2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

MOSAIC: Stateless Mobility for HTTP-based
Applications

Wonsang Song*, Georg Hampel', Anil Ranaf, Thierry Klein' and Henning Schulzrinne*
*Columbia University
{wonsang, hgs}@cs.columbia.edu
TBell Labs
{georg.hampel, anil rana, thierry klein} @alcatel-lucent.com

Abstract—We present a mobility solution for stateless applica-
tions, where the mobile host can change its IP address as well as
the content servers used by ongoing client sessions. This allows
content retrieval to always use the locally optimal source when
the host moves between networks. We refer to this approach as
“stateless mobility” since neither the network nor the content
servers hold mobility-related state information.

Our mobility solution, referred to as MOSAIC, is applied to
HTTP sessions using GET method invocation, which represent
a large fraction of mobile Internet traffic. By moving MOSAIC
underneath the socket interface, we create a generic application-
independent feature. We realized a lightweight implementation
using an L3 packet filter, which promises easy portability to
other platforms. MOSAIC’s overall concept is evaluated via
measurements using public Internet services.

Index Terms—stateless mobility, vertical handover, multi-
homing, HTTP content retrieval

I. INTRODUCTION

Content retrieval by stateless client-server applications gen-
erates a major portion of today’s Internet traffic [1]. Examples
of such applications are web browsing, video streaming, and
file transfer. These applications are referred to as “stateless”
since the server remains agnostic to the client-specific session
state [2]. While stateless applications are not confined to a
particular protocol, the World Wide Web has established HTTP
with GET method invocation as the de facto standard for these
applications [1].

Stateless applications have the advantage that contents can
be replicated and conveniently cached on Content Distribution
Networks (CDNs) closer to the edge [3]. Moreover, different
parts of a single content can be retrieved from different
sources. This allows a client to resume a download where
it left off after connection failure. For this purpose, HTTP 1.1
supports the partial GET method, which permits the client to
confine the request to those data that are still missing [4].

We propose to extend the inherent advantages of stateless
applications to support vertical session mobility [5]. Vertical
session mobility refers to the scenarios where hosts migrate
their ongoing sessions to new IP addresses. The need for
vertical mobility has surged with the introduction of smart-
phones and tablets, whose multi-homing capabilities provide
access to a multitude of networks with overlapping coverage
areas. While most of these devices autonomously manage

978-1-4673-1430-5/12/$31.00 ©2012 IEEE

69

network authentication, vertical session mobility is usually not
supported [6].

In analogy to the concept of stateless applications, we
introduce the concept of stateless mobility where only the
mobile host holds mobility-related state information. Stateless
mobility permits the host not only to migrate a data session to
a new IP address but also to switch the content server used by
this session. Consequently, the optimal server can be selected
at each mobility event, which upholds the spirit of content
locality across mobility events.

Stateless mobility stands in stark contrast to the present
stateful mobility protocols, such as Mobile IP [7], which tether
the client session to a specific content source.

We have developed a vertical mobility solution for HTTP-
based applications, referred to as MOSAIC, which is stateless
in nature and transparent to client applications. Application
transparency is a major requirement for such a solution since
it provides backward compatibility with existing applications
and eliminates the need to furnish every future application
with its own mobility feature.

Application transparency implies that MOSAIC’s imple-
mentation has to occur below the socket interface. Any imple-
mentation of that kind violates the logical protocol layering
scheme, which assigns HTTP to the OSI L5-L7 space above
the socket interface. Application transparency therefore has
to be seen as a concession to practicality rather than a
fundamental requirement for HTTP-based mobility.

We implemented MOSAIC on top of an L3 packet filter
in Linux. We argue that such an implementation is not only
lightweight, but also easily portable to other operating sys-
tems. Using this implementation, we have conducted a variety
of trials on actual websites including web browsing, video
streaming, and downlink file transfer to prove the concept of
stateless mobility and to explore its limitations.

The following section describes the MOSAIC solution.
In Section III, this solution is compared to related work.
Section IV discusses implementation tradeoffs for MOSAIC
and emphasizes on our packet filter realization. Section V
shows measurement data conducted with the MOSAIC imple-
mentation. The results of these trials as well as limitations to
stateless mobility are discussed in Section VI. We summarize
and outline future work in the conclusion.

Client Application

i

MOSAIC Connection
Manager
‘ Interface 1 ‘ ‘ Interface 2 ‘
Mobile Client !
DNS 1 Network 2 DNS 2
Content Content
Server 1 Server 2
Fig. 1. MOSAIC architecture.

II. MOSAIC SOLUTION

MOSAIC introduces the concept of “stateless mobility” for
mobile hosts that run client sessions pertaining to stateless
applications. Stateless mobility allows the mobile host to
change its IP address as well as the content sources used by the
ongoing client sessions. Since the new IP address can belong
to the same or to a different interface, stateless mobility also
supports multi-homing.

Stateless mobility confines all mobility-related operations
to the mobile host. Hence, neither the content server nor the
network has to hold any mobility-related state information,
which avoids the need for a separate mobility protocol. Instead,
a new content retrieval request is sent after each mobility
event, which holds information on the remaining fraction
of content. In case content retrieval is based on HTTP 1.1,
the partial GET method supports the Range header for this
purpose, which holds the start and end byte index of the
remaining content fragment.

Since HTTP has become the de facto standard for stateless
applications, we consider it sufficient to restrict stateless
mobility to HTTP for the moment.

Figure 1 depicts the architecture of MOSAIC for a multi-
homed host with simultaneous access to two different net-
works. This architecture reflects a situation encountered by
a smartphone, tablet, or laptop that enjoys connectivity to
a 3G/AG cellular network as well as to an Internet service
provider via Wi-Fi. In this architecture, MOSAIC resides
between client applications and network interfaces. We assume
that content is replicated and hosted by a separate content
server in each access network. Further, each network sup-
ports its own DNS service. The client selects the locally
optimal content server using the DNS-based server selection
scheme [8].

The host is assumed to also hold a connection manager,
which monitors interface availability and makes the decision
on when a handover should occur. In such an event, it sends
a trigger message to MOSAIC, which executes the session

70

New
Server

Original
Server

Client App ‘ ‘ MOSAIC ‘ DNS

(1) HTTP GET

(2) HTTP RSP

(3) Traffic

Interface Change

(4) TCP RST

(5) DNS REQ
I

(6) DNS RSP
I

(7) HTTP GET + RANGE

(8) HTTP RSP

(9) Traffic

I

Fig. 2. MOSAIC operation.

migration request.

Figure 2 shows MOSAIC’s operation. To start the session,
the client resolves the content server’s IP address via a DNS
request, establishes a TCP connection, and sends an HTTP
GET request to the server (1).

Since MOSAIC resides between client applications and
network interfaces, it inspects the HTTP request and decides
if mobility support is appropriate. In such a case, MOSAIC
caches the HTTP GET request and inspects all following data
received on this connection. The content server returns an
HTTP response (2), and then it starts streaming traffic data
(3). MOSAIC analyzes the passing HTTP response for reasons
discussed below, and it counts the bytes of content the client
has received.

When an interface change occurs, MOSAIC terminates the
current TCP connection (4). Then it initiates a DNS handshake
on the new network to find the locally optimal content server.
For this purpose, it inserts into the DNS query the host
part of the HTTP URL contained in the cached HTTP GET
request (5). After obtaining the DNS response (6), MOSAIC
establishes a TCP connection with the new server, where it
sends a partial HTTP GET request. This request contains the
initial HTTP GET headers and a Range header (7), whose
start value is based on the total byte count of data received.

From the data stream sent by the new server, MOSAIC
extracts and suppresses the HTTP response (8) and relays
all content information to the client process (9). MOSAIC
continues to maintain the byte count of the content being
retrieved, in case another interface change occurs.

The session migration shown in Figure 2 can also be applied
to a mobility event where the same physical interface is moved
from one network to another.

Since MOSAIC uses independent TCP connections and
HTTP requests on each network, it is compliant with middle

boxes such as firewalls, network address translators, intrusion
detection systems, and HTTP proxies. In the presence of HTTP
proxies, the proxy address represents the IP address of the
local content server and a separate DNS request is not required.

MOSAIC also supports HTTP redirections. HTTP redi-
rection can be used to direct clients to the optimal CDN
node in addition to the DNS-based scheme [9]. YouTube,
for example, uses both the DNS-based and HTTP redirection
mechanism for their video delivery [10]. In such cases, the
initial HTTP response provides an alternative URL, where the
content should be retrieved. Upon reception of the redirection
header, the client restarts the content retrieval session using
this alternative URL. Since the redirected content retrieval
process follows the same sequence as shown in Figure 2, it
automatically enjoys MOSAIC support.

One problem may occur when the alternative URL provided
in the redirection header is local to the network where it was
sent. In this case, MOSAIC’s DNS request for this URL will
fail on any other network. To handle this scenario, MOSAIC
inspects the HTTP response for redirection headers and caches
the corresponding URLs together with the global URL of
the initial request. From this, MOSAIC can recognize client
sessions using redirected URLs. Consequently, MOSAIC uses
the global URL instead of the redirected URL for DNS
requests on a new network.

MOSAIC’s session migration is conducted in a break-
before-make manner even when the old and the new interface
are available simultaneously. This break is due to the fact that
a firm byte count has to be established on the old interface
before a partial HTTP GET request can be sent on the new
interface. The delay can be reduced to one round-trip time
if DNS handshake and connection establishment on the new
network are conducted before the break. More refined methods
using estimates on future byte counts may reduce this gap even
further. Our measurements using typical web applications,
however, indicate that the break is rarely noticeable.

III. RELATED WORK

There are a vast number of mobility, multi-homing, and mul-
tipath solutions available for OSI protocol layers 3 to 7 [11],
[12]. Compared to MOSAIC’s stateless mobility approach,
all these solutions are inherently stateful/ since they rely on
a protocol that exchanges mobility-related state information
between two end points acting on behalf of mobile host and
correspondent. These end points can reside on network side,
such as Mobility Access Gateway (MAG) and Local Mobility
Anchor (LMA) in Proxy Mobile IP [13], or they can be
embedded into the end hosts as proposed by the Host Identifier
Protocol (HIP) [14], E2E Host Mobility [15], and Multipath
TCP [12].

Stateful and stateless mobility define a tradeoff: While
stateful mobility requires two end points to exchange state
information via a protocol, it supports both stateful and
stateless applications. Stateless mobility, in contrast, can only
support stateless applications, but it retains content locality
and remains confined to the client’s host.

71

Horizontal handovers between neighboring cells are local
in nature and best served with statefu/ mobility. Stateless
mobility would perform poorly due to the delay associated
with frequent connection re-establishment and consecutive
TCP slow start. Further, content locality is retained implicitly
since mobility is local.

For vertical handovers, however, stateless applications
should use stateless mobility due to its inherent advantages.

The underlying principles of stateless mobility have also
been discussed within the framework of Information-Centric
Networking (ICN) [16]. ICN advocates a new networking
paradigm based on named contents. ICN is not yet widely
adopted on the Internet.

Also some Dynamic Adaptive Streaming over HTTP
(DASH) applications support vertical mobility in compliance
with the stateless mobility concept [17]. Since DASH conducts
content retrieval via a sequence of requests for small data
chunks, handovers can be neatly inserted between the delivery
of one data chunk and the request for the next. While this form
of mobility could also be provided in application-transparent
manner underneath the socket layer, it would be restricted to
DASH applications. MOSAIC, however, can support both con-
ventional HTTP applications as well as DASH applications.

IV. MOSAIC IMPLEMENTATION

Our goal is to provide vertical mobility to all stateless
HTTP applications through MOSAIC. In order to support web
browsers, we can implement MOSAIC as a plug-in or as a
function in HTTP proxies. However, mobile computing has
brought a new breed of applications that rely on HTTP content
retrieval. With the arrival of Apple App Store and Android
Market, mobile applications have created their own ecosystem,
demanding easy, swift, and competitive code development.
In such an environment, it is desirable to provide mobility
support as a generic application-independent feature, so that
all applications—whether they are built with mobility in mind
or not—can benefit from the mobility support. This requirement
poses new challenges.

While MOSAIC could be supported on session layer for this
purpose, there is no generally accepted interface from appli-
cation to session layer. In fact, most application development
feels bound by the socket interface only. Therefore, MOSAIC
needs to be implemented below the socket interface to en-
joy broad application-layer transparency. Such a cross-layer
feature relocation may appear awkward, but it is commonly
applied, for instance, by flow-based mobility proposals that
weave L4 semantics into an L3 solution [18].

Underneath the socket interface, MOSAIC can be integrated
into the transport layer or into a packet filter running on
network layer. We chose the latter approach since it provides
better code portability to other platforms. Most modern oper-
ating systems already support hooks for packet filtering and
the interface is generally straightforward.

Further, Linux—our platform of choice—provides a frame-
work for packet filtering called Netfilter [19], which allows
packet modifications to be conducted in user space. The detour

mangle

MOSAIC

]

mangled
packets

own
packets

filter
functions

input/output
packets

Raw Sockets iptables ‘ ‘ Netlink

ACCEPT/DROP

| aueve

User Space

Kernel Space

Netfilter |

filtered packets

Fig. 3.

MOSAIC Linux implementation.

through user space permits fast prototyping, debugging, and
trialing. Afterwards, the mature code can be provided as a
kernel module.

Figure 3 describes our Linux implementation. Netfilter
includes iptables, a command to inject packet filtering rules
into the kernel. The rules can specify which packets are
sent to a queue, e.g., for user-space modifications. MOSAIC
sets the packet selection rules through iptables and picks up
the selected packets from the Netfilter queue via a Netlink
socket [20]. MOSAIC then inspects and eventually modifies
the packet content (discussed below) before it re-inserts the
packet into the traffic stream. The packet can also be discarded.
MOSAIC further supports a Raw Sockets API to create its own
packets.

When no content retrieval application is running, MOSAIC
only selects outgoing TCP SYN packets for inspection, which
minimizes MOSAIC’s processing overhead. When a SYN
packet arrives, MOSAIC extends the packet selection rules
to include all packets pertaining to this TCP connection and
follows the TCP setup handshake via packet inspection.

When the connection is established, MOSAIC searches
the first payload packet for the HTTP GET request. If such
a request is not contained or if MOSAIC decides to omit
mobility support for the URL contained in this request, it
discontinues packet monitoring for this connection. Otherwise,
it keeps track of both TCP and HTTP state information derived
from the passing packets.

The TCP state information includes the connection’s 4-tuple
consisting of source and destination IP addresses and port
numbers as well as the most recent TCP sequence (SEQ) and
TCP acknowledgement (ACK) numbers.

The HTTP state information includes the HTTP URL and
the aggregate byte number of content received so far. This
byte number is based on the server’s initial SEQ number, the
aggregate ACK number of the last outgoing acknowledgement,
and the length of the server’s HTTP response, which has to be
discounted. The aggregate ACK number only reflects data that
have arrived in sequence, since only those data are delivered
to the client application. MOSAIC also stores a copy of the
HTTP headers in the GET request.

72

When an interface change is due for this connection, MO-
SAIC creates a TCP RST packet using the cached TCP state
information and transmits this packet on the raw socket. Then,
it performs a DNS lookup as discussed in Section II, which
determines the new content server’s IP address. The new IP
address of the mobile host is provided by the connection
manager, the local port number is selected randomly, and the
remote port number remains the same as before. MOSAIC
instructs Netfilter to select incoming TCP packets with this
new 4-tuple and to ignore all further TCP packets that arrive
with the old 4-tuple.

Then, MOSAIC initiates a TCP connection setup with the
new content server by creating a SYN packet with the new 4-
tuple and sending it on the raw socket. The initial SEQ number
on this packet is created via a random process. Upon arrival of
the SYN-ACK return packet, MOSAIC creates and transmits
an appropriate ACK response, while the SYN-ACK packet is
discarded. In this manner, a TCP control block is created on
the new content server but not on the mobile host. Instead, all
necessary TCP state information is cached by MOSAIC.

After sending the ACK packet, MOSAIC creates a payload
packet, which contains a partial GET request consistent of
the initial HTTP GET request and the Range header. The
Range header holds in the start field the index of the next
byte of content expected and in the end field the total byte
count obtained from the initial HTTP response. MOSAIC
sends this packet to the new server and discards the server’s
HTTP response. If the HTTP response packet also contains
content, MOSAIC eliminates the HTTP response header and
shifts the content up to the packet header.

On this and all following packets, MOSAIC updates the
fields for IP addresses, local port number, TCP SEQ and ACK
numbers in a manner that matches the old TCP end point on
the mobile host to the new TCP end point on the new content
server. The packets checksums have to be updated accordingly.
After these modifications, MOSAIC injects the packets back to
the kernel. MOSAIC continues counting bytes of the content
in case another mobility event occurs.

Our implementation has very low upfront cost, since packet
modifications only occur after the first mobility event. This
permits mobility support to be provided opportunistically, i.e.,
even if the application’s duration and mobility requirements
are not known a priori. The measurements presented in the
next section confirm MOSAIC’s small processing overhead.

V. MOBILITY TRIALS WITH MOSAIC

We evaluated MOSAIC for three dominant types of HTTP
traffic namely web browsing, downlink file transfer, and video
streaming. These trials were conducted using actual websites.

MOSAIC was run on a laptop equipped with one Wi-Fi
interface (802.11g) and one Ethernet interface (1 GB/s). The
trial setup resembled that of Figure 1, where both network
interfaces were connected to the Internet via independent
subnets. The laptop was a Lenovo T61 with a 2.1 GHz Intel
Core 2 Duo processor, which ran Ubuntu 11.04 on top of a
Linux 2.6.38 kernel.

TABLE I
FILE DOWNLOADING WEBSITES AND MOSAIC COMPLIANCE.

TABLE II
HTTP VIDEO STREAMING WEB SITES AND MOSAIC COMPATIBILITY.

For the HTTP client, we used the Google Chrome 13.0 web
browser, which held plug-ins for Adobe Flash Player 10.3 and
Moonlight 4.0 to support the video streaming trials (Moonlight
is a Linux implementation of Microsoft Silverlight).

A. MOSAIC Compliance

Any HTTP service is MOSAIC-compliant as long as it
supports HTTP partial GET, which is an optional feature in
HTTP 1.1. The first trials verified MOSAIC-compliance for
a set of websites. For this purpose, an HTTP partial GET
request was sent to each website, and the status code in the
HTTP response was examined. If the status code was “206
Partial Content”, partial GET was supported. Otherwise, the
website responded with “200 OK”. The start byte index in
the Range header was set to a small value, i.e., 100, to
make sure it never exceeded the total size of the content.
For the websites supporting partial GET, we explicitly verified
MOSAIC’s proper operation by conducting handover trials.

We evaluated MOSAIC-compliance for web browsing using
the top five websites according to Alexa.com. These websites
were www.google.com, www.facebook.com, www.youtube.
com, www.yahoo.com, and www.baidu.com. We found that
none of these websites supported the partial GET feature. The
lack of support for partial GET may be due to the small size of
these webpages, which makes this feature rather unnecessary.

Downlink file transfer was evaluated for Ubuntu Linux ISO
image, Oracle Java Development Kit (JDK), and Adobe Flash
Player installer. The corresponding URLs and file sizes are
shown in Table I. In contrast to the prior websites, all the
selected file-transfer services did support partial GET.

Finally, we evaluated MOSAIC-compliance for the HTTP
video streaming services shown in Table II.

The YouTube site provides video via progressive download
in either Flash or HTML5 format. For the Flash format,
the Chrome browser invokes the Flash Video Player plug-in
while it natively supports HTMLS5 format. For both formats,
YouTube did support partial GET.

Note that this trial scenario confirms the need for application
transparency since MOSAIC could support both applications,
i.e., the video player plug-in as well as the browser’s native
video support.

Name (URL) F.lle MOSAIC Name (URL) Technology MOSAIC
size compliance compliance
Ubuntu Linux ISO image 15GB Yes YouTube Progressive Yes
(http://mirror.anl.gov/ pub/ ubuntu-iso/ i (http://www.youtube.com/watch? (Flash and HTMLY5)
DVDs-Ubuntu/ 11.10/release/ ubuntu-11. v=pIxNfU-PA2c)
10-dvd-i386.is0) TED Progressive Yes
Java SE JDK 63.6 MB Yes (http://video ted.com/talk/ (HTMLS)
(http://download .oracle.com/ otn-pub/ java/ ’ stream/2011U/ None/ MattCutts_
Jjdk/ 7u2-b13/jdk- 7u2- linux-i586.rpm) 2011U-950k.mp4)
Adobe Flash Player 45MB Yes Akamai HD Network Demo Adobe HTTP Yes
(http://fpdownload .macromedia.com/pub/ ’ (http://wwwns.akamai.com/ Dynamic Streaming
Sflashplayer/ updaters/ 11/ flashplayer_11_ hdnetwork/ demol flash/ hds/ index.
ax_debug_32bit.exe) html)
MS Experience Smooth Streaming MS Smooth Yes
(http://www.iis .net/ medial Streaming
experiencesmoothstreaming)

73

TED, a website for oral presentations with educational
content, also supports progressive download via Flash and
HTMLS5 format. The Flash-based service, however, is based
on the Real-Time Messaging Protocol (RTMP) [21], which is
a proprietary stateful protocol by Adobe. Stateless mobility
is therefore not supported. The HTML5-based service is
restricted to Apple’s iOS devices. In order to receive the
HTMLS5-based video for a Linux client, we had to change
the Chrome browser’s User-Agent setting to “iPad”. We could
confirm MOSAIC-compliance for the HTMLS5-based service.

We evaluated two different variants of Dynamic Adaptive
Streaming over HTTP (DASH) namely Adobe HTTP Dynamic
Streaming [22] and Microsoft Smooth Streaming [23]. These
services require the respective Adobe Flash and Microsoft
Silverlight plug-ins. We could confirm that both services
supported partial GET. Further, MOSAIC properly worked
for both services, which verifies MOSAIC’s applicability to
DASH.

Unfortunately, we could not evaluate Apple HTTP Live
Streaming [24] since there is no QuickTime plug-in for Linux.
We also could not evaluate Netflix [25], the most prominent
use of Microsoft Smooth Streaming technology, since Netflix
uses the Digital Rights Management (DRM) feature of Sil-
verlight, which is not supported by Moonlight.

B. Handover Evaluation

We performed a detailed analysis of MOSAIC’s behavior at
mobility events.

Figure 4 shows the measurements of packet sequence num-
ber plotted against time for a TED video playback. Figure 4(a)
depicts a handover event from Ethernet to Wi-Fi and Fig-
ure 4(b) a handover event from Wi-Fi to Ethernet. The han-
dovers occurred at 6.6second and 24.9second, respectively,
creating a slope change in the measurement data.

The different slopes in the graphs of Ethernet-based and
Wi-Fi-based transport reflect the different throughputs of the
respective access technologies. The small plateau regions
between 11.0 and 12.4 second in Figure 4(a) indicate packet
loss and retransmission events.

2.5e+07 T
Incoming Seq

2e+07

Handover

v

1.5e+07

1e+07

TCP sequence number (relative)

5e+06

15 20 30 35

Time [sec]

25

(a) ethO to wlan0.

1.238e+07 T
Incoming Seq

©]
Outgoing Ack X

1.236e+07

1.234e+07

1.232e+07

1.23e+07

TCP sequence number (relative)

1.228e+07

1.224e+07

6.65 6.7 6.75 6.8 6.85

Time [sec]

(c) ethO to wlanO zoomed.

TCP sequence number (relative)

2.5e+07

Incoming éeq

2e+07

Handover

1.5e+07

1e+07

5e+06

15 20 30 35

Time [sec]

(b) wlanO to ethO.

25

1.24e+07 T

@]
X

‘Incoming Seq
Outgoing Ack

1.238e+07

1.236e+07

1.234e+07

1.232e+07

TCP sequence number (relative)

1.23e+07

%

1.228e+07

1.226e+07 .

24.9 24.95 25.05

Time [sec]

25

(d) wlanO to ethO zoomed.

Fig. 4. Time vs. TCP sequence number graph.

Figures 4(c) and 4(d) show a zoom-in of a small time
interval around the respective handover events. These plots
clearly indicate that each handover event is associated with
a time delay. We provide a detailed analysis of the handover
delay in Section V-D.

The sequence numbers on the ordinates of these figures
pertain to the host’s TCP control block. The ordinate has been
normalized to the initial sequence number used at session start.
Obviously, the sequence number stream remains contiguous
through the handover events. This shows that MOSAIC’s L3
implementation works properly since it makes mobility events
transparent to the mobile host’s transport layer.

C. Change of Content Server

We verified MOSAIC’s ability to change the content server
during a mobility event. Table III shows the IP addresses of
the video streaming servers used for a TED video playback
before and after five interface handover trials. While both 1P
addresses of each trial were obtained via DNS, the first IP
address was selected by the video client on the Ethernet link
and the second by MOSAIC on the Wi-Fi link. When the DNS

74

TABLE III
DESTINATION IP ADDRESSES AFTER HANDOVER.

[Trial number | Interface | Destination IP address |

1 ethO 67.148.147 .43
wlan0 67.148.147 .43
2 ethO 67.148.147 .43
wlan0 67.148.147 .43
3 ethO 67.148.147 .43
wlan0 67.148.147.129
4 ethO 67.148.147.120
wlan0 67.148.147.129
5 ethO 67.148.147.120
wlan0 67.148.147.120

response returned multiple IP addresses, MOSAIC always
selected the first candidate. The selection criteria applied by
the video client were not known.

In trial 3 and 4, the remote content server was indeed
changed during the handover event. In trial 1, 2, and 5,
however, the content server after handover was the same as
before. This indicates that the subnets are topologically very
close to each other (they may in fact belong to the same

Without MOSAIC —@—
With MOSAIC —-F}--

Average download throughput [MB/s]

3
Number of concurrent downloads

Fig. 5. Average download throughput with and without MOSAIC.

administrative domain). It further shows that the video client
uses the same IP selection criteria as MOSAIC. The content
server changes observed in trial 3 and 4 are most likely due
to a different IP-address prioritization in the DNS response.

The outcome of these trials was positive since the video
sessions properly continued across the mobility events in all
five cases.

D. Performance Impact

We evaluated MOSAIC’s impact on throughput as well as
its handover delay.

Figure 5 compares the average throughput of TED video
downloads with and without MOSAIC as we increase the
number of concurrent downloads. At three concurrent down-
loads, for example, the throughput with MOSAIC is 4%
lower-3.78 MB/s versus 3.94 MB/s. The graph indicates that
MOSAIC’s impact on throughput is negligible despite the fact
that MOSAIC inspects all HTTP packets.

The handover delay is defined as the time between the
handover request by the connection manager and the recep-
tion of the first content packet on the new interface. This
delay applies to multi-homed hosts, where both interfaces are
simultaneously available when handover occurs. It does not
include delay associated with the host’s establishment of L2
connectivity or DHCP handshake to obtain a new IP address.

The total handover delay was analyzed with respect to the
various contributions such as processing delay, DNS query,
TCP handshake, and consecutive HTTP handshake. The pro-
cessing delay is mostly caused by the update of the host’s
routing table.

Figure 6 shows average results for Ethernet-to-Wi-Fi and
Wi-Fi-to-Ethernet handovers. The total delay stays slightly
below 100 ms. This value can be reduced to 60-70 ms if DNS
query and TCP handshake on the new interface are conducted
before the old link is discontinued. Since this would require
replacing the explicit changes to the routing table with source
routing, it may also reduce the processing delay.

75

100

HTTP RTT
TCP handshake =
DNS query 1ossss
Processing delay Bz

80

60

Delay [ms]

40

20

Fig. 6. Handover delay microbenchmark.

In any case, a handover delay less than 100 ms may be ac-
ceptable for most applications. Especially for video streaming,
where we expect MOSAIC to have the largest benefit, such
a delay will be covered by the playback buffer provided by
most video players [26].

VI. DISCUSSION

Our trials demonstrate that MOSAIC provides proper mo-
bility support for actual websites as long as these services
implement the partial GET feature. This applies to the princi-
pal concept of stateless mobility for HTTP-based applications
as well as the application-transparent implementation we con-
ducted. We further verified MOSAIC’s applicability to HTTP
adaptive streaming services, whose traffic volume is expected
to substantially grow over the next years [27].

The trials further indicate that stateless mobility is supported
by all those services, where mobility support may be of
value since content retrieval consumes an extended amount
of time. This applies to services such as file transfer and
video streaming. This finding supports the market readiness
for the deployment of stateless mobility. Since MOSAIC only
requires changes to the mobile host, rollout could occur rather
fast and at little cost. In this context, the demonstration of a
packet-filter-based implementation may come in handy since
it provides easy portability to other platforms.

While these findings cast a positive light on stateless mo-
bility, there are inherent limitations to its principal concept.
Firstly, stateless mobility only applies to stateless applications.
This limitation may not seem too severe since the fraction
of traffic due to stateless applications is on the rise. It may
be worth, however, to also investigate traffic transfers from
the mobile to the cloud, which may gain in importance and
represent the equivalent of a mobile server communicating
with a network-side client.

Secondly, stateless mobility is not applicable to time-
sensitive content since content retrieval started at one time
cannot be continued with a new request at a later time. This,
however, is not a principal limitation since time-sensitive

content can be made time-invariant via HTTP redirections
to time-sensitive URLs. Since the inherent problem of time-
sensitive content also applies to information-centric networks,
we expect this topic to find sufficient resonance within the
research community.

Thirdly, MOSAIC cannot serve HTTPS-secured traffic in an
application-transparent manner. This limitation is due to the
encapsulation of HTTP requests, which makes it impossible
for MOSAIC to retrieve the URL contained in an HTTP
request or to add an additional Range header. To overcome
this limitation, MOSAIC would have to be integrated into the
host’s TLS library.

There are a few issues that remain to be verified through
trials. One of them is MOSAIC’s proper operation in presence
of HTTP redirection discussed above. Another is MOSAIC’s
operation in the presence of HTTP proxies. It would further
be of value to conduct mobility trials in real-world scenarios,
e.g., handovers between licensed and unlicensed spectrum
pertaining to different operators.

VII. CONCLUSION

We introduced the concept of stateless mobility and pre-
sented a prototype implementation. Our implementation is a
generic solution for all HTTP-based applications and can be
easily ported to mobile platforms. The trials we conducted
with this implementation confirm the overall validity of our
proposal across a number of scenarios, and they quantify or
at least bound processing and performance overhead.

REFERENCES

[1] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet Inter-Domain Traffic,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 4, pp. 75-86, 2010.

R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

G. Peng, “CDN: Content Distribution Network,” State University of New
York at Stony Brook, Tech. Rep. TR-125, 2008.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1,” RFC 2616,
June 1999.

Y. Nkansah-Gyekye and J. Agbinya, “Vertical Handoffs in Fourth Gener-
ation Wireless Networks,” Advances in Broadband Communication and
Networks, pp. 277-308, 2008.

[2]

[3]
[4]

[3]

76

[6]

[7]
[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]

[27]

G. Naik, “LTE WLAN Interworking for Wi-Fi Hotspots,” in Proceedings
of the Second International Conference on Communication Systems and
Networks (COMSNETS), January 2010.

C. Perkins, “Mobile IP,” IEEE Communications Magazine, vol.35,n0. 5,
pp. 84-99, 1997.

J.Pan, Y. Hou, and B. Li, “An Overview of DNS-based Server Selections
in Content Distribution Networks,” Computer Networks, vol. 43, no. 6,
pp. 695-711, 2003.

L. Wang, V. Pai, and L. Peterson, “The Effectiveness of Request
Redirection on CDN Robustness,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 345-360, 2002.

V. Adhikari, S. Jain, Y. Chen, and Z. Zhang, “Reverse Engineering the
YouTube Video Delivery Cloud,” in Proceedings of IEEE Hot Topics in
Multimedia Delivery (HotMD), July 2011.

Z.Zhu, R. Wakikawa, and L. Zhang, “A Survey of Mobility Support in
the Internet,” RFC 6301, July 2011.

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” RFC 6182, March 2011.
S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil,

“Proxy Mobile IPv6,” RFC 5213, Auguest 2008.
R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Architec-

ture,” RFC 4423, May 2006.

A. Snoeren and H. Balakrishnan, “An End-to-End Approach to Host
Mobility,” in Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking (MobiCom), August 2000.

V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking Named Content,” in Proceedings of the 5th
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), December 2009.

T. Stockhammer, “Dynamic Adaptive Streaming over HTTP—Standards
and Design Principles,” in Proceedings of the 2nd Annual ACM Confer-
ence on Multimedia Systems (MMSys), February 2011.

C. Bernardos, “Proxy Mobile IPv6 Extensions to Support Flow Mobil-
ity,” Internet Draft, draft-ietf-netext-pmipv6-flowmob-02, October 2011.
“The Netfilter project,” http://www.netfilter.org/.

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink as
an IP Services Protocol,” RFC 3549, July 2003.

“Real-Time Messaging Protocol (RTMP) specification,” http:/www.
adobe.com/devnet/rtmp.html.

“Adobe HTTP Dynamic Streaming,” http://www.adobe.com/products/
hds-dynamic-streaming.html.
“Microsoft Smooth Streaming,”
SmoothStreaming.

“Apple HTTP Live Streaming,” https://developer.apple.com/resources/
http-streaming/.

“Netflix,” http://www.netflix.com/.

K. Ma, R. Bartos, and S. Bhatia, “A Survey of Schemes for Internet-
Based Video Delivery,” Journal of Network and Computer Applications,
vol. 34, no. 5, pp. 1572-1586, 2011.

Cisco Systems, “Cisco Visual Networking Index: Forecast and Method-
ology, 2010-2015,” June 2011.

http://www.iis.net/download/

