (8), we only need to show:

Claim 4. For any node i, there are at least Vi bands
that are not blocked.

Claim 4 is suffice to imply (8) since Algorithm 1 im-
plies that a node always prefers unblocked bands to
blocked ones. With at least Vi unblocked bands, i ob-
tains enough unblocked bands when Algorithm 1 con-
verges. In the rest of the proof we prove Claim 4. We
bound the maximum number of bands that could be
blocked by interference.

We divide the blocked band set Φ into Φ1 and Φ2.

Φ = {m|ωm,i > Imax
i }

= {m|∃j , am,j = 1 ∧ Ij,i > Imax
i } ∪

{m|(∀j , am,j = 0 ∨ Ij,i ≤ Imax
i ) ∧ (ωm,i > Imax

i )}

, Φ1 ∪ Φ2

Intuitively, Φ1 contains the bands blocked by a “heavy”
interferer while Φ2 includes the bands blocked by accu-
mulative interference from “light” interferers.

We now show that the sizes of Φ1 and Φ2 are bounded.
First, it is obvious that |Φ1| ≤

∑
j 6=i,Ij,i>Imax

i
Vj . Next,

to bound |Φ2|, we have:
∑

m∈Φ2

ωm,i =
∑

m∈Φ2

∑

j 6=i

am,jIj,i =
∑

j 6=i

∑

m∈Φ2

am,jIj,i

=
∑

j 6=i,Ij,i≤Imax
i

Ij,i

∑

m∈Φ2

am,j ≤
∑

j 6=i,Ij,i≤Imax
i

Ij,iVj .

From the above equation and the fact that any band
m ∈ Φ2 must satisfy ωm,i > Imax

i , the number of bands
in Φ2 is bounded: |Φ2| ≤ 1

Imax
i

∑
j 6=i,Ij,i≤Imax

i
Ij,iVj .

Thus, the number of blocked bands is at most

|Φ| = |Φ1| + |Φ2| ≤
∑

j 6=i,Ij,i>Imax
i

Vj +
∑

j 6=i,Ij,i≤Imax
i

Ij,i

Imax
i

· Vj

=
∑

j 6=i

·
I+

j,i

Imax
i

· Vj (by (2)) ≤ M − Vi (by (2)).
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This shows that there are at least Vi unblocked bands,
which implies Claim 4 and completes our proof.

Proof of Lemma 3
Suppose the volume vector V = (V1, V2, · · · , VK) is
achieved by a successful allocation A. We prove that
(4) is true. Define ω+

m,i ,
∑

j 6=i am,j · I
+
j,i. We have

∑

j 6=i

Vj · I
+

j,i =
∑

j 6=i

M∑

m=1

am,j · I
+

j,i

=

M∑

m=1

∑

j 6=i

am,j · I
+

j,i =

M∑

m=1

ω+

m,i =
∑

am,i=1

ω+

m,i +
∑

am,i=0

ω+

m,i

≤ Vi · I
max + (M − Vi) · (min{2α + 1, 10})Imax

≤ (min{2α + 1, 10})M · Imax − Vi · I
max.

The first inequality in the above follows from two facts.
First, by the following Lemma 4, ω+

m,i ≤ Imax ·min{2α+

1, 10}. Next, it is clear that ω+

m,i ≤ Imax if am,i = 1
since the allocation A is successful. With the following
proof of Lemma 4, we conclude the proof of Lemma 3.

Lemma 4. Under geometric radio propagation, for
any successful allocation A, any band m and node i,

ω+

m,i ,
∑

j 6=i

am,j · I
+

j,i ≤ Imax · min{2α + 1, 10}. (9)

Proof. We prove (9) in two steps.
Step 1: First, we prove ω+

m,i ≤ (2α + 1)Imax. Con-

sider the allocation on band m. If i is allocated (am,i =
1), we have ω+

m,i ≤ Imax since A is successful. Now

suppose i is not allocated (am,i = 0). Let k be the al-
located node closest to i (Fig. 6). Since A is successful,
ω+

m,k ≤ Imax, i.e.
∑

j 6=k

am,j · I
+

j,k ≤ Imax. (10)

We claim that for any allocated node j 6= i, k, I+

j,i ≤

2α ·I+

j,k. To show this, note that node j must be outside
the circle in Fig. 6 since k is the closest allocated node
to i. By geometry, any node j outside the circle must
have dj,i ≥ dj,k/2 (the equality is reached when k is at
position X). Thus Ij,i ≤ 2αIj,k, which implies I+

j,i ≤

2αI+

j,k. Combining this with (10),

ω+

m,i =
∑

j 6=i

am,j · I
+

j,i = I+

k,i +
∑

j 6=i,k

am,j · I
+

j,i

≤ Imax +
∑

j 6=i,k

am,j · 2
αI+

j,k

≤ Imax + 2α ·
∑

j 6=k

am,jI
+

j,k (notice am,i = 0)

≤ (2α + 1)Imax. (by (10))

Step 2: Next, we prove ω+

m,i ≤ 10Imax. Similar to

Step 1, if i is allocated (am,i = 1), the claim is straight-
forward. Now suppose i is not allocated (am,i = 0).

Let node k be the allocated node closest to i. We di-
vide the whole plane into 5 fan-like areas as shown in
Fig. 6, where ∠1 = 120◦ with node k in its middle, and
∠2 = ∠3 = ∠4 = ∠5 = 60◦. Note that a similar plane-
division pattern is also used in [21] to bound the number
of nodes with certain properties. Instead, we use it to
bound the accumulative interference for a node.

node i node k
X 1

2
3

5
4

Figure 6: Analyzing the upper bound of ω+

m,i

using a similar technique of [21].

For each area, we find the allocated node closest to i
(Fig. 6). An important property of the selected nodes is
that in each area, any allocated node will generate more
interference to the selected node than to i. Define set Ψ
to be the collection of these nodes. Clearly |Ψ| ≤ 5. Let
T = {j|j /∈ Ψ ∧ am,j = 1} be the set of allocated nodes
not in Ψ. By geometry, any node in T generates more
interference to some node in Ψ than to i. Formally,
∀j ∈ T , ∃q ∈ Ψ s.t. Ij,q ≥ Ij,i, which also implies
I+
j,q ≥ I+

j,i from its definition. Thus we have
∑

j∈T

I+
j,i ≤

∑

q∈Ψ

∑

j∈T

I+
j,q ≤

∑

q∈Ψ

ω+
m,q ≤ 5Imax.

The last inequality holds from ω+
m,q ≤ Imax and |Ψ| ≤

5. With this we reach the conclusion in Step 2: ω+

m,i =∑
j∈Ψ

I+

j,i +
∑

j∈T I+

j,i ≤ 5Imax + 5Imax = 10Imax.
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