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Chapter 1

Market Driven Sharing of

Spectrum in Infrastructure
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Xia Zhou1, Heather Zheng1, Maziar Nokovee2, Milind M. Buddhikot3

1Department of Computer Science, University of California, Santa Barbara
2British Telecom Research & University College London
3Alcatel-Lucent

1.1 Introduction

Access to radio spectrum is a key requirement for continuous wireless growth and
deployment of new mobile services. Given the fast growing demand for radio spec-
trum, regulators around the world are implementing much more flexible and liberal
forms of spectrum management, often referred to as dynamic spectrum manage-
ment. This new models dynamically redistribute and re-assign spectrum with each
and across different wireless systems, adapting spectrum usage to actual demands
and achieving much more efficient use of the precious spectrum resource. Within
the new model, two prominent approaches that are being considered by the regu-
lators are spectrum trading and cognitive spectrum access [1]. In this chapter, we
focus on examining challenges and solutions in the area of spectrum trading.

Spectrum trading is a market-based approach for spectrum redistribution which
enables a spectrum licence holder (for example a cellular operator) to sell or lease
all or a portion of its spectrum to a third party. The third party can then in
principle change the use of spectrum or the technology to be used provided that
certain conditions are satisfied. Note that this is an important departure from the
Command & Control management model, where spectrum licences were granted
by regulators for the provision of a specific service using a pre-defined technology,
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Market Driven Sharing of Spectrum in Infrastructure Networks

Figure 1.1: From Command & Control to market-driven spectrum allocation in the
UK [2].

and licence holders were not allowed to reallocate their spectrum to different tech-
nologies or other users. Exposing the radio spectrum to market forces has become
increasingly popular. For example, the UK regulator, Ofcom, is aiming that by
2010 71.5% of its available spectrum should be operating under market forces [2]
(see Figure 1.1). The rationale for the approach is that market mechanism will
allocate spectrum to those who value it most, thereby ensuring that the (econom-
ically) most efficient utilization of this resource is achieved. However, at least
initially, one expects that such forms of spectrum trading would only take place on
a macro-scale (e.g. between two cellular service providers) involving large blocks
of spectrum and timescales that are still dictated by complex and cumbersome
bureaucratic procedures involved in such wholesale forms of trading.

Dynamic Spectrum Micro-Auctions. While cognitive access to ceratin
”publicly owned” licensed bands, such as TV and military bands, are being actively
pursued by regulators, it is very doubtful that without any economic incentive this
from of access can be extended to “privately owned” licensed bands, such as 3G
spectrum,for which the incumbents have already paid billions of dollars/pound-
s/Euros in order to ensure their exclusive use. It is, therefore, clear that in order to
make possible secondary access by cognitive radios to such licensed bands market
mechanisms on a micro-scale need to be implemented in order to create economic
incentives for licensed holder for sharing their spectrum locally and temporarily
with cognitive radios.

In order for market players (cognitive radios and incumbent systems) to make
economically efficient deals, they require a market environment that enables them
to negotiate such that mutually acceptable bargains are reached. Auctions are
among the best-known market-based allocation mechanisms due to their perceived
fairness and allocation efficiency. Indeed, FCC (Federal Communications Com-
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1.2 Rethinking Spectrum Auctions

mission) and its counterparts across the world have extensively used auctions for
wholesale allocation of spectrum in the last decade and intend to use this mech-
anism in the future. However, a FCC-style spectrum auction targets long-term
national/regional leases, requiring huge up-front investments. In this chapter, on
the other hand, our focus is on micro-auction mechanism that allow for the trad-
ing of spectrum rights at network level. These types of auction mechanisms could
be highly attractive to network operators. as they provide a flexible and cost-
effective means for dynamic expansion of their spectrum resources without the need
for costly capital investments in new spectrum. The spectrum obtained through
micro-auctions can be used for congestion relief during peak loads in traffic, or to
enhance existing services and provide new services without the need for acquir-
ing additional spectrum. More generally, users will be able to dynamically and
locally vary their operating frequencies and access the best available spectrum on
a ”just-in-time” basis. This may happen either upon instruction from a cognitive
base station that acquires spectrum on behalf of users [3], or autonomously by user
devices themselves.

The Role of Cognitive Radios. Cognitive functionality is essential in re-
alization of such types of micro-auctions because wireless devices can understand
the regulatory, technical and economic context within which they found themselves
and be able to perform the required negotiation and decision making task that are
involved in the biding procedure in such auctions. The scope of this chapter, how-
ever, is not on developing such cognitive functionalities. Instead we shall assume
that these functionalities will be available in future devices and focus on develop-
ing and modeling appropriate auction algorithms which ensure fast and efficient
redistribution of spectrum on network level. Furthermore, we will not have any
assumption regarding the underlying network access technologies that a cognitive
device uses for its transmissions once it acquires a portion of spectrum. However,
following [4], we envisage that access technologies such as OFDMA will play an
important role in enabling our micro-auction mechanisms. These technologies will
support dynamic bandwidth availability and permit grouping, sub-dividing, and
pooling of pieces of spectrum into neatly packaged spectrum channels.

1.2 Rethinking Spectrum Auctions

In the past decade, radio spectrum has always been auctioned in terms of pre-
partitioned bulk licenses that cannot match time-varying market demands. Such
mismatch has led to several negative consequences. First, forced to bid in the unit
of bulk licenses, buyers face huge up-front costs. As a result, past auctions involved
only a very few large (incumber) players, required significant manual negotiations
and often took months or years to conclude. Second, winning buyers who received
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the licenses cannot efficiently utilize assigned spectrum because their traffic varies
significantly in time and space. Finally, while winning buyers’ spectrum sits unused,
new entrants and new wireless technologies are either blocked or forced to crowd
into highly unreliable unlicensed bands. If not addressed, such inefficiency will soon
put a stop to wireless growth and innovation.

Solving such inefficiency requires us to rethink the way spectrum is distributed,
and to redesign spectrum auctions to provide networks with spectrum matching
their individual demands. Recent works have proposed an eBay-like, open mar-
ketplace concept to enable dynamic spectrum trading [5, 6]. In this marketplace,
existing spectrum owners (as providers) gain financial returns by leasing their idle
spectrum to new spectrum users, and new users (as buyers) obtain spectrum that
they desperately need. This marketplace differs significantly from conventional
FCC-style spectrum auctions in three aspects:

Multi-party trading with spectrum reuse. Spectrum auctions are fun-
damentally different from (and much more difficult than) conventional multi-unit
auctions because of its unique property of reusability. Unlike the traditional goods
(e.g. paintings, bonds, electricity), spectrum can be spatially reused concurrently.
Although two conflicting bidders must not use the same spectrum bands simultane-
ously yet well-separated bidders can. While a conventional auction with n bidders
and k bands can only have at most k winners, spectrum auction can have more
than k winners. Therefore, unlike FCC-style auctions that have one provider(i.e.
the FCC) and sell one license to only one buyer, the new marketplace supports
multi-party trading. Multiple providers can selectively offer their idle spectrum
pieces and each spectrum piece can be sold to multiple “small” buyers. In this
way, the new marketplace can exploit spectrum reusability in spatial and temporal
domains to improve spectrum usage efficiency.

On-demand spectrum trading. Instead of forcing buyers to purchase pre-
defined spectrum licenses, the new marketplace enables buyer to specify their own
demands. Given these demands, the marketplace intelligently selects winners and
allocates spectrum to best utilize the spectrum offered by providers and support
buyers. Such flexibility not only attracts a large number of participants but also
enables the system to effectively multiplex spectrum supply and demand, further
improving spectrum utilization.

Economic-robustness with spectrum reuse. Without good economic de-
sign, spectrum auctions can be easily manipulated by bidders, suffering huge effi-
ciency loss. Auctioneers are forced to apply Bayesian settings, placing strong (and
often wrong) assumptions on the distribution of bidder valuations [7]. The heavy
overheads and the vulnerability would easily discourage both providers and play-
ers from participation. Therefore, only by preventing market manipulation can
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Figure 1.2: A dynamic spectrum auction scenario. (Left) An auctioneer performs
periodic auctions of spectrum to the bidders. (Right) A conflict graph illustrates
the interference constraints among bidders.

an auction attract bidders and new entrants, and efficiently distribute spectrum
to make best use of this important resource. While conventional auction design
has proposed novel solutions to achieve economic robustness, the requirement on
spectrum reuse opens up new vulnerabilities in existing solutions [5]. New auction
rules are required to achieve economic-robustness while enabling spectrum reuse.

With these three requirements in mind, we now describe several ongoing efforts
on designing dynamic spectrum auctions. We start from presenting two spectrum
allocation algorithms to enable fast auction clearing. We then describe two recent
works on adding economic-robustness to auction designs, including a single-sided
spectrum auction system where spectrum buyers bid for spectrum from a single
auctioneer, and a double spectrum auction system where spectrum sellers and
buyers can trade spectrum by each interacting with an auctioneer.

1.3 On-demand Spectrum Auctions

An on-demand spectrum auction must distribute spectrum on-the-fly to a large
number of bidders. Spectrum auctions are multi-unit auctions where the spectrum
is divided into a number of identical channels for sale. Users wish to obtain different
amount of spectrum at their desired power levels, and may be willing to pay differ-
ently depending on the assignment. Towards this goal, we need a compact bidding
language to allow buyers conveniently express their desire and do it so compactly,
and an efficient allocation algorithm to distribute spectrum in real-time subject to
the complex interference constraints among bidders.

In this section, we discuss two ongoing efforts on spectrum allocation algo-
rithms to support dynamic spectrum auctions. We start from a recent work [8]
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that proposed a computationally-efficient auction framework with simple and ef-
fective bidding and fast auction clearing algorithms. Specifically, spectrum buyers
(bidders) use a compact and yet expressive bidding format to express their desired
spectrum usage and willingness to pay, while an auctioneer execute fast clearing
algorithms to derive prices and allocations under different pricing models.

Bidding Format: Piecewise Linear Price-Demand (PLPD) Bids. As-
sume there are K channels in total, Fi is the set of channels assigned to bidder
i, and hence the normalized spectrum assigned to i is fi = |Fi|/K. With PLPD,
a bidder i expresses the desired quantity of spectrum fi at each per-unit price pi
using a continuous concave piecewise linear demand curve. That is, the bidder
would like to pay pi · fi for fi channels. An PLPD curve can be expressed as a
conglomeration of a set of individual linear pieces. A simple example is a linear
demand curve:

pi(fi) = −aifi + bi, ai ≥ 0, bi > 0, (1.1)

where the negative slope represents price sensitivity at buyers – as the per-unit
price decreases, demands in general increase.

Pricing Models. Without considering economic-robustness, the auction pricing
follows directly from each bidder’s bid. A bidder i who obtains fi spectrum is
charged with pi(fi) · fi as specified by its bid. In this case, the revenue produced
by each bidder is a piecewise quadratic function of the price:

Ri(pi) =
bipi − pi

2

ai
(1.2)

For linear demand curves, the revenue is a quadratic function of price, with a unique
maximum at pi = bi/2. We can further divide the pricing models into two types:
uniform and discriminatory pricing. In uniform pricing, the auctioneer chooses
a single clearing price p for all the winners. Each bidder obtains a fraction of
spectrum fi(p) = (bi − p)/ai and produces a revenue of Ri(p) = (bip− p2)/ai. Any
bidder i with bi ≤ p gets no assignment. In discriminatory pricing, the auctioneer
sets non-uniform clearing prices across bidders.

Fast Auction Clearing by Linearizing the interference constraints. Given
the bids and pricing model, the auction clearing problem is to maximize the auction
revenue

∑
iRi(pi) by choosing the winners and their pricing pi subjecting to the

interference constraints. This optimization problem is in general NP-hard because
of the underlining interference constraints grow exponentially with the number of
bidders. [8] proposed to reduce the interference constraints into a set of linearized
constraints that grow linearly with the number of bidders. Specifically, it proposed
the Node-L Interference Constraints (NLI). Let two nodes i and j locate at coor-
dinates (xi, yi) and (xj , yj). Node i is to the left of node j if xi < xj . If xi = xj,
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then the node with the smaller index is considered to be to the node to the left.
Then the constraint becomes: every neighbor of i to the left of i, and i itself should
be assigned with different channels:

fi +
∑

j∈NL(i)

fj ≤ 1, i = 1, 2, . . . , N (1.3)

where NL(i) is the set of neighbors of i lying to its left. It has been shown that
the new constraints are stricter than the original constraints, and lead to a feasible
but sub-optimal solution which is within a distance 3 from the optimal solution.

Using the new interference constraints, the auction clearing problem can be
solved using linear programming (for uniform pricing) or separable programming [9](for
discriminatory pricing). Both solutions have polynomial complexity. The readers
should refer to [8] for additional details on the algorithms and proofs. In practice,
both algorithms run efficiently in real-time. Using a standard desktop with 3.0 GHz
processor and 1 GB of RAM and assuming 3500 bidders, the auction clearing fin-
ishes in 0.05 seconds for the uniform pricing and 80 seconds for the discriminatory
pricing model.

1.4 Economic-Robust Spectrum Auctions

When it comes to resisting market manipulation, the dominant paradigm is truth-
ful auction design. A truthful auction guarantees that if a bidder bids the true
valuation of the resource, its utility will not be less than that when it lies. Hence,
the weakly-dominating strategy for a bidder is to bid its true valuation. As we
will show, a truthful auction charges a winner independent of its actual bid, which
is different from the auction design in the previous section. To bidders, a truth-
ful auction eliminates the expensive overhead of strategizing about other bidders
and prevents market manipulation. Thus it can attract a wide range of network
nodes/establishments to engage in the marketplace. To the auctioneer, by en-
couraging bidders to reveal their true valuations, a truthful auction can help the
auctioneer increase its revenue by assigning spectrum to the bidders who value it
the most. For the same reason, many classical auction systems are made truth-
ful, including the sealed-bid secondary-price [10], k-position [11, 12], and VCG
auctions [13, 14].

While prior works have enforced truthfulness in conventional auctions, existing
truthful designs either fail or become computationally prohibitive when applied to
spectrum auctions. The fundamental reason is that unlike goods (e.g. paintings,
bonds, electricity) in conventional auctions, spectrum is reusable among bidders
subjecting to the spatial interference constraints. Because interference is only a lo-
cal effect, bidders in close proximity cannot use the same spectrum frequency simul-
taneously but well-separated bidders can. These heterogeneous inter-dependencies
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among bidders make secondary-price and k-position auctions no longer truthful.
Furthermore, these constraints make the problem of finding the optimal spec- trum
allocation NP-complete, and hence a real-time spec- trum auction with many bid-
ders must resort to greedy allo- cations that are computationally efficient. Unfortu-
nately, it has been shown that the VCG auction loses its truthfulness under greedy
allocations.

In the following, we describe VERITAS [5], a truthful dynamic spectrum auc-
tion framework. VERITAS achieves truthfulness with computationally-efficient
spectrum allocation and pricing mechanisms, making it feasible for the online short-
term auction. In addition, VERITAS provides the auctioneer with the capability
and flexibility of maximizing its customized objective, and allows bidders to request
spectrum by the exactly number of channels it would like to obtain, or by a range
defined by the minimal and maximal number of channels.

Consider a typical sealed-bid auction in Figure 1.2. The auctioneer sells k
channels by running an online auction periodically. Each bidder requests spec-
trum by the number of channels and the per-channel price it would like to pay.
After receiving the bids, the auctioneer determines the winners, their spectrum
allocations and prices, based on the bids and the interference condition among
bidders. As shown in Figure 1.2, the interference condition is represented by a
conflict graph [15] G = (V,E), where V is the collection of the bidders and E is
the collection of edges where two bidders share an edge if they conflict. Table 1.1
summarizes the notations used to define an auction problem.

Using these notations, we now define a truthful auction, and a truthful and
efficient spectrum auction:

Definition 1 A truthful auction is one in which no bidder i can obtain higher
utility ui by setting bi 6= vi.

In the context of spectrum auctions, the design must ensure truthfulness and enable
spectrum reuse across auction winners to improve spectrum utilization.

Definition 2 An efficient and a truthful spectrum auction is one which is truthful
and maximizes the efficiency of spectrum usage subject to the interference con-
straints.

In building a truthful and efficient spectrum auction, VERITAS integrates a
greedy spectrum allocation with a carefully designed pricing mechanism. Let’s
start from a simple scenario where bidders’ channel requests are strict: a bidder i
requests di channels and only accepts allocations of either 0 or di channels.

Spectrum Allocation. In determining the auction winners, VERITAS applies
a greedy solution. It first sorts the bid set B by a descending order of bi, and then
allocates bidders sequentially from the highest one to the lowest one. Form each
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1.4 Economic-Robust Spectrum Auctions

Notations Description

Channel request di The number of channels requested by bidder i

D = {d1, d2, ..., dn} The set of demands across all the bidders.

Per-channel bid bi The per-channel bid submitted by bidder i, or the max-
imum price bidder i is willing to pay for a channel

B = {b1, b2, ..., bn} The set of bids submitted by all the bidders

Per-channel valuation vi The true valuation a bidder i has for a channel. In most
cases, vi is private and known only to bidder i.

Channel allocation dai The number of channels an auction winner i receives

Clearing price pi The price charged to an auction winner i. In a truthful
auction, pi ≤ dai · vi.

Bidder utility ui The utility of bidder i, or the residual worth of the
channels. ui = vi · dai - pi if i is an auction winner and
0 otherwise.

Table 1.1: Summary of auction notations.

bidder i, the algorithm first checks whether there are enough channels to satisfy i’s
request di. If so, it assigns i with di lowest indexed channels that have not been
assigned to i’s conflicting peers. Such monotonic allocation is critical to achieve
auction truthfulness.

Winner Pricing. VERITAS charges each winner i with the bid of its critical
neighbor multiplied by the number of channels allocated to i. The price reflects
the minimum value of i’s bid to win the auction, and is independent of i’s actual
bid, and is always no more than i’s actual bid multiplied by the number of channels
allocated to i. This property is also referred to as “individual rationality.” The
critical neighbor is defined as follows:

Definition 3 Given {B \ bi}, a critical neighbor C(i) of bidder i is one of i’s
neighbors where if i bids lower than C(i), i will not be allocated, and if i bids higher
than C(i), i will be allocated.

At the first sight, finding the critical neighbor for each bidder i seems computation-
ally expensive. It requires inserting i’s bid immediately after each of its neighbors
and running allocation algorithm repeatedly. VERITAS overcomes this problem
using an intelligent pricing algorithm that identifies the critical neighbor for each
bidder by running the allocation algorithm once. For each bidder i, the algorithm
first removes i from the sorted bid set and runs the allocation. When assigning
channels to i’s conflicting peers, the algorithm removes the assigned channels from
i’s available channel set. The first winning conflicting peer who makes i’s available
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channels less than its demand di is i’s critical neighbor. The detailed algorithm
description can be found in [5].

Supporting Other Bidding Formats. VERITAS enables bidders to use di-
verse demand formats. A bidder can request spectrum by the exactly number of
channels it would like to obtain (strict requests), or by a range defined by the min-
imal and maximal number of channels (range requests). Using the range request,
a bidder i can request di channels but accept any number of channels between 0
and di. To ensure truthfulness under this request, VERITAS applies an advanced
allocation and pricing mechanism. When allocating channels, if the number of
available channels is less than i’s demand di, the algorithm allocates whatever is
possible. When determining prices, the algorithm needs to find multiple (rather
than one) critical neighbors for each winner because bidding below each critical
neighbor will result into the allocation of different number of channels. For each
set of additional channels obtained by bidding higher than the last critical neigh-
bor, the algorithm charges the winner with the bid of its last critical neighbor. The
clearing price is the sum of prices charged for all of the bidder’s assigned channels.

Supporting Different Auction Objectives. VERITAS provides the auction-
eer with the capability and flexibility of maximizing its customized objective. By
sorting the bid set differently, the auctioneer can configure the order of allocation to
maximize the auction revenue or the social welfare. For example, it has been shown
that to maximize the sum of winning bids, known as the social welfare [12], the
best-known greedy algorithm is to assign channel following the descending order
of bi

|N(i)+1| [16] where N(i) is the number of conflict peers of bidder i. VERITAS
enables this flexibility by allowing different sorting metrics as long as it is an in-
creasing function of the bid bi, and not affected by the bids of other bidders, such
as bi,

bi
|N(i)|+1 or bi · |N(i)|.

VERITAS Performance and Complexity. It has been shown that the VER-
ITAS auction design is truthful by combining the monotonic spectrum allocation
and the critical-neighbor based pricing algorithm [5]. The computational complex-
ity of VERITAS is in the order of O(N3K) where N is the number of bidders, and
K is the number of channels auctioned. Among them, O(N logN +K|E|) is from
the allocation algorithm and O(NK|E|) is from the pricing algorithm), where |E|
is the number of edges in the bidder conflict graph. Such polynomial complexity
makes VERITAS suitable for dynamic, on-demand spectrum auctions.

Figure 1.3(a) compares VERITAS’ spectrum utilization to that of the best-
known greedy allocation algorithm [16], where VERITAS performs similarly to
the greedy solution. Figure 1.3(a) examines its auction revenue as a function of
the number of channels auctioned. VERITAS exhibits an interesting trend: as
the number of channels auctioned increases, the revenue first increases and then
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Figure 1.3: VERITAS performance. (a) Spectrum allocation efficiency vs. the
number of bidders. VERITAS performs similarly to the best known greedy algo-
rithm [16]. (b) VERITAS auction revenue vs. the number of channels auctioned.
The auction revenue depends heavily on the level of bidder competitions. As the
number of channels auctioned increases, the level of competition decreases and the
winners’ prices reduce.

decreases. This is because VERITAS charges winners by their critical neighbors’
bids. Increasing the number of channels reduces the level of bidder competition.
As the number of winners increases to include all the bidders, the price charged
to each winner also decreases to zero. To maximize its revenue, the auctioneer
can choose to control the number of channels to be auctioned. To prevent bidder
manipulation, the auctioneer must make decision prior to the auction execution.
Determining the optimal number of channels is a challenging question given the
complex interference constraints. A simple heuristic was proposed in [5].

1.5 Double Spectrum Auctions for Multi-party Trad-

ing

We have described an auction design where the auctioneer sells its spectrum chan-
nels to buyers. In this section, we describe a double spectrum auction design where
multiple spectrum sellers and buyers can trade spectrum flexibly by interacting
with an auctioneer. As shown in Figure 1.4, the auctioneer is a match-maker be-
tween sellers and buyers. It buys spectrum pieces from the sellers and sell them to
the buyers. In this way, existing spectrum owners (as sellers) can obtain financial
gains by leasing their selected idle spectrum to new spectrum users; new users (as
buyers) can access the spectrum they desperately need and in the format they truly
desire. By multiplexing spectrum supply and demand in time and space, dynamic
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Figure 1.4: Multi-party spectrum trading based on double auctions. The auctioneer
performs an auction among both sellers and buyers. Sellers provide idle spectrum
pieces dynamically with regional coverage, while buyers request spectrum channels
in local areas based on their demands. Each channel contributed by a seller can be
reused by multiple non-conflicting buyers.

auctions can significantly improve spectrum utilization.
To model a double spectrum auction, we define the bid, true valuation, price

and utility of both sellers and buyers. The notations for buyers, Bb
n, V

b
n , P

b
n and

U b
n follow those in Table 1.1, and the notations for sellers are defined in Table 1.2.

In addition to truthfulness and spectrum reuse, a double spectrum auction must
also achieve two additional properties: individual rationality and budget balance.

Definition 4 A double auction is individual rational if no winning buyer pays
more than its bid (i.e. P b

n ≤ Bb
n), and no winning seller gets paid less than its

bid (i.e. P s
m ≥ Bs

m).

This property guarantees non-negative utilities for bidders who bid truthfully, pro-
viding them the incentives to participate.

Definition 5 A double auction is ex-post budget balanced if the auctioneer’s profit
Φ ≥ 0. The profit is defined as the difference between the revenue collected from
buyers and the expense paid to sellers: Φ =

∑N
n=1 P

b
n −∑M

m=1 P
s
m ≥ 0.

This property ensures that the auctioneer has incentives to set up the auction.
In the following, we describe TRUST [6], a new double spectrum auction frame-

work that achieves the four required properties: spectrum reuse, truthfulness, in-
dividual rationality and budget balance. Table 1.3 compares TRUST to exist-
ing double auction designs. Conventional double auction designs (VCG [17] and
McAfee [18]) achieves truthfulness but do not consider spectrum reusability. VER-
ITAS [5] only addresses single-sided buyer-only auctions, and loses the truthfulness
when directly extended to double auctions [6].
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Notations Description

Seller’s per-channel bid
Bs

m

The minimum payment required by seller m to sell one
channel.

Seller’s per-channel valu-
ation V s

m

The true valuation a seller m has for a channel.

Seller’s price P s
m The payment a winning seller m receives by selling a

channel.

Seller’s utility U s
m The utility of seller m U s

m = P s
m − V s

m if m wins the
auction and 0 otherwise. This is different from the
buyer case.

Table 1.2: Summary of double auction notations related to sellers.

Existing Double
Auction Designs

Spectrum
Reuse

Truthfulness Ex-post
Budget
Balance

Individual
Rationality

VCG X
√

X
√

McAfee X
√ √ √

VERITAS exten-
sion

√
X

√ √

TRUST
√ √ √ √

Table 1.3: Comparison of various double auction designs.

TRUST [6] breaks the barrier between spectrum reuse and economic-robustness
in double spectrum auctions. In essence, it enables spectrum reuse by applying a
spectrum allocation algorithm to form buyer groups. It achieves the three economic
properties via the bid-independent group formation and a reusability-aware pricing
mechanism. TRUST consists of three components:

Grouping Buyers TRUST groups multiple non-conflicting buyers into groups
so that buyers in each group do not conflict and can reuse the same channel. This
is done privately by the auctioneer performing a spectrum allocation algorithm and
grouping buyers assigned to the same channel to a group. Unlike VERITAS, the
group formation is independent of the buyer bids to prevent bidders from rigging
their bids to manipulate its group size and members.

The group formation can cope with various interference models by using differ-
ent spectrum allocation algorithms. If the buyer interference condition is modeled
by a conflict graph, the group formation is equivalent to finding the independent
sets of the conflict graph [19, 20]. If the condition is modeled by the physical Signal
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to Interference and Noise Ratio (SINR) [21], TRUST finds multiple sets of buy-
ers who can transmit simultaneously and maintain an adequate received SINR [22].
Assuming channels are homogeneous, TRUST performs this allocation only to form
buyer groups, not to assign specific channels to buyers.

Determining Winners. Next, TRUST treats each buyer group as a super-
buyer and runs the conventional double spectrum auction algorithm to determine
the winning sellers and super-buyers. Let G1, G2, ..., GL represent the L groups
formed. For any group Gl with nl = |Gl| buyers, the group bid πl is:

πl = min{Bb
n|n ∈ Gl} · nl. (1.4)

TRUST sorts the seller bids in non-decreasing order and the buyer group bids in
non-increasing order: B

′ : Bs
1 ≤ Bs

2 ≤ ... ≤ Bs
M , and B

′′ : π1 ≥ π2 ≥ ... ≥ πL.
Define k as the last profitable trade:

k = argmax
l≤min{L,M}

πl ≥ Bs
l . (1.5)

Then the auction winners are the first (k − 1) sellers, and the first (k − 1) buyer
groups.

Pricing. To ensure truthfulness, TRUST pays each winning seller m by the kth
seller’s bid Bs

k, and charges each winning buyer group l by the kth buyer group’s
bid πk. This group price is evenly shared among the buyers in the group l:

P b
n = πk/nl, ∀n ∈ Gl. (1.6)

No charges or payments are made to losing buyers and sellers. The uniform pricing
is fair because buyers in a winning group obtain the same channel, thus should be
charged equally. In addition, to ensure individual rationality, a group bid must not
exceed the the product of the lowest buyer bid in the group and the number of
buyers in the group, which is used in the process of determining winning groups.
With such pricing mechanism, the auctioneer’s profit becomes Φ = (k−1)·(πk−Bs

k)
and and it is easy to show that Φ ≥ 0.

TRUST Performance and Complexity. As shown in [6], by integrat-
ing the monotonic winner determination and the bid-independent pricing, TRUST
achieves truthfulness, ex-post budget balance, and individual rationality while en-
abling spectrum reuse to improve spectrum utilization. One key advantage of
TRUST is that it can use any spectrum allocation algorithm in forming buyer
groups. Thus its complexity depends heavily on the allocation algorithm used.

On the other hand, ensuring these economic properties comes at a cost in spec-
trum utilization. This is because TRUST selects winning buyer groups by the
minimum bid in the group multiplied by the group size, so that groups of different
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Figure 1.5: The percentage of spectrum utilization achieved by TRUST comparing
to that of pure allocations without economic factors. Four various allocation algo-
rithms are considered including Max-IS [20], two greedy allocation algorithms [19]
Greedy-U and Greedy, and random allocation RAND.

sizes have equal opportunity in being chosen. On the other hand, the convectional
spectrum allocation algorithms always choose large groups, leading to an advan-
tage in spectrum utilization. Figure 1.5 illustrates the ratio of TRUST’s spectrum
utilization over that of conventional spectrum allocations without economic con-
sideration [19, 20]. It includes TRUST with four spectrum allocation algorithms,
and examines the performance using random and clustered topologies. In random
network topologies, TRUST achieves 70–80% spectrum utilization of the conven-
tional spectrum allocation, while in clustered topologies, TRUST sacrifices roughly
50% of spectrum utilization in exchange for economic robustness. This is because in
clustered topologies, the group sizes become much more diverse, and TRUST could
select a set of small buyer groups which degrades the overall spectrum utilization.

1.6 Further Reading

Exploitation of market mechanism for dynamic allocation and redistribution of
spectrum in cognitive radio networks has been the topic of several other recent
research investigations, and the literature on this topic is growing. Importantly
also, the use of such mechanism are starting to move from the realm of pure research
into that of development and commercial exploitation. For example, Spectrum
Bridge Inc. (SBI) [23], a US-based company has developed a real time online market
place that enables spectrum owners and users to buy, sell and lease FCC licensed
spectrum. According to the company’s web site its online market place, SpecEx,
provides access to over 200 billion of spectrum that the FCC has made eligible for
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secondary market transactions. For the benefit of reader we shall summarise in
the remaining this section some of the most recent research on the use of market
mechanism for dynamic spectrum access.

A framework for coordinating dynamic spectrum access aiming service providers
was proposed in [3]. The scheme proposed in this work relies on a spectrum broker
that controls the allocation of spectrum among the spectrum requesting operators.
This work was later extended to cases where the interference among bidders is
modeled by pairwise and physical interference models and the bidders can bid for
heterogeneous channels of different width using generic bidding functions [24].

The price dynamics of a dynamic spectrum market was explored in [25]. The
authors considered a market place consisting of spectrum agile network service
providers and users. Competition among multiple primary users to sell their spec-
trum are modeled in this work as a non-cooperative game. An interesting feature
of this work is that the analysis takes into account differences in evaluation of the
quality of the offered spectrum by buyers. For example, spectrum at lower fre-
quencies, such as UHF, travel longer distances and penetrate more readily through
walls. Therefore such bands may value such spectrum bands highly for applications
that require good penetration properties. Also, depending on their operating wire-
less technology some spectrum buyers may value contiguous segments of spectrum
higher than non-contiguous ones.

The dynamics of multiple-seller and multiple-buyer spectrum trading in dy-
namic spectrum access networks is also considered in [26]. In this work it is assumed
that the secondary users can adapt their spectrum buying behavior to the varia-
tions in price and quality of spectrum offered by different primary users. At the
same time the primary users can adjust their behavior in selling their spectrum in
order to achieve the highest utility. Similar to [25] the competition among primary
users in selling spectrum is modelled using a non-cooperative game formulation. At
the same time, evolution in the spectrum buying behavior of secondary users are
analyzed by using the deterministic and stochastic models of evolutionary games.

One of the early papers that explores the use of auctions for dynamic allocation
of spectrum is [27]. The authors consider a scenario where multiple code division
multiple access (CDMA) operators bid for the spectrum to a spectrum manager.
They present an optimal bidding and pricing mechanism was presented with the
objective of maximising the revenue of the operators based on the willingness of
users’ to pay. Auction-based mechanism for dynamic spectrum access are also
explored in [28], where and optimisation problem is formulated to maximize the
revenue of spectrum owners through pricing and spectrum assignment. In [4] the
authors describe a combinatorial clock auction mechanism for trading of spectrum
in the context of and OFDMA-based cognitive radio network. Combinatorial clock
auctions [29] are used when there are a range of items on sale which may be logically
grouped together into many different packages to suit either the buyer, the seller
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or both. In these auctions bids for such packages are made throughout a number
of sequential open rounds and then a final sealed-bid round. During the sequential
rounds buyers have an opportunity to explore the bid-space as their bids are either
accepted or rejected until there is no change in the winners or no new bids are
submitted. The authors of [4] present a modified version of the combinatorial clock
auctions in order to reduce the complexity of the mechanism for cognitive radios
that attempt to buy and sell spectrum on behalf of users.

1.7 Chapter Summary

In this chapter we have examined the challenges and solutions in the area of spec-
trum trading. Different from the conventional Command & Control management
model, spectrum trading is an open, market-based approach for redistributing the
spectrum where new users can gain access to the spectrum they desperately need
and existing owners can gain financial incentives to “lease” their idle spectrum. We
have focused mainly on dynamic spectrum auctions because auctions are among the
best-known market-based allocation mechanisms. Dynamic spectrum auctions are
fundamentally different from (and much more difficult than) conventional multi-
unit auctions because of their unique requirement of spectrum reusability. With
this in mind, we have introduced three recent works on on-demand spectrum auc-
tions, truthful spectrum auctions and truthful double spectrum auctions. Together,
they provide the basic building blocks for constructing an efficient, economic-robust
and real-time dynamic spectrum marketplace.

It is important to note that there have been numerious contributions and ongo-
ing efforts on dynamic spectrum allocation, pricing, trading and auctions. A small
set of them were summarized in the Further Reading section. Building on these
extensive contributions, the use of spectrum trading is moving from pure research
to several commercial deployments, and hopefully will expand to the general public
in near future.

1.8 Chapter Questions

1. What is spectrum trading? How does it differ from the Command and Control
Model?

2. This chapter deals mainly with auction-based mechanisms to enable efficient
deals between spectrum buyers and sellers. Name and explain at least one
other market mechanism that can be used for trading spectrum.

3. How does spectrum differ from other natural resources such as gas and elec-
tricity? How do these differences impact the use of auctions in trading spec-
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trum?

4. Explain what a conflict graph is. Use MATLAB to construct and visualize
conflict graphs for a collection of 100 nodes uniformly distributed in a 1 km2

rectangular area. Assume that all nodes have a 100 m transmission radius.

5. What are the limitations of FCC-style auctions?

6. What are the differences between single-sided auctions and double auctions?

7. Consider the first-price auction where the winner is charged by its bid, what
is the revenue trend would you expect as the number of channels auctioned
increases? Explain your conjecture by comparing it to Figure 1.3.

8. Critique neighbour is defined in VERITAS for determining each winner’s
price. Consider a winner i in VERITAS, and among i’s unallocated neighbors
(i.e. i’s neighbors who did not win any channel in the auction), let j be the
one with the highest bid. Is j always i’s critique neighbour? If it is, explain
the reason, and if it is not, give a counter example.

9. Buyer group formation is an important step for TRUST to enable spectrum
reuse. Given the conflict graph of buyers and the set of bids of sellers, do you
think it is a good idea to make the buyer group size more balanced? Explain
your conclusion.
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