
Signature Matching: A Key to Reuse

Amy Moormann Zaremski and Jeannette M. Wing

(amyOcs.cmu.edu and wing@ cs.cmu.edu’)

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213

Abstract

Software reuse is only effective if it is easier to locate (and

appropriately modify) a reusable component than to write

it from scratch. We present stgmatum rrzatchtng as a method

for achieving this goal by using signature information eas-

ily derived from the component. We consider two kinds of

software components, functions and modules, and hence two

kinds of matching, function matching and module matching.

The signature of a function is simply its type; the signature

of a module is a multiset of user-defined types and a multi-

set of function signatures. For both functions and modules,

we consider not just emzct match, but also various flavors of

relaxed match. We briefly describe an experimental facility

written in Standard ML for performing signature matching

over a library of ML functions.

1 What is Signature Matching?

Software reuse sounds like a good idea. It promises advan-

tages like reducing the time and cost spent on program-

ming, increasing programmers’ productivity y, and increasing

program reliability [BP89, AM87, IEE84, Pre87]. But why

doesn’t it work in practice? One reason is that it is hard to

find things. As libraries of software components get larger,

this problem will get worse. Reuse is only worth it if it is

easier to locate (and appropriately modify) a reusable com-

ponent than to write it from scratch.

Today, if we want to find some desired component, we

could use the component’s name—if we are lucky enough

to know, remember, or guess it. We could browse through

the library itself, or perhaps an index into the library (for

examde. as with a Smalltalk browser]. Given that the.,
components over which we are searching are program units

(e.g., Pascal procedures, C functions, Ada packages, C++

or Smalltalk classes, or Modula-3 or ML modules), then we

have another means for retrieval: stgnatzm matchtng. This

paper presents the foundations for what signature matching

means and briefly describes a signature matching facility we

have built and integrated into our local ML programming

environment.

To illustrate our ideas here and for the rest of this paper,

consider the small library of components in Figure 1. It

Permission to copy without fee all or part of this material IS

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Assoclatlon for Computing

Machinery. To copy otherwise, or to republlsh, requires a fee

and/or specific permission.

SIGSOFT ‘93/121931CA, USA

@ 1993 ACM 0-89791 -625 -5/93 /0012 . ..$ 1.50

contains three ML signature modules, LIST, QUEUE, and

SET, which together define seventeen functions, e.g., empty

and cons.l

signature LIST =

sig

val empty : unit ~ a list

val cons : (a, a list) a a list

val hd : a list ~ a

val tl : a list _ a list

val map : (a ~ ,!3) ~ a list + ~ list

val intsort : (int, int -i bool) -i int list

— int list

end;

signature QUEUE =

sig

type a T

val create : unit — a T

valenq:(a, aT)~a T

valdeq:a T~(a, aT)

val len : a T ~ int

end;

signature SET =

sig

type a T

val create : unit ~ a T

val insert : (a T, a) ~ a T

val delete : (a T, w) ~ a T

val member : (a, a T) - bool

val union : (a T,a T)-a T

val intersection : (a T, a T) ~ a T

val difference : (a T, a T) e a T

end,

Figure 1: Three ML (Signature) Modules

If we are looking for a specific function, rather than

perform a query based on its name, we could perform a

query baaed on the function’s type, which is the list of types

of its input and output parameters (and possibly informa-

tion about what exceptions may be signaled). For example,

a list = a is the type of the function hd, which takes a list of

1ML stgnatur’e modules are akm to Ada defimtzon modules and
Modula-3 tnterface modules, ML Implementations are written m

modules called structures [MTH90]

182

objects of some type, a, and returns an object of that type.

If we are looklng for a module, we could perform a query

based on its inter~ace, which is a multiset of user-defined

types and a multiset of function types. For example, SET

has one user-defined type, a T, and seven function types.

In practice, a library of software components is usually a
set of program modules; we can construct a function library
from a module library by extracting all functions from each

module in the obvious way.
Stgnatum matching is the process of determining when a

library component “matches” a query. We can reasonably

assume that signature information is either provided with

or derivable from code components, since this information

is typically required by the compiler. As with other infor-

mation retrieval methods, requiring a component to match

a query exactly will sometimes be too strong. There may

be a component that does not match exactly, but is similar

in some way and hence would match a query if the compo-

nent (or query) is slightly modified. Thus, in addition to

exact match, we also consider cases of relaxed matches be-

tween a query and a library component. The expectation is

that relaxed matching returns components that are “close

enough” to be useful to the software developer. For exam-

ple, relaxed matching on functions might allow reordering of

a library function’s input parameters; relaxed matching on

modules might require only a subset of the library module’s

functions.

We define signature matching in its most general form

as follows:

Definition. Signature Match: Query Signature, Match Pred-

icate, Component Library + Set of Components

Szgnatum Match(q, M, C) = {c ~ C’ : M(c, q)}

In other words, given a query, q, a match predicate, M, and

a library of components, C, signature matching returns a set

of components, each of which satisfies the match predicate.

This paper explores the design space of signature matching:

we consider two kinds of library components, functions and

modules, and hence consider two kinds of signature match,

function (type) match and module (interface) match. We are

interested in both levels of signature match because in prac-

tice we expect users to retrieve at different levels of granu-

larity y. We also consider different kinds of match predicates:

exact match and various relaxed matches (for both function

and module match).

In a broader context, signature matching can be viewed

as another instance of using domain-specific information to

aid in the search process. Knowing that we are searching

program modules as opposed to uninterpreted Unix files

or SQL database records lets us exploit the structure and

meaning of these components. Using domain-specific in-

formation is an idea applicable to other large information

databases, e.g., the nationwide Library of Congress, law

briefs, police records, geological maps, and may prove to

be key in grappling with the problem of scale.

By not requiring users to know the name (or unique iden-

tifier) of what they are searching for, we can also view signa-

ture matching as an example of content-addressable search.

For example, users formulate queries in terms of key-value

~airs to retrieve records from a relational database. Hence,

filter out the bulk of library components from further con-

sideration. They can also use signature matchers to browse

a software library in a structured way, e.g., by exploiting

the partial ordering induced by function types. We view

signature matching as complementing standard search and

browsing facilities, e.g., grep and 1s, which provide a prim-

itive means of accomplishing the same goals. A tool that

does signature matching is just one of many in a software

developer’s environment. Using a signature matcher should

be just as easy to use as doing a search on a string pattern.

We define module match in terms of function match. So

we begin at the lowest level of granularity in Section 2 by

defining exact match and several relaxed matches for func-

tions. Section 3 defines module match and its relaxations. In

Section 4 we describe our signature matching facility which

we have used in searching over a collection of Standard ML

modules. We compare our work with other approaches in

Section 5 and close with a summary and suggestions for fu-

ture work in Section 6

2 Function Matching

Function matching based on just signature information boils

down to type matching, in particular matching function
types. The following definition of types is based on Field and

Harrison[FH88]. A t~pe is either a type variable (C Type V.r,

denoted by Greek letters) or a type operator applied to other

types. Type operators (TgpeOp) are either built-in opera-

tors (BdtInQ) or user-defined operators (fJserOp). Each

type operator has an aritg indicating the number of type ar-
guments. Base types are operators of O-arity, e.g., znt, boo~

the “arrow” constructor for function types is binary, e.g.,

znt-+ booi. We use infix notation for tuple construction (,)

and functions (~), and otherwise use postfix notation for

type operators (e.g., d list stands for the “list of integers”

type). The user-defined type, a T, represents a type opera-

tor T with arit y 1, where the type of the argument to T is

a.2 In general, when we refer to type operators, they can

be either built-in or user-defined (i.e., Buz’ltIn Op U Userop).

Two types ~ and r’ are equal (r = r’) if either they are

the same type variable, or ~ = tgpe Op(rl, Tn), r’ =

type Op’(7_<,r~). typeOp = typeOp’, and V 1< z < n, r, =

r;. Polymorphic types contain at least one type variable;

types that do not contain any type variables are monomor-

phic.

To allow substitution of other types for type variables,

we introduce notation for variable substztutzom [r’/a]r rep-

resents the type that results from replacing all occurrences

of the type variable a in r with r’, provided no variables in

occur in r (read as “r’ replaces a in r“). For example:

[(int ~ int)/~](a + ~) = a + (int ~ int)

A sequence of substitutions is right associative:

[P/71[~/Pl(P+ -f) = [P/71(~ + 7) = (~ + P)

In the case where # is just a variable, [#/a]T is simply

var~able renaming. For variable renaming, a, T’ E Type Var

or a, r’ E UserOp. We think of user-defined type opera-

tor names as variables for the purposes of renaming, since

different users may use a different name for the same type

~he intended pun in our title: signature matching is a “key”

to software reuse. 2we deviate from ML’s convention of using * for tuple construc-

Signature matching is useful not only to retrieve compo- tion, the comma IS easier on the eyes. Also, m ML, the common

nents. Software developers might use a signature matcher to
programming practice IS to use T for the operator name of the user-
defined type of interest

183

operator. Renaming sequences may include both type vari-

able renaming and user-defined type operator renaming:

[P’/~l[c/Tl(~ T + a) = (P’c --+P)

We will use V for a sequence of variable renamings and U for

a sequence of more general substitutions. We distinguish be-

tween variable renaming and variable substitution since we

allow variable renaming in exact match and variable substi-

tution in some relaxed matches.

Given the type of a function from a component library,

n, and the type of a query, ~~, we define a genertc form of

~unction match, Jf(n, r~), as follows:

Definition. (Generac Function Match)
M: Library Type, Query Type -+ Boolean

M(ri, rq) = 7’t(n) R Tg(rcr)

where Tl and Tq are transformations (e. g., reordering) and

R is some relationship between types (e.g., equaht y). Most

of the matches we define apply transformations to only one

of the types. Where possible, we apply the transformation

to the library type, T1, in which case Tg is simply the identity

function. For example, in exact match, two types match if

they are equal modulo variable renaming. In this case, Ti is

a sequence of variable renamings, Tg is theidentity function,

and R is the type equality (=) relation.

We classify relaxed function matches as either partial

matches, which vary R, the relationship between n and

rq (e. g., define R to be a partial order), or transformation

matches, which vary T“ or Tq, the transformations on types.

In the following subsections, we first define exact match,

followed by partial matches, transformation matches, and

combined matches. Each of these match predicates can be

used to instantiate the M of Signatzm Match, the general

signature match function defined in Section 1.

2.1 Exact Match

Definition: (Ezact Match)

frzcdch~(rl, rq) =

3 a sequence of variable renamings, V, such that

Vrl=rq

Two function types match exactly if they match modulo

variable renaming. Recall that variable renaming may re-

name either type variables or user-defined type operators.

For monomorphic types with no user-defined types, there

are no variables, so rnatch~(n, rg) == (n = r~) where n

and rq are monomorphic. We only need a sequence of re-

namings for one of the type expressions, since for any two

renamings, VI and IL such that VI n = VZ7-2, we could con-
struct a V’ such that V’TI = T2. (Note we could consider

rnatch~ as a form of transformation match since it allows

variable renaming.)

For polymorphic types, actual variable names do not

matter, provided there is a way to rename variables so that

the two types are identical. For example, ~1 = (a, a) + bool

matches Tq = (/3, ~) + bool with the substitution V = [B/a].

But n = a ~ ,0 and rq = y A ~ do not match because once

we substitute y for a to get -y -+ ~, we cannot substitute y

for /3, since y already occurs in the type. This is the “right

thing” because the difference between r~ and r~ is more than

just variable names; Tg takes a value of some type y and re-

turns a value of the same type, whereas rl takes a value of

some type and returns a value of a potentially diflererzt type.

To see how exact match might be useful in practice, con-

sider two examples where the library is the set of all func-

tions in Figure 1. Suppose a user wants to locate a function

that applies an input function to each element of a list, form-

ing a new list. The query r~ = (a + y) - a list+ y list
matches the map function (with the renaming [y/P]), exactly

what the user wants. As a second example, suppose a user

wants to locate a function to add an element to a collec-

tion with the query r~ = (Q, a C) + a C. This query

retrieves the enq function on queues (with the renaming

[C/T]), which may be what the user wants, but not the

insert function on sets, another likely candidate.

2.2 Partial Relaxations

As we have just seen, exact match is a useful starting point,

but may miss useful functions whose types are close but do

not exactly match the query. Exact match requires a querier

to be either familiar with a library, or lucky in choosing the

exact syntactic format of a type.

Often a user with a specific query type, e.g., int ltst -+

int lzst, could just as easily use an instantiation of a more

general function, e.g., a list + a list. Or, the user may

have difficulty determining the most general type of the de-

sired function but can give an example of what is desired.

Allowing more general types to match a query type accom-

modates these kinds of situations. Conversely, we can also

imagine cases where a querier asks for a general type that

does not match anything in the library exactly. There may

be a useful function in the library whose type is more spe-

cific, but the code could be easily generalized to be useful

to the querier. We define generakd and specialazd match

to address both of these cases.

Referring back to our definition of generic function match,

for exact match, the relation, R, between types is equality.

For partial matches we relax this relation to be a partial

order on types. We use variable substitution to define the

partial ordering, based on the “generality” of the types. For

example, a + a is a generalization of infinitely many types,

including znt+ int and (int, ~) - (znt, /3), using the vari-

able substitutions [int/a] and [(int, ,6)/a], respectively.

r is more general thanr’(r> T’)if the type r’ is the re-

sult of a (possibly empty) sequence of variable substitutions

applied to type r. Equivalently, we say r-’ is an instance of

r (r’ < r). We would typically expect functions in a library

to have as general a type as possible.

Definition: (Generahzed Match)

A library type matches a query type if the library type

is more general than the query type. Exact match, with

variable renaming, is really just a special case of gener-

alized match where all the substitutions are variables, so

rnatchE(T~, Tq) + matchg,~(n, 79).

For example, suppose a user needs a function to convert a

list of integers to a list of boolean values, where each boolean

corresponds to whether or not the corresponding integer is

positive. The user might write a query like

Tq = (int + bool) + tnt list -+ bd ~ast

This query does not match exactly with any function in our

library. But a generalized match would return map for this

184

Unczmy(r) =

{

tmcw?y”(r) =
{

(r,,..!, m-l) --+ ~n ifr=rl~...~rl~l~ rn, n>2

T otherwise

(uncw-r-y*(rl), unczm-y*(rn_l)) + uncurrrJ*(7-n) if r- = 71 ~ . . . -+ Tn-, ~ rn,’n >2

typeOp(uncurry*(~l), unc~rry~~n)) if T = type Op(rl, . . ,Tn)

r-

Figure 2: Definitions

query, since map’s type is more general than the query type.

This kind of match is especially desirable, since the user

does not need to make any changes to use the more general

function.

Definition: (Speczalizcd Match)

rnatchs~ec(rl, Tq) = T! < ~q

Specialized match is the converse of generalized match. In

fact, we could alternatively define match.P,c in terms of

matchgen by swapping the order of the types:

matchSPec(ri, Tq) = matchgen(rqj 71)

It also follows that exact match is a special case of special-

ized match:

match~(rl, Tq) + matChspec(T2, rq)

As an example of how specialized match can be useful,

suppose the querier needs a general function to sort lists and

uses the query rq = ((a, a) ~ bool) ~ a list+ a kd. Our

library does not contain such a function, but specialized
match would return intsort, an integer sorting function

with the type v = ((int, int) - bool) + id list + int list.

Assuming intsort is written reasonably well, it should be

easy for the querier to modify it to sort arbitrary objects

since the comparison function is passed as a parameter.

Note that although we present generalized and special-

ized match in terms of changing the relation (R) between n

and ~q, we could also define them as transformation matches,

since the definition of the < relation on types is in terms of

variable substitution.

Definition (alternate): (Generalized, Specicdlzed Match)

rnatchgen(q, Tg) =

3 a sequence of variable substitutions, U, such that

rnatchE(u n, rq)

mdch~p~c(rl, Tq) =

3 a sequence of variable substitutions, U, such that

rnatch~(rl, U rq)

We can even define matchge~(q, Tq) as UTL = r-q; the use of

matchE is redundant since generalized match requires a se-

quence of substitutions that includes any necessary variable

renaming. We will appeal to the above matchE definition

when we define the composition of different kinds of relaxed

matches (Section 2.4).

Finally, using these alternate definitions of generalized

and specialized match, we can define type unification [FH88]

by combining these two relaxed matches and allowing the

renaming to occur on either type.

where r is a variable or a base type

of uncurry and uncurry*

Definition: (Unify Match)

match untfdrl> r,)=

3 a sequence of variable substitutions, U, such that

match~(U rt, U rq)

In practice, we do not expect unify match to be of as much

use as either generalized or specialized match, since the re-

lation between types r~ and ~1 is more complicated with

unification. However, it is important to relate type unifica-

tion and type matching, i.e., the former is definable in terms

of the latter.

2.3 Transformation Relaxations

Other kinds of relaxed match on functions transform the or-

der or form of parts of a type expression to achieve a match.

Examples include changing whether a function is curried or

uncurried, changing the order of types in a tuple, and chang-

ing the order of arguments to a function (for functions that

take more than one argument). These last two are the same

since we can view multiple arguments to a function as a

tuple.

For example, the query r~ = a ~ a list -+ a list would

miss the cons function because ~q is curried while cons is

not, and Tq = (a list, cr) + a list would miss cons because

the types in the tuple are in a different order.

2.3.1 Uncurrying Functions

A function that takes multiple arguments may be either cur-

ried or uncurried. The uncurried version of a function has

a type (T1, ~~_l) ~ Tn, while the corresponding curried

version has a type rl - . . ~ r~-l ~ ~~. In many cases, it

will not matter to the querier whether or not a function is

curried. We define uncuryy match by applying the uncurry

transformation to both query and library types. We choose

to uncurry rather than curry each type so that we can later

compose this relaxed match with one that reorders the types

in a tuple.

The uncurry transformation, which produces an uncur-

ried version of a given type, is defined in Figure 2. The

uncurry transformation is non-recursive; any nested func-

tions will not be uncurried. Figure 2 also defines a recursive

version, uncurrg*. For example:

If

r = int ~ int ~ (int ~ int * bool) ~ boo!

then

uncurry(r) = (znt, int, (znt + tnt + /Iool)) -+ bool

and

tmcw-r-y”(r) = (int, int, ((int, id) + bool)) + bool

We could also define a form of uncurry where the level of

uncurrying is defined by the user: rmczmryn(r) will uncurry

n levels of curried functions.

185

Definition: (Uncumy Match, Recurswe Urzcurry Match)

‘atchuncuyv(rl, T,)=

rnatchE(uncurry (rt), Urzcur-r-y(rq))

matckt~~~rv” (Tt) T,) =

matchE(uncurry* (r~), UnCZWrrJ*(rq))

Uncurry match takes two uncurried function types and de-

termines whether their corresponding argument types match.

Recur-siue uncur-ry match is similar but allows recursive un-

currying of rl’s and r~’s functional arguments. By applying

the uncurry (or uncurrg *) transformation to both TL and

~q) we are transforming the types into a canonical form,
and then checking that the resulting types are equal (mod-

U1O variable renaming). For example, suppose a user needs

a function to add an element to a collection. The query

~~ = ~ ~ m T ~ a T does not match exactly with any
functions in our library, but uncurry match would return

the function enq on a queue.

Since the uncurrg transformation is applied to both the

query and library types, it is not necessary to define an

additional curry match. Such a match would be similar in

structure, relying on a curry transformation to produce a

(();curried version of a given type; that is, raatch~ti,,v rt, r~ —

match E(currzJrl), Curry). Note that match~~~~u n, rq

()if and only if match~~~~~~v n, Tq

2.3.2 Reordering Tuples

One common use of tuples is to group multiple arguments

to a function where the order of the arguments does not

matter. For example, a function to test membership in a list

could have type (a, a lwt) - bool or type (a list, CY) ~ bool.

Reorder match allows matching on types that differ only in

their order of arguments.

We define reorder match in terms of permutations. Given

a function type whose first argument is a tuple (e.g., r =

(rl, rn-~) - m), a permutation u is a one-to-one map-

ping with domain and range I n – I such that a(r) =

(~a(l)l ,Tc(n-,)) + l-n.

Definition: (Reorder Match)

match re.rckr(nl ~q) =

3 a permutation a such that raatchE(a(rt), Tq)

Under this relaxation, a library type, ~1, matches a query

type, r~, if the argument types of T1 can be reordered so

that the types match exactly. For this match to succeed,

both T1 and r-q must be function types whose first argu-

ments are tuples. Although we choose to apply the permu-

tation transformation, a, to the library type rl, we could

equivalently apply the inverse, a–l, to the query type Tq:

rnatchE(a(rL), Tq) = matchE(~L, a–l(Tq)).

Suppose we again are looking for a function that adds an

element to a collection. To find it, we might pose the query,

~g = (o’, CYT) ~ a T. With exact match we would find the
enq function on queues, but with reorder match we would

additionally find the insert and delete functions on sets.

The functions enq and insert are both potentially useful.

Two variations on reorder match are (1) to allow recur-

sive permutations so that a tuple’s component types may be

reordered (match~eOr~e~* and matchreor~er-~); and (2) to al-
low reordering of arguments to user-defined type operators,

e.g., so that (int, a) T -i int and (a, tnt) T -+ znt would

match.

2.4 Combining Relaxations

Each relaxed match is individually a useful match to apply

when searching for a function of a given type. Combinations

of these separately defined relaxed matches widen the set

of library types retrieved. For example, in searching for a

function to add to a collection, uncurry match on the query

a + a T + a T retrieves enq but misses insert. To retrieve

both functions with this query, we need a way to combine

the different relaxed matches.

We deliberately gave our definitions in a form so that

we can easily compose them. Each of the relaxed match

definitions presented in Sections 2.2 and 2.3 (using the al-

ternate definition of matchgen and match~P~C) can be cast in
the general form:

3 a trans~or-rnation pair-, T = (~, T,), such that

match~(T~(~~),Tq(~9)).

A transformation pair, T, is a tuple (TL, Tq) of transforma-

tions. T~ is a transformation on the library type, and Tq
IS a transformation on the query type. For rnatch~~.ti,,~,

the “3” is not necessary, since there is only one possible un-

curry transformation. For matchg,~ and match ~~~~d.~, T~
.

is the ldentlty function, and m match SPt.C, T is the identity

function.

The match composition of two relaxed matches, denoted

as (match~l o matchTz), is defined by applying the inner
(T~) transformation first:

Definition: (Match Composition).

(matchTl o matchT2)(rz, r,) =

3 transformation pairs T], T2

such that matchE(Tll(T2t (rl)), Tlg(T2q(rq)))

Thus we can compose any number of relaxed matches

in any order. The order in which they are composed

does make a difference; transformations are not gener-

ally commutative. For simplicity, we omit the recur-

sive versions of match~~~ti~,g. and match~~d~r~, although
the analysis below could be easily extended to include

them. Since matchs p.. and matchti~,f~ can be defined in
terms of matchg.~,3 we also exclude them in our analysis.

Thus, there are three “basic” relaxed matches: matchgen,

match u~c~,,g, and matchreovder. We now consider some of

the interesting combinations of these relaxed matches, those

we expect queriers to find useful. The relations between the

various combinations of relaxed matches lead to a natural

partial ordering relation on combined matches, based on the

set of function types that a match defines (namely, the set

of types that match a given query type).

With this composition, two types match if they are

equivalent modulo whether or not they are curried or

whether or not the arguments are in the same order.

We uncurry the types first, thereby allowing a reorder-

ing on any tuples formed by uncurrying. Using this

composition, the query type T* = a ~ a T + a T
would match enq (71 = (a, a T) + a T) on queues

and insert and delete (~1 = (a T, a) + a T) on sets.

3 mat.h.Pe.(r,, T,) = matchq.~(rq, T,)

match -~,j~(n, T~) = (matchg.fi o match, p..)(n, Tq)
= (match.,.. o match,. fi)(n, T,)

186

●

b

●

T1 and r~ match if the uncurried form of r~ is more

general than the uncurried form of Tq.

(rnatchgen o rrsatds,.order)(n, T,) :

~[and rq match if some permutation of rl is more gen-

eral than ~q.

(matcha,n o match, e.rder 0 mUtChUnCU~TU)(n, 70) :

rf and r~ match if some permutation of the uncurried

form of T[is more general than the uncurried form of

r~. Using this combined match with the order of n and

~q reversed (i.e.) using matchwec instead of matchgen) ~
with the query r~ = (a list, (a, ~ + bool)) + ~ list

matches the intsort function in our library (n =

(WSt, int + /)001) + intk$t -+’ MM).

Matchqcn does not commute with either match~~cti,,~

or match, eorder because in either case, the variable

substitution from generalizing could introduce a type

that could then be transformed by uncurrying or re-

ordering, but would not be transformed if the vari-

able substitution is done last. For example, suppose

~y = (~001, int) + (d, booi) and rl = a + a.
Then (matchg.~ o ~atChreorder)(Tl, T,) k false, but

(7TSatchr.md.r o match,~~)(n, rq) is true with the sub-

stitution [(int, bool)/a] and a permutation that swaps

the order of a 2-element tuple. In the second case, we

can apply the reordering after we have substituted into

type expressions that contain a tuple.

3 Module Matching

Function matching addresses the problem of locating a par-

ticular function in a component library. However, a pro-

grammer often needs a collection of functions, e.g,. one that

provides a set of operations on an abstract data type. Most

modern programming language explicitly support the def-

inition of abstract data types through a separate modules

facility, e.g., CLU clusters, Ada packages, or C++ classes.

Modules are also often used just to group a set of related

functions, like 1/0 routines. This section addresses the prob-

lem of locating modules in a component library.

Recall that whereas the signature of a function is simply

its type, r, the signature of a module is an interface, Z. A

module’s interface is a pair, (ZT, ZF), where &- is a mul-

tiset of user-defined types and ZF is a multiset of function

types.4 For a library interface, TL = (~L~, ~LF), to match

a query interface, ~Q = (~QT, ~QF), there must be corre-

spondences both between ZLT and ZQT and between ZLF

and 2QF. These correspondences vary for exact and relaxed

module mat ch.

3.1 Exact Match

Definition: (Exact Module Match)

M-matchE(~L, ~Q) =

3 a mapping UF : ZQF -+ ZLF such that

UF is one-to-one and onto, and

V rq E ZQF, match~(up(rq), Tq)

Up maps each query function type rq to a corresponding

library function type, UF (rq). Since UF is one-to-one and

onto, the number of functions in the two interfaces must be

the same (i.e., IZLF I = l~QF 1). The correspondence between

each rg and UF (?g) is that they satisfy the exact function

match, match~, defined in Section 2,1. That is, the types

mat ch modulo renaming of type variables and user-defined

type operators.

We could additionally require a mapping between user-

defined types, but for the most part, matching function type

matches suffices, since for r~ and UF(rq) to match, any user-

defined types must match. So any user-defined type that

appears in the domain or range of a function type in one
interface must match a user-defined type in the other inter-
face. Not having a separate mapping precludes matching
where one user-defined type in ~Q~ matches more than one

user-defined type in ZLT (or vice versa). This case is not

likely to occur in practice since programmers typically de-

fine only one user-defined type per module,

ZQT = {Cl C}
lQF = { nnit -+ a C’,

(a, crc)+ac,

crc+(ff, ff c),

ac+int}

Figure 3: A module query

Figure 3 is an example query that describes a module

containing the definition of an abstract container type and

a set of basic functions on the container. This matches the

interface for the QUEUE module in Figure 1 with the the ob-

ViOUS Mapping fI’OXU fUnCtiOn tyPeS in ~QF tO function types

in QUEUE. Each of the exact function matches renames the

user-defined type operator T to C.

Exact module match is rather restrictive. We define two

forms of relaxed module match by (1) modifying the map-

ping UF in the above definition and (2) replacing the defi-

nition of function match, matchE.

3.2 Partial Match

Should a querier really have to specify all the functions pro-

vided in a module in order to find the module? A more

reasonable alternative is to allow the querier to specify a

subset of the functions (namely, only those that are of inter-

est) and match a module that is more general in the sense

that it may contain functions in addition to those specified

in the query.

Definition: (Genercdmxi Module Match)

M-match ,.n(~L, ~Q) is the same as M-match~(ZL, IQ)

except UF need not be onto.

Thus whereas with M-matchE (ZL, ZQ), IZLF [= IZQF 1, with

&f-matchgen(ZL, ZQ),]ZLFI > l~QFl, and ~LF 2 ~QF under

the appropriate renamings. A query like that in Figure 3 but

without the function type a C ~ id would match QUEUE

under the generalized module match definition.

4 For useful feedback to the user, we would need to associate names

with the funct]on types, but this is not necessary m the defimtlon

187

Definition: (Specialized Module Match)

With specialized module match, a library need not have all

the functions defined in the query. As with specialized and

generalized match for functions, specialized module match

is the converse of generalized module match.

3.3 Relax* Match (Using Relaxed Function Matches)

In the definition of exact module match we used the exact

match predicate, matchE, to determine whether a function

in the query interface matches one in the library interface.

An obvious relaxation is to use a relaxed match on functions

instead of exact match.

Definition: (Relax* Match)

kf-match,.l... (~L, IQ, MF) =

3 a mapping UF : ZQF -+ ZLF such that

UF is one-to-one and onto, and

V r~ E zQF, ktF(uF(~q), ~g)

The only difference between relax* match and exact mod-

ule match is that reIax* match uses its parameter, MF,

to match functions, instead of fixing function match to be

exact, matchE. Thus, exact module match is trivially de-

fined in terms of the above definition: M-matchE (TL, ~Q) =

M-matchrelaz. (TL, ZQ, matchE). The match parameter

(M~) gives us a great deal of flexibility y, allowing any of the

function matches defined in Section 2 to be used in matching

the individual function types in a module interface.

What this definition makes clear in a concise and precise

manner is the orthogonality between function match and

module match.

3.4 Composition of Module Matches

As with function matches, we can compose module matches.

Since specialized module match can be defined in terms of

generalized module match, we need only consider the com-

position of generalized module match and relax* match. The

order of the composition does not matter, since generalized

match affects the mapping UF while relax* match changes

only the function match used.

Definition: (Generalized Relax’ Match)

M-matchg,~_,elaz. (ZL,ZQ, MP) is the same as

M-matchTclaz* (ZL, ZQ, MF) except UF need not

be onto.

We present this as a separate definition because we expect

this combined relaxed match to be the most common use of

module match in practice.

Figure 4 shows another example of a module query. This

query contains only two function types. Under generalized

module match, this query would match only the QUEUE

module (with UF mapping the query functions to create

and enq). Under generalized relax* match, using function

reorder match, the query matches not only QUEUE but also

the SET module (with UF mapping the query functions to

crest e and insert (or delete), and reordering the input

arguments to insert).

ZQT = {a C}

TQF = { unit * a c,

(o!, ac) --+ a c}

Figure 4: Another module query

4 An Experimental Signature Matching Facility

We have integrated a signature matching facility into our

local Standard ML (SML) programming environment. Our

current implementation, itself written in SML, supports a

subset of the function matches defined in this paper. The

algorithms for generalized and specialized match are mod-

ificat ions of Robinson’s unification algorithm, as presented

by Milner [Mi178]. The algorithms for the other matches are

straightforward, but in some cases naive.

We used our facility to perform queries over a library of

SML code consisting of 41 modules containing 245 functions.

The majority of queries tested take less than .016 seconds

(16 milhseconds) to complete. Figure 5 shows some actual

output from an SML command-line-based version of the im-

plementation. Type notation is from SML: * is the tuple

constructor, -> is the function constructor, ~a, ‘b denote

type variables (‘ ‘ a is notation for equality types, and ‘ la

notation for reference types; we do not distinguish equality

or reference types in the current implementation). Using

exact match, the query, (‘ a * ‘ a T) –> >a T, returns two

matches: adjoin from a Set implementation, and cons from

a lazy stream implementation. Using uncurry match on the

same query yields an additional match: the enq function on

a sortable queue. The third query, ‘ a list -> ‘b list –>

(‘ a * ‘b) list, is drawn from a real use of our system by a

coworker. He needed a function to take two lists and create

a list of pairs of elements from those lists. The zip function

that was found by this query did exactly what he wanted;

moreover, he was able to use zip’s code in his program with-

out any modification. The final query, Ja list -> ~a, with

specialized match, returns two functions. The first is the hd

function, which removes an element from a list, The second

function is lmplodePath, which takes a list of strings that

represent a file path name (e. g., [“usr”, “amy”, “tex’’]), and

returns a string of the entire path name (“usr/amy/tex”).

We were slightly surprised by the match with implodePath,

exposing our hidden assumption that the functions matched

by this query would return an element of the list (as hd does)

rather than performing an operation to combine all elements

of the list (as implodePath does).

Our user interface is simplistic: just gnu-emacs [Sta86]

and a mouse. The user pre-loads a specified component

library. The emacs command is similar to that for string

searches. The result of a query is a list of functions whose

types each matches the query, along with the pathname for

the file that contains the function. Clicking the mouse on a

function in the list causes the file in which the function is

defined to appear in another buffer, with the cursor located

at the beginning of the function definition. We chose to

use emacs for our interface rather than a flashier graphical

user interface in order to give programmers easy access to

signature matching from their normal software development

environment. Thus we achieve the goal of having signature

matching as easily available for use as string searching.

188

5 Related Work

>> Query = (’a * ‘a T) ‘> ‘a T, matcher = exact
adjoin :((”a * ‘~a T)-> ~~aT) [11 test/Set .sml]

cons :((’la * ‘la T) -> ‘la T) [16 test/lstream. sml]

[CPU Time: 0.015625 sees. , Elapsed Time: O sees.] (Objects Found: 2)
>> Query = (’a * ‘a T) -> ‘a T, matcher = uncurry
adjoin :((”a * ‘)a T)-> ~~a T) [11 test/Set .smll
enq :oa -> (,a T ->)aT)) [15 test/SortableQueue .sml]
cons :((>la * ‘la T) -> ‘la T) [16 testhtream.smll

[CPU Time: 0.0 sees. , Elapsed Time: O sees.1 (Objects Found: 3)
>> Query = ~a list _> }b list -> (~a * ~b) list, matcher = exact

ziD :(>a list -> (>b list -> (>a * ‘b) list)) [11 test/List Fns. sml]
[C;U Time: 0.015625 sees. , Elapsed Time: O secs~] (Objects Found:

>> Query = ‘a list -> ‘a, matcher = specialize
hd :(’s list -> ‘a) [17 test/List .sml]

[[substitute ‘a/l for ~a/-l]]
implodePath : (string list ‘> string) [102 test/Pathnsme .sml]
[[Substitute string for ~a/-l]]

[CPU Time: O .0i5625 sees. , Elapsed Time: O sees.1 (Objects Found:

Figure 5: Sample Output from Function Matching

Closely related work on signature matching has been done

by Rlttri, Runciman and Toyn, and Rollins and Wing. We

review and compare our work with theirs below.

Mikael Rittri defines the equivalent of matchreo,der. o

rnatchtincu,,~. by identifying types that are isomorphic in

a Cartesian closed category [Rit89]. He has also devel-

oped an algorithm to check for more general typee mod-

U1O this isomorphism, the equivalent of our matchreorder. o
matchtin.u,,g. o rnatchg.n [Rit92]. He has implemented both

matches.

Runciman and Toyn assume that queries are constructed

by example or by inference from context of use [RT89]. They

use queries to generate a set of keys, performing various

operations on the set to permit more efficient search. The

match they ultimately perform is similar to our unify match.

Rollins and Wing also implemented a system in Lambda-

prolog that includes the equivalent of mat&,eo,d.r* o

7WtChWKUWv* [RW91]. They also extended signature

matching to perform a restricted kind of specification match-

ing (Section 6).

Our work is unique in two ways. First, we have identi-

fied a small set of primitive function matches that can be

combined in useful ways. Definitions of signature matching

given by others are just special cases of our more general ap-

proach; we can succinctly characterize their definitions (as

above) and do so in a common formal framework. We sup-

port orthogonality of concepts, allowing the user to “pick

and choose” whichever match is desired, perhaps through

a combination of more primitive matches. Second, all pre-

vious work has focused solely on matching at the function

level. We extend signature matching to include matching on

modules as well. Moreover, since we define all our function

match definitions to follow a common form, we are able to

use function match as a parameter to module match.

Less closely related work, but relevant to our context of

software library retrieval, divides into two categories: text-

based search and classification schemes. In text-based search,

textual information, such as function names and comments,

is used to locate desired software components. Attempts

to make this approach more formal invoIve imposing a par-

ticular structure on comments to increase the accuracy of

search. One example of such a eystem is REUSE [AS86].

Ij

2)

Information about a component includes the component’s

name, author, and language processor to use,

Finally, some work on classifying software enables con-

trol over the search space. A classification scheme primarily

facilitates browsing, as the goal is to provide a structure

through which a user can navigate to locate a desired mod-

ule. Priet o- D;az [PD89] describes a method of classifying

software using facets (e.g., the function the software per-

forms, the objects manipulated by the software, the medium

used, the type of system, the functional area, and the set-

ting of the application). The REUSE system also includes a

classification structure which is used to guide search through

a menu system.

As mentioned in the introduction, we view signature

matching as a complementary approach to these more tra-

ditional information retrieval techniques. For example, a

classification scheme could be used in conjunction with sig-

nature matching for a “pip elined” query: The first stage of

the pipeline would use a classification scheme to prune the

search space for the second stage, which would use signature

mat thing.

6 Summary and Future Work

This paper lays the foundation for the use of signature match-

ing as a practical tool for the software engineer to aid in the

ret rieval of software for reuse. We present precise definitions

for a variety of matches at both the function and module lev-

els. Areas for further work include evaluating the usefulness

of signature matching, defining additional relaxations, and

going beyond signatures to specification matching.

We plan to do more extensive evaluation using our signa-

ture matching facility by conducting experiments with real

users from our local SM L research community (which in-

cludes over 20 graduate students, staff, and faculty). This

evaluation will serve two purposes: to identify places for per-

formance improvements, and more importantly, to provide

feedback on the utility of signature matching for software

reuse.

The existing set of relaxed function matches may still

miss some potentially useful functions. To capture some of
these additional matches, we will need to expand our type

system to model additional characteristics of functions. Two

189

examples of such characteristics are mutability and excep-

tional behavior. Even in “mostly” functional languages like

ML, there may be functions that mutate objects. Thus if

there are two functions that perform the same operation but

one does so by creating a new object ((a, w T) ~ a T) and

the other by mutating an input object ((u, a T) - unit)

we would like to be able to say these are “the same” un-

der some relaxation. Similarly, we would like to be able to

match functions that are the same except in their behavior

under exceptional conditions.

In the introduction we argued that signature matching

is an instance of using domain-specific information to do

search. In an ideal software library, domain-specific informa-

tion would include not just signature information, but for-

mal specifications of the behavior of each component. Given

such specifications, e.g., pre-/post- conditions for functions,

we could then add to our arsenal of search tools a speci-

fication matcher, using specifications, not just signatures,

as search keys. Consider the query (a T, a T) - a T
which matches the union, intersection and difference

functions on sets. Specification matching would let us dis-

tinguish among these three since their behaviors differ even

though their types are the same. We are pursuing specifica-

tion matching in the context of Larch [GH93] and Larch/ML

[WRZ93] at Carnegie Mellon; Stringer-Calvert has proposed

to do specification matching for Ada at the University of

York [SC93]. Unfortunately we cannot as yet expect pro-

grammers to document their program components with for-

mal specifications.5 Signature matching backs off from this

more ambitious approach.

Hence, signature matching offers the greatest amount of

information about program modules for the least overhead.

We can exploit information that programmers already must

generate, i.e., function types and module interfaces, for the

compiler. (Thus we get the search keys for free.) Implement-

ing signature matching requires nothing more sophisticated

than unification, a standard algorithm already used in some

compilers to do type inference. In return we get a useful

tool for retrieving software modules.

Acknowledgments

We thank Gene Rollins for his help in modifying the SML

compiler so we could painlessly build and integrate the sig-

nature matcher. We also thank the referees of this paper for

their helpful comments.

References

[AM87]

[AS86]

[BP89]

William W. Agresti and Frank E. McGarry. The

Minnowbrook workshop on software reuse: A

summary report. In Will Tracz, editor, Tutortcd

Software Reuse: Emerging Technology, pages 33-

40. Computer Society Press, 1987.

Susan P. Arnold and Stephen L. Stepoway. The

REUSE system: Cataloging and retrieval of

reusable software. Technical Report 86-CSE-22,

Southern Methodist University, October 1986.

Ted J. Biggerstaff and Alan J. Perlis, editors. Soft-

ware Reusability Vol. 1: Concepts and Models.

ACM Press, N. Y., 1989.

[FH88]

[GH93]

[IEE84]

[Mi178]

[MTH90]

[PD89]

[Pre87]

[Rit89]

[Rit92]

[RT89]

[RW91]

[SC93]

[Sta86]

[WRZ93]

Anthony J. Field and Peter G. Harrison. Func-

tional Programming. Addison-Wesley, 1988.

John Guttag and James Horning. Larch:

Languages and Tools for Formal Specijicution.

Springer Verlag, 1993.

IEEE Transactions on Software Engineeringj

September 1984. SE-10(5).

Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

sciences, 17(3):348-375, December 1978.

Robin Milner, Mads Tofte, and Robert Harper.

The Definition of Standcmi ML. MIT Press, 1990.

Rub&n Prieto-D~az. Classification of reusable

modules. In Ted J. Biggerstaff and Alan J. Perlis,

editors, Software Reusability Vol. 1: Concepts and

Models, pages 99-123. ACM Press, N. Y., 1989.

Roger S. Pressman. Soflware Engineering: A

Practzoner’s Approach. McGraw-Hill, 2nd edition,

1987.

Mikael Rittri. Using types as search keys in

function libraries. Conference on Functional

Programming Languages and Computer- Architec.

tures, pages 174-183, September 1989.

Mikael Rittri. Retrieving library identifiers via

equational mat thing of types. Technical Report

65, Programming Methodology Group, Depart-

ment of Computer Sciences, Chalmers University

of Technology and University of Goteborg, Jan-

uary 1990 (reprinted with corrections May 1992).

Colin Runciman and Ian Toyn. Retrieving

re-usable software components by polymorphic

type. Conference on Functional Programming

Languages and Computer Architectures, pages

166-173, September 1989.

Eugene J. Rollins and Jeannette M. Wing. Spec-

ifications as search keys for software libraries. In

Proceedings of the Eighth International Confere-

nce on Logtc Programming, June 1991.

David W. J. Stringer-Calvert. Reuse in Ada-

finding components by specification. Proposal

submitted for the degree of Master of Engineer-

ing, 1993.

Richard Stallman. GNU Emacs Manual, 1986.

J.M. Wing, E. Rollins, and A. Moormann Zarem-

ski. Thoughts on a Larch/ML and a new applica-

tion for LP. In Ursula Martin and Jeannette M.

Wing, editors, Fzrst International Workshop on

Larch. Springer Verlag, 1993.

5Though, If we provided them with effic]ent specdicatlon match-

ers, maybe there would be addlt]onal mcent]ve to write formal

specifications-a chicken-and-egg problem!

190

