
Verifiable Secret Redistribution for Archive Systems

Theodore M. Wong Chenxi Wang Jeannette M. Wing
Carnegie Mellon University

tmwong+@cs.cmu.edu, chenxi@ece.cmu.edu, wing+@cs.cmu.edu

Abstract

We present a new verifiable secret redistribution protocol
for threshold sharing schemes that forms a key component
of a proposed archival storage system. Our protocol sup-
ports redistribution from (m,n) to (m′,n′) threshold shar-
ing schemes without requiring reconstruction of the origi-
nal data. The design is motivated by archive systems for
which the added security of threshold sharing of data must
be accompanied by the flexibility of dynamic shareholder
changes. Our protocol enables the dynamic addition or re-
moval of shareholders, and also guards against mobile ad-
versaries. We observe that existing protocols either cannot
be extended readily to allow redistribution between different
access structures, or have vulnerabilities that allow faulty
old shareholders to distribute invalid shares to new share-
holders. Our primary contribution is that in our protocol,
new shareholders can verify the validity of their shares after
redistribution between different access structures.

1 Introduction

We are conducting research on the design and implemen-
tation of an archive system. The primary goal of an archive
system is to preserve the long-term availability and confi-
dentiality of data in the face of storage server failures and
compromises. Another goal is to adapt to the addition or
removal of servers. In this paper, we outline a design for an
archive system that meets those goals, and present a proto-
col for secret redistribution that is a key component of the
system.
We envision an archive system to store data that is in-

frequently accessed, but which must remain available and
confidential for long periods of time. Examples of such data
include medical records, corporate tax records, and classi-
fied government documents. For such data, we can trade off
longer storage and retrieval latencies in return for stronger
availability and confidentiality guarantees.
The archival nature of our system allows us to use rela-

tively heavyweight schemes for distributing the data (here-

after referred to as the secret) to storage servers. In our
system, we use a threshold secret sharing scheme [39] with
an (m,n) access structure to create n shares of the secret
for n servers (also called shareholders). We only require
m (where m ≤ n) shares to reconstruct the secret, and
an adversary must compromise at least m shareholders to
compromise the secret. Threshold schemes introduce a de-
gree of fault-tolerance: we can reconstruct the secret even
if n− m shareholders fail. Of course, we assume that there
is enough diversity among the servers such that common
security flaws and failure modes can be ruled out.

We design our archive system to defend against active
and mobile adversaries. An active (or Byzantine [31]) ad-
versary corrupts data or state, and may alter or replay mes-
sages. To defend against active adversaries, secret sharing
must be verifiable [14, 33]: the participants of the sharing
protocol should be able to verify the correctness of protocol
execution, since an active attacker can send ill-formed pro-
tocol messages. A mobile (or dynamic) adversary compro-
mises servers progressively, and left unchecked will even-
tually compromise enough shareholders to compromise the
secret. To counteract mobile adversaries, there exist proac-
tive secret sharing (PSS) schemes [18, 25] to regenerate
shares periodically at all shareholders. PSS schemes as-
sume a system model of temporary compromise (i.e., com-
promised shareholders can be restored to a clean state by a
reboot), and that the adversary compromises at mostm− 1
shareholders simultaneously prior to regeneration.

Our archive system imposes one additional requirement:
we must preserve a minimum level of fault-tolerance over
the long term. When shareholders become unavailable (due
to benign failures or denial-of-service attacks), we must
produce new shares and incorporate new shareholders to
store those shares. Similarly, when new shareholders join
the system, we may want to include them in the sharing
scheme to balance loads and maintain availability. Finally,
we must allow the possibility of permanent compromise
(i.e., the removal of shareholders), in contrast to the PSS
model where only temporary compromise is considered.

Our design goals and the desire to defend against active
and mobile adversaries require a general sharing scheme in

1

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

which the secret can be redistributed dynamically to a new
set of shareholders after the initial sharing. The new share-
holders may form a new access structure, i.e., they may or
may not overlap with the old shareholders, and they may or
may not share the same threshold value.
A trivial, but insecure, solution for recovering from lost

or compromised shareholders is simply to reconstruct the
original secret at a central “recovery” server and distribute
new shares. This solution suffers from an obvious weak-
ness: an adversary that compromises the recovery server
immediately gains the ability to see all secrets. We require
a solution that does not involve the reconstruction of the se-
cret, in which the work of redistribution is performed by the
remaining (non-compromised) shareholders.
There exist secret redistribution protocols that do not re-

quire reconstruction of the original secret. In particular,
Desmedt and Jajodia [13] and Frankel et al [15] proposed
protocols for the redistribution of secrets between different
access structures. However, both of these extensions have
vulnerabilities that allow faulty shareholders to corrupt the
redistribution process undetectably. After a corrupted run,
shareholders will have shares that cannot be used to recon-
struct the original secret. We discuss the vulnerabilities in
depth in Section 4.1.
We present a new verifiable secret redistribution (VSR)

protocol for the redistribution of secrets from an (m,n) ac-
cess structure to an arbitrary (m′,n′) access structure. Our
protocol is similar to that of Desmedt and Jajodia; however,
we incorporate a verification capability to enable sharehold-
ers to verify the validity of the new shares (i.e., that their
shares can be used to reconstruct the original secret). We
stress that the ability to perform verification is essential for
archive systems where having some compromised entities
is the common case rather than the exception. We present
two verification conditions and prove that they are sufficient
to guarantee the correctness of the secret redistribution. We
also prove a security property of our protocol: an adversary
that obtains fewer thatm old shares and fewer thanm′ new
shares cannot compromise the secret.
The key points of our paper are:

• The long-term availability and confidentiality of se-
crets must be preserved in the face of server failures
and compromises. Therefore, distributed archive sys-
tems must include capabilities to accommodate dy-
namic changes in the group of servers that implement
the system.

• Existing redistribution protocols [13, 15] and PSS
schemes either allow a faulty shareholder to corrupt re-
distribution undetectably (and leave shareholders with
invalid shares) or prohibit changes to the set of share-
holders that store shares.

1

m

n

m’

n’

1’ 1’’

m’’

n’’

Figure 1. High-level operation of our archive
system. A client distributes a file to the ac-
tive group of servers (solid lines). When the
servers detect changes in the active group
membership, they redistribute the file to the
new group (dashed lines). Servers may per-
form redistribution an arbitrary number of
times (dotted lines) prior to reconstruction.

• Pinpoint identification and removal of faulty old share-
holders is not immediately possible if redistribution is
to occur between two disjoint sets of shareholders. In

the worst case,

(
n
m

)
−

(
n − m + 1

m

)
restarts (for an

(m,n) access structure) are required to eliminate faulty
shareholders and complete the protocol.

2 Archive system architecture

We present a high-level view of our archive system archi-
tecture in Figure 1. It consists of two components: clients
and a group of storage servers. Clients perform the initial
distribution and final reconstruction of files (i.e., secrets),
and are considered trusted entities.
The servers store shares and perform redistribution. We

discuss the issue of faulty servers (i.e., shareholders) in
depth in Section 4.1. Though the number of servers that
implement the archive system may be large, we assume that
the number of servers n that store shares for a particular file
(or set of files) is small.
We require that the network provides private point-to-

point links between the client and servers, and between all
pairs of servers. We also require that the network supports
reliable broadcast; if a server broadcasts a messageM , then
M is received at all other servers. In practice, networks do
not usually support reliable broadcast, and we must use pro-
tocols built over point-to-point links to emulate broadcast.
Since the number of servers n that store shares for a file is
small, we expect that the overhead required by the (other-
wise expensive) broadcast protocols will be small relative to

2

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

the computational cost of the VSR protocol. In our proto-
type system, we use the broadcast primitives implemented
in the Ensemble group communication toolkit [24].

The servers require mechanisms to keep track of the
members of the active group of servers, and to determine
when servers have joined or left (intentionally or through
failure) the group. Upon learning of a change in group
membership, the servers use the VSR protocol to redis-
tribute shares of files to a new access structure based on
the size of the group. We assume that the rate of change
of membership is low compared to the rate at which clients
contact the group for I/O operations. Since group member-
ship protocols are distributed by definition, they come with
additional assumptions about the failure behavior of par-
ticipating servers (i.e., whether server failures are benign
or Byzantine). As the focus in our prototype is primarily
on the properties of the VSR protocols itself, we elect to
treat the group membership protocol as a “black-box” ser-
vice provided by the underlying network, and we use the
membership protocol and gossip-style failure detector [40]
implemented in Ensemble. The protocol in Ensemble toler-
ates only benign failures; other protocols exist that tolerate
Byzantine failures [28, 37].

Clients require a mechanism to locate the active group
of servers for I/O operations. Clients are not part of the
group of servers (in contrast to peer-to-peer storage sys-
tems such as Intermemory [10] or OceanStore [30]), and
thus cannot rely on the group membership protocol used
by the servers. Also, most (relatively expensive) protocols
are designed with the assumption that membership changes
are infrequent; given our assumption that the rate at which
membership changes is lower than the rate at which clients
contact the group for I/O operations, having the client join
the group temporarily for I/O would have a negative im-
pact on performance. A simple approach would be for the
client to contact a central directory that replies with the list
of servers; the servers would update the directory after a
change in group membership. Of course, the central di-
rectory is an obvious point of vulnerability in an otherwise
decentralized architecture. A more robust approach is for
the client to contact a replicated directory service that uses
agreement protocols to ensure consistent and valid updates
to the list of servers (such as in Farsite [1]). In our pro-
totype, we adopt a third approach: since our test network
is small, a client broadcasts a query over the network to
locate the active set; a distinguished member of the group
(the coordinator of the groupmembership protocol, for con-
venience), responds with the list of servers. Note that even
if a faulty server responds with an invalid list, a non-faulty
server will respond with a valid list, which alerts the client
to the existence of a faulty server.

Clients also require a heuristic to select the threshold
valuem given n servers. We requirem non-faulty servers,

and we can tolerate at most m − 1 faulty servers; we dis-
uss faulty servers further in Section 4.1. Thus, we have the
constraint thatm + m − 1 ≤ n, or

m ≤
⌊

n + 1
2

⌋
(1)

In our prototype, we setm =
⌊

n+1
2

⌋
.

To store a file in the archive, a client locates the active
group of n servers and selects the (m,n) access structure to
use. It then distributes n shares of the file and a witness to
the file (described in Section 4) to the servers.
When the servers detect that another server has joined

or left the group, they use the VSR protocol to redistribute
their shares of the file to the new group. The servers use
the same heuristic as the clients to select the new thresh-
old value m′ given the size n′ of the new group, i.e.,

m′ =
⌊

n′+1
2

⌋
. Servers may redistribute the file an arbitrary

number of times.
Finally, when a client needs to reconstruct the file, it lo-

cates the active group of servers, which may differ from the
group to which it distributed shares initially. The client then
retrieves at leastm′ shares and reconstructs the file.

3 Cryptographic building blocks

In this section, we outline the cryptographic protocols
that form the building blocks for our VSR protocol. We
first recap Shamir’s threshold sharing scheme [39], and then
summarize Desmedt and Jajodia’s secret redistribution pro-
tocol [13] and Feldman’s VSS scheme [14].

3.1 Shamir’s threshold sharing scheme

Shamir’s (m,n) threshold sharing scheme is based on
polynomial interpolation [39]. Secrets k are in Zp, where
p is prime and p > n, and shareholders i are in P , where
|P| = n. Shares si of i are also in Zp. Authorized subsets

B are in the access structure Γ(m,n)
P , where |B| = m.

To distribute k to the access structure Γ(m,n)
P , we select

anm− 1 degree polynomial a(x) with constant term k and
random coefficients a1 ... am−1 ∈ Zp, and use a(x) to
generate si for each i:

si = k + a1i + . . . + am−1i
m−1 (2)

To reconstruct k, we retrieve m coordinate pairs (i, si)
of i ∈ B, and use Lagrange interpolation:

k =
∑
i∈B

bisi where bi =
∏

j∈B,j �=i

j

(j − i)
(3)

3

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

Desmedt and Jajodia’s Secret Redistribution protocol for Shamir’s scheme:

To redistribute a secret k ∈ Zp from a Γ
(m,n)
P to a Γ

(m′,n′)
P′ access structure, using the authorized subset B ∈ Γ

(m,n)
P :

1. For each i ∈ B, use the polynomial a′
i(j) = si + a′

i1j + . . . + a′
i(m′−1)

jm′−1 to compute the subshares ŝij of si, and send ŝij to the

corresponding j ∈ P ′.

2. For each j ∈ P ′, generate a new share s′j by Lagrange interpolation:

s′j =
X

i∈B
biŝij where bi =

Y

x∈B,x �=i

x

(x − i)

bi are constant for each i ∈ B, are independent of the choice of a′
i(x), and may be precomputed.

Figure 2. Protocol for the redistribution of shares of a secret from a Γ(m,n)
P to a Γ(m′,n′)

P′ access
structure [13], for Shamir’s threshold sharing scheme [39].

3.2 Desmedt and Jajodia’s secret redistribution
protocol

Desmedt and Jajodia present a protocol for the redistri-
bution of shares of secrets from threshold sharing schemes
without requiring the intermediate reconstruction of the se-
cret [13]. We specialize their protocol for use with Shamir’s
threshold sharing scheme [39], as shown in Figure 2. Sup-
pose we have distributed a secret k to the access structure
Γ(m,n)
P , and wish to redistribute k to the access structure

Γ(m′,n′)
P′ . To achieve this, we select an authorized subset

B ∈ Γ(m,n)
P . Each shareholder i ∈ B uses Shamir’s scheme

to distribute subshares ŝij of its share si to Γ(m′,n′)
P′ . Each

shareholder j ∈ P ′ receives ŝij from each i, and generates
a new share s′j by Lagrange interpolation:

s′j =
∑
i∈B

biŝij where bi =
∏

x∈B,x �=i

x

(x − i)
(4)

3.3 Feldman’s VSS scheme

Feldman presents a VSS scheme that can be used by
shareholders of a secret to verify the validity of their
shares [14]. We specialize the VSS scheme for use with
Shamir’s threshold sharing scheme [39], as shown in Fig-
ure 3. Herzberg et al present a similar treatment [26].
The application of Feldman’s VSS scheme to Shamir’s

scheme takes advantage of the homomorphic properties of
exponentiation and the assumption that the computation of
discrete logs in a finite field is intractable. Suppose we have
fields Zp and Zr, such that p and r are prime and r = pq+1
(where q is a non-negative integer), and suppose we have an
element g ∈ Zr of order p. Then, suppose we use Shamir’s
scheme with polynomial a(x) to distribute a secret k ∈ Zp

to the access structure Γ(m,n)
P . In addition to sending the

shares si ∈ Zp to shareholders i ∈ P , we broadcast wit-
nesses to k and the coefficients a1 ... am−1 of a(x) of the

form gk and ga
1 ... gam−1 . Each i may then verify that si is

a valid share of k:

gsi ≡ gk(ga1)i . . . (gam−1)im−1
(5)

which is the exponentiation of a(x) (Equation (2)). Since
we have assumed that the computation of discrete logs is
intractable, no-one can learn k or a1 ... am−1 from the
broadcast of the witnesses.

4 The VSR protocol

We present our verifiable secret redistribution proto-
col for secrets distributed with Shamir’s threshold shar-
ing scheme [39]. The protocol takes as input shares of a
secret distributed to the access structure Γ(m,n)

P , and out-
puts shares of the secret distributed to the access structure

Γ(m′,n′)
P′ . We assume that the computation of discrete logs
in a finite field is intractable, and that there exist reliable
broadcast channels among all participants and private chan-
nels between every pair of participants. We also assume that
there are at least m non-faulty old shareholders, that there
are at mostm−1 faulty old shareholders, and that there are
n′ non-faulty new shareholders.
The initial distribution of a secret (INITIAL in Figure 4)

proceeds as in Feldman’s VSS scheme [14]. The dealer of
secret k ∈ Zp distributes shares si ∈ Zp to each shareholder
i ∈ P , using the polynomial a(i) (INITIAL step 1). The
dealer also broadcasts gk and ga1 ... gam−1 , which each i
uses in Equation (5) to verify the validity of si (INITIAL
steps 2 and 3). If Equation (5) holds, i stores si and gk

(INITIAL step 4).
Redistribution of the secret (REDIST in Figure 4) pro-

ceeds as follows. Each i in an authorized subset B ∈
Γ(m,n)
P uses Shamir’s scheme (with the polynomial a′

i(j))
to distribute subshares ŝij ∈ Zp of its share si to Γ(m′,n′)

P′

(REDIST step 1). Each shareholder j ∈ P ′ receives ŝij from
each i, and generates a new share s′j (Equation (4), which is

4

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

Feldman’s Verifiable Secret Sharing scheme for Shamir’s scheme:

To distribute a secret k ∈ Zp to the access structure Γ
(m,n)
P :

1. Use the polynomial a(i) = k + a1i + . . . + am−1im−1 to compute the shares si of k, and send si to the corresponding i ∈ P over private
channels.

2. Use g to compute gk, ga1 . . . gam−1 , and send them to all i ∈ P over the broadcast channel.

3. For each i ∈ P , verify that:

gsi ≡ gk
m−1Y

l=1

(gal)il

If the condition holds, i broadcasts a “commit” message. Otherwise, i broadcasts an “abort” message.

Figure 3. Feldman’s VSS scheme [14] for Shamir’s threshold sharing scheme [39].

REDIST step 4). We may redistribute k an arbitrary number
of times before we reconstruct it. This redistribution phase
is the same as in Desmedt and Jajodia’s protocol [13].
For the new shareholders to verify that their shares of

the secret are valid after redistribution, we require that two
conditions, SHARES-VALID and SUBSHARES-VALID, hold.
When all i ∈ B redistribute si to each j ∈ P ′, all sj are
valid shares of k if:

SHARES-VALID:
k =

∑
i∈B bisi

SUBSHARES-VALID:
∀i ∈ B;B′ ∈ Γ(m′,n′)

P′ : si =
∑

j∈B′ b′j ŝij

We define a NEW-SHARES-VALID condition, which will
hold if new shareholders have valid shares of the secret.
We prove in Section 4.3 that NEW-SHARES-VALID holds if
SHARES-VALID and SUBSHARES-VALID hold. The defini-
tion of NEW-SHARES-VALID follows from Equation (3) for

a secret distributed to Γ(m′,n′)
P′ :

NEW-SHARES-VALID:
∀B′ ∈ Γ(m′,n′)

P′ : k =
∑

j∈B′ b′js
′
j

We use Feldman’s VSS scheme to verify that SUB-
SHARES-VALID holds. The distribution of ŝij from si (RE-
DIST step 1) is just an application of Shamir’s scheme.
Thus, each i ∈ B broadcasts witnesses to its share and the
coefficients of a′

i(j) (g
si and gai1 ... gai(m−1)), which each

j uses to verify the validity of ŝij (REDIST step 2).
The key insight embodied in our VSR protocol is that

the naı̈ve extension of Desmedt and Jajodia’s protocol with
Feldman’s scheme does not in itself allow the new share-
holders to verify that NEW-SHARES-VALID holds. The
difficulty arises because Feldman’s scheme only verifies
that SUBSHARES-VALID holds, which in the absence of
SHARES-VALID is insufficient to verify that NEW-SHARES-
VALID holds. Although Desmedt and Jajodia observe that
the linear properties of their protocol and the properties of

gx ensure that each j generates valid shares [13], they im-
plicitly assume that each i ∈ B distributes subshares of
valid si. The VSS scheme only allows i ∈ B shareholder to
prove that it distributed valid ŝij of some value. However,
i may have distributed “subshares” of some random value
instead of subshares of si. Thus, we require a sub-protocol
for i to prove that it distributed ŝij of si.
The same flaw can be found in the proactiveRSA scheme

proposed by Frankel et al [15]. Their protocol uses a poly-
to-sum redistribution from a polynomial sharing scheme to
an additive sharing scheme, and a sum-to-poly redistribu-
tion from the additive scheme back to a polynomial scheme.
They suggest that changes in the threshold and number of
shareholders can be accommodated in the poly-to-sum re-
distribution. Unfortunately, their verification checks hold
only if one retains the same set of shareholders. If dis-
tribution to new shareholders is required, their verification
conditions ensures SUBSHARE-VALID, but SHARES-VALID
condition may not hold because their ”proper secret” check
relies on a witness value (gsiL2 in their paper) computed
from information distributed in the preceding round. A
faulty shareholder can thus distribute spurious information
to new shareholders and ultimately cause them to accept an
invalid witness value.
To allow the new shareholders to verify that SHARES-

VALID holds, which together with SUBSHARES-VALID ver-
ifies that NEW-SHARES-VALID holds, the old shareholders
in our protocol broadcast a witness to the secret. Each i ∈ B
must therefore store gk (received during INITIAL) and later
broadcast it to all j ∈ P ′. Recall that each j receives si

from each i to verify that SUBSHARES-VALID holds. Once
each j receives gk, it verifies that si is a valid share of k:

gk =
∏
i∈B

gbisi (6)

Equation (6) follows from Equation (3) and the homomor-
phic properties of exponentiation. Since we have assumed
that the computation of discrete logs is intractable, no-one

5

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

Verifiable Secret Redistribution protocol for Shamir’s sharing scheme:

INITIAL: To distribute a secret k ∈ Zp to the access structure Γ
(m,n)
P :

1. Use the polynomial a(i) = k + a1i + . . . + am−1im−1 to compute the shares si of k, and send si to the corresponding i ∈ P over private
channels.

2. Use generator g to compute gk, ga1 . . . gam−1 , and send them to all i ∈ P over the broadcast channel.

3. For each i ∈ P , verify that:

gsi ≡ gk
m−1Y

l=1

(gal)il

If the condition holds, i broadcasts a “commit” message. Otherwise, i broadcasts an “abort” message.

4. If all i ∈ P agree to commit, each i stores si and gk . Otherwise, they abort the protocol.

REDIST: To redistribute k ∈ Zp from Γ
(m,n)
P to the access structure Γ

(m′,n′)
P′ , using the authorized subset B ∈ Γ

(m,n)
P :

1. For each i ∈ B, use the polynomial a′
i(j) = si + a′

i1j + . . . + a′
i(m′−1)

jm′−1 to compute the subshares ŝij of si, and send ŝij to the

corresponding j ∈ P ′ over private channels.

2. For each i ∈ B, use g to compute gsi , ga′
i1 . . . g

a′
i(m′−1) , and send them to all j ∈ P ′ over the broadcast channel.

3. For each j ∈ P ′, verify that:

∀i ∈ B : gŝij ≡ gsi

m′−1Y

l=1

(ga′
il)jl

and:

gk ≡
Y

i∈B
(gsi)bi where bi =

Y

l∈B,l�=i

l

(l − i)

If the conditions hold, j broadcasts a “commit” message. Otherwise, j broadcasts an “abort” message.

4. If all j ∈ P ′ agree to commit, each j generates a new share s′j :

s′j =
X

i∈B
biŝij where bi =

Y

l∈B,l�=i

l

(l − i)

and stores s′j and gk . Otherwise, they abort the protocol.

Figure 4. Protocol for the verifiable redistribution of shares of a secret from a Γ(m,n)
P to a Γ(m′,n′)

P′

access structure, for Shamir’s threshold sharing scheme [39].

6

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

can learn k from the broadcast of gk.
We have developed a generalized VSR protocol for lin-

ear threshold sharing schemes. The details of the general-
ized protocol appear in our technical report [42].

4.1 Discussion about faulty shareholders

During redistribution from a Γ(m,n)
P to a Γ(m′,n′)

P′ access
structure with our VSR protocol, we assume that at least
m old shareholders in P are non-faulty (otherwise we will
have an insufficient number of shares to reconstruct the se-
cret), and that at most m − 1 old shareholders in P may
be faulty (since m faulty shareholders could collude to re-
construct the original secret). We also assume that all n′

of the shareholders in P ′ are non-faulty. We denote faulty
shareholders, and the values they distribute, with over-bars.
A non-faulty shareholder i ∈ P distributes valid subshares
ŝij of its share si to all shareholders j ∈ P ′ and broadcasts
gk corresponding to secret k ∈ Zp. A faulty shareholder
i ∈ P may distribute invalid subshares ŝij or broadcast g

k

not corresponding to k.
In order to check that the verification conditions hold,

we require that certain information be made available to the
new shareholders. In our VSR protocol, this information is
witnesses gk, gsi , and gai1 ... gai(m−1) . In the PSS scheme
of Frankel et al. [15], this information is the value gsiL

2
and

gd. In the absence of a trusted information repository, the
new members must rely on the old shareholders to deliver
this information. It is this process that proves to be problem-
atic for the pinpoint identification of faulty shareholders.

Consider redistribution from Γ(m,n)
P to Γ(m′,n′)

P′ . Assume

that we start with a random authorized subset B ∈ Γ(m,n)
P ,

and recall that |B| = m. It is possible that some subset
of the old shareholders in B (at mostm − 1) are faulty, and
will attempt to broadcast gk and ŝij . If the faulty sharehold-

ers conspire to broadcast the same gk, the new sharehold-
ers will detect the discrepancy in the m broadcast values,
but cannot pinpoint the faulty shareholders. The new share-
holders cannot use majority voting since the majority of old
shareholders in B may be faulty.
Since at most m − 1 shareholders may be faulty, any

randomly selected authorized subset of m old shareholders
must contain at least one non-faulty shareholder. If the new
shareholders detect discrepancies in the witnesses broadcast
by the old shareholders, they can restart the redistribution
protocol with another authorized subset until all values are
consistent and all verification conditions hold. For Γ(m,n)

P ,
the number of times we must restart the redistribution pro-
tocol is bounded in the worst case by

�
n
m

�
−
�

n − m + 1
m

�
=

m−1X
i=1

�
m − 1

i

��
n − m + 1

m − i

�
(7)

which is the number of sets of sizem containing at least one
faulty shareholder, givenm − 1 faulty shareholders.
The assumption that all n′ shareholders in P ′ are non-

faulty is reasonable if we view the purpose of our VSR pro-
tocol as one of detecting faulty behavior by shareholders in
P . This is analogous to one of the assumptions underly-
ing Feldman’s VSS scheme [14] in which the shareholders
are implicitly trusted to store valid shares (and reject invalid
shares) of a secret.

4.2 Computational cost

The computational cost for each new shareholder of ver-
ification in our VSR protocol (REDIST Step 3 in Figure 4)
is O(mm′) multiplications and O(mm′) exponentiations,
exclusive of the cost of computing the witnesses. Consider

redistribution from a Γ(m,n)
P to a Γ(m′,n′)

P′ access structure.
Each new shareholder j ∈ P ′ performsm − 1 multiplica-
tions (B ∈ Γ(m,n)

P ; |B| = m) andm exponentiations to ver-
ify that SHARES-VALID holds (Equation (6)), for a total cost
of O(m); we do not include the (small) cost of computing
the powers of i. Each j also performsm′−1multiplications
(B′ ∈ ΓP′ ; |B′| = m′) and m′ − 1 exponentiations for m
old shareholders i ∈ B to verify that SUBSHARES-VALID
holds (Equation (5)), for a total cost of O(mm′). Thus, the
total cost for each j to verify that both conditions hold is
O(mm′) multiplications and O(mm′) exponentiations, ex-
clusive of the cost of computing the witnesses. In the worst
case, the number of times we must restart the redistribution
protocol is bounded by Equation (7).

4.3 Proof of correctness

We prove that NEW-SHARES-VALID holds after redis-
tribution if SHARES-VALID and SUBSHARES-VALID hold.
We also show that Equations (5) and (6) verify that SUB-
SHARES-VALID and SHARES-VALID hold.

Lemma 1 SUBSHARES-VALID holds if Equation (5) holds.

PROOF: Proved by Feldman [14]. �

Lemma 2 SHARES-VALID holds if Equation (6) holds.

PROOF: Assume that Equation (6) holds. It then follows
that SHARES-VALID holds from Equation (3) and the ho-
momorphic properties of exponentiation. �

Theorem 1 (VSR correctness) For the verifiable redistri-

bution of shares of a secret from a Γ(m,n)
P to a Γ(m′,n′)

P′ ac-
cess structure for Shamir’s threshold sharing scheme [39],
for all secrets k ∈ Zp, and for all authorized subsets

B ∈ Γ(m,n)
P , B′ ∈ Γ(m′,n′)

P′ , NEW-SHARES-VALID holds
after redistribution of k with the VSR protocol if SHARES-
VALID and SUBSHARES-VALID hold.

7

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

PROOF: Assume that SHARES-VALID and SUBSHARES-
VALID hold. Then:

k =
∑
i∈B

bisi (SHARES-VALID)

=
∑
i∈B

bi

∑
j∈B′

b′j ŝij

 (SUBSHARES-VALID)

=
∑
i∈B

∑
j∈B′

bib
′
j ŝij (x(y + z) = xy + xz)

=
∑
i∈B

∑
j∈B′

b′jbiŝij (xy = yx)

=
∑
j∈B′

∑
i∈B

b′jbiŝij (x + y = y + x)

=
∑
j∈B′

(
b′j

∑
i∈B

biŝij

)
(xy + xz = x(y + z))

=
∑
j∈B′

b′js
′
j (Equation (4))

�
Our correctness proof mirrors that for Desmedt and Ja-

jodia’s secret redistribution protocol [13].

4.4 Proof of security

We prove that an adversary cannot reconstruct a secret
from a combination of shares distributed with Shamir’s
threshold sharing scheme [39] to a Γ(m,n)

P access structure

and shares distributed to a Γ(m′,n′)
P′ access structure. In par-

ticular, we show that an adversary that has obtainedm − 1
old shares of a secret k andm′ − 1 new shares of the same
k cannot reconstruct k. It is then trivial to show that an ad-
versary that has less thanm− 1 old shares andm′ − 1 new
shares of the same k cannot reconstruct k.
To complete our security proof, we require some lemmas

(presented by Beaumont [2] and Kostrikin [29]) for systems
of u linear equations in v unknowns of the form

m11x1 + m12x2 + · · · + m1vxv = b1

m21x1 + m22x2 + · · · + m2vxv = b2

. .
mu1x1 + mu2x2 + · · · + muvxv = b2

(8)

LetM, x, and b denote

M =

2
64

m11 · · · m1v

...
. . .

...
mu1 · · · muv

3
75 , x =

2
64

x1

...
xv

3
75 , b =

2
64

b1
...

bu

3
75

let [M|b] denote the augmented matrix

[M|b] =

2
64

m11 · · · m1v b1
...

. . .
...

...
mu1 · · · muv bu

3
75

let rank(M) denote the rank of M (number of linearly in-
dependent columns in M), and let det(M) denote the de-
terminant ofM.

Lemma 3 rank(M) = rank(MT).

Lemma 4 (Kronecker-Capelli theorem) If (and only if)
rank(M) = rank([M|b]), then Equation (8) has a solution
for x. Furthermore, if rank(M) < v, then Equation (8) has
infinitely many solutions for x.

Lemma 5 (Cramer’s rule) If u = v and det(M) �= 0,
then Equation (8) has a unique solution for x.

Lemma 6 For u × u matrix A, v × v matrix B, and u × v
matrix C,

det
([

A C
0 B

])
= det(A) det(B)

PROOF: Presented by Kostrikin [29]. �

Theorem 2 (VSR security) For the verifiable redistribu-

tion of shares of a secret from a Γ(m,n)
P to a Γ(m′,n′)

P′ access
structure for Shamir’s threshold sharing scheme [39], and
for all secrets k ∈ Zp, the shares si of shareholders i in any

non-authorized subset B /∈ Γ(m,n)
P cannot be used with the

shares s′j of shareholders j in any non-authorized subset

B′
/∈ Γ(m′,n′)

P′ to uniquely determine k.

PROOF: Assume there is a unique solution for k from the
shares of shareholders in B and B′

. We show that this as-
sumption leads to a contradiction.
Consider the case where |B| = m−1 and |B′| = m′−1,

and suppose that we have si of i ∈ B and s′j of j ∈ B′
. We

use Equation (2) to construct Equation (9) in Figure 5.
Let M denote the left-hand matrix in Equation (9), a

the coefficient vector k, a1 ... a′
m′−1, and s the share

vector. The maximum possible value for rank(M) is the
number of rows (m + m′ − 2, by Lemma 3), which is
less than the number of values in a (m + m′ − 1). Also,
rank(M) = rank([M|s]) since s is a linear combination
of the columns of M (by the method of share generation).
Thus, we have infinitely many solutions for a in Equa-
tion (9) (by Lemma 4). We arrive at the same conclusion

for any B′′
/∈ Γ(m′,n′)

P′ such that |B′′| < m′ − 1.
Since we have assumed that there is a unique solution for

k, we re-write Equation (9) as Equation (10) in Figure 5.
Let Mk denote the left-hand matrix in Equation (10), and
let ak denote the coefficient vector a1 ... a′

m′−1. LetM
UL
k

8

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

2
6666666666666666666666664

1 1 · · · 1m−1 0 · · · 0
...

... · · ·
...

...
...

1 i · · · im−1
...

. . .
...

...
... · · ·

...
...

...
1 (m − 1) · · · (m − 1)m−1 0 · · · 0

1 0 · · · 0 1 · · · 1m′−1

1
...

...
... · · ·

...

1
...

. . .
... j · · · jm′−1

1
...

...
... · · ·

...

1 0 · · · 0 (m′ − 1) · · · (m′ − 1)m′−1

3
7777777777777777777777775

2
666666666664

k
a1

...
am−1

a′
1
...

a′
m′−1

3
777777777775

=

2
666666666666666666664

s1

...
si

...
sm−1

s′1
...

s′j
...

s′
m′−1

3
777777777777777777775

(9)

2
6666666666666666666666664

1 · · · 1m−1 0 · · · 0
... · · ·

...
...

...

i · · · im−1
...

. . .
...

... · · ·
...

...
...

(m − 1) · · · (m − 1)m−1 0 · · · 0

0 · · · 0 1 · · · 1m′−1

...
...

... · · ·
...

...
. . .

... j · · · jm′−1

...
...

... · · ·
...

0 · · · 0 (m′ − 1) · · · (m′ − 1)m′−1

3
7777777777777777777777775

2
6666666664

a1

...
am−1

a′
1
...

a′
m′−1

3
7777777775

=

2
666666666666666666664

s1 − k
...

si − k
...

sm−1 − k
s′1 − k
...

s′j − k

...
s′
m′−1

− k

3
777777777777777777775

(10)

Figure 5. Equations for the proof of Theorem 2.

andMLR
k denote the upper-left and lower-right square sub-

matrices ofMk

MUL
k =

2
664

1 · · · 1m−1

...
. . .

...
(m − 1) · · · (m − 1)m−1

3
775

and

MLR
k =

2
664

1 · · · 1m′−1

...
. . .

...

(m′ − 1) · · · (m′ − 1)m′−1

3
775

We express det(MUL
k) as

det(MUL
k) = 1 · · · (m − 1)

��������

1 · · · 1m−2

...
. . .

...
1 · · · (m − 1)m−2

��������
= 1 · · · (m − 1)

Y
1≤i,j≤m−1;i>j

(i − j)

and observe immediately that det(MUL
k) is non-zero; sim-

ilarly, det(MLR
k) is non-zero. Thus, det(Mk) is non-zero

since det(Mk) = det(MUL
k) det(MLR

k) (by Lemma 6).
Since det(Mk) is non-zero, then Equation (10) has a

unique solution for ak (by Lemma 5). If Equation (10) has
a unique solution for ak, then Equation (9) has a unique

solution for a (since we know k). But we have already es-
tablished that we have infinitely many solutions for a, and
our assumption that we have a unique solution for k has led
to a contradiction. Thus, we cannot uniquely determine k

with the shares of shareholders in B and B′
. �

5 Related work

New storage systems have emerged that use encryption
or threshold secret sharing to preserve the long-term avail-
ability and confidentiality of data. In such systems, the stor-
age nodes run code that implements the system, but are not
trusted with plaintext data. Farsite [1, 8] and OceanStore
[30] all encrypt replicas of the original data prior to stor-
age. Publius [41] encrypts replicas, and in addition uses
threshold sharing to creates shares of the encryption key; it
then stores a share with each replica, so that one may re-
construct the key and decrypt a replica provided a threshold
number of replicas are available. Farsite and OceanStore
rely on replication to tolerate server failures; Publius sim-
ply assumes that a sufficient number of servers will remain
available to reconstruct the encryption key. In our proto-
type system, we use threshold sharing to hide data from the
servers (and avoid the keymanagement problems associated

9

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

with encryption), and use our VSR protocol to redistribute
shares in response to the addition or removal of servers.
Other storage systems make stronger assumptions about

server security to obviate the need for encryption or to use
faster data dispersal algorithms. Pangaea [38] distributes
plaintext replicas to servers, and uses a similar failure detec-
tor to Ensemble [24, 40]. Intermemory [10, 22] uses error-
correcting encoding algorithms to disperse shares of data
(also referred to as “slices” or “fragments”) for servers; in
order to recover from the loss of shares, the system recon-
structs the data and redisperse new shares. e-Vault [19, 27]
and OceanStore (for its deep archive storage mode) use en-
coding algorithms similar to those in Intermemory, but rely
on having enough servers remain non-faulty to allow re-
construction of the original data. Since we assume that the
servers are untrusted, we require a decentralized redistribu-
tion mechanism, i.e, VSR, to recover from server failures.
Our use of threshold sharing schemes to distribute shares

of data, as opposed to keys, is a radical departure from that
envisioned by Blakley and Shamir, who invented threshold
schemes. In Shamir’s (m,n) scheme [39], interpolation of
anm−1 degree polynomial fromm of n points yields a con-
stant term in the polynomial that corresponds to the secret.
In Blakley’s scheme [6], the intersection of m of n vector
spaces yields a one-dimensional vector that corresponds to
the secret. Desmedt surveys other sharing schemes [12].
Our VSR protocol expands on the concept embodied in

VSS schemes, that of protecting shareholders from a faulty
dealer. Chor et al present a scheme in which the dealer and
shareholders perform an interactive secure distributed com-
putation [11]. Benaloh [3], Gennaro and Micali [20, 21],
Goldreich et al [23], and Rabin and Ben-Or [34, 36] pro-
pose schemes in which the dealer and shareholders par-
ticipate in an interactive zero-knowledge proof of validity;
the schemes of Gennaro and Micali and of Rabin and Ben-
Or are information-theoretically secure. Feldman [14] and
Pedersen [33] present schemes in which the dealer broad-
casts a non-interactive zero-knowledge proof to the share-
holders. Beth et al [4] present a VSS scheme for monotone
access structures based on finite geometries. Our VSR pro-
tocol differs from VSS schemes in that the multiple “deal-
ers” of the new shares (the old shareholders) do not have the
original secret, and must use other information to generate a
proof for the new shareholders. Also, each new shareholder
performs a two-part verification, first of the validity of its
received subshares, and second of the validity of the shares
used by the old shareholders to generate the subshares.
Other researchers present redistribution protocols that do

not involve the physical redistribution of shares. Blakley
et al consider threshold schemes that disenroll (remove)
shareholders from the access structure with broadcast mes-
sages [5]; the new shareholders are a subset of the old ones.
Cachin proposes a secret sharing scheme that enrolls (adds)

shareholders in the access structure after the initial sharing
[9]; the new shareholders are a superset of the old ones.
Blundo et al present a scheme in which the dealer broad-
casts messages to activate different, possibly disjoint, au-
thorized subsets [7]. Blundo’s scheme requires shareholders
to have a share regardless of whether or not they are in the
active authorized subset, in contrast to Desmedt and Jajo-
dia’s scheme. Our VSR protocol alters the access structure
by physical redistribution of shares, and allows new share-
holders to verify that they have valid shares.
We motivate the design of our archive system and our

VSR protocol by the need to defend against mobile ad-
versaries. Ostrovsky and Yung introduce the concept of a
mobile adversary [32] that corrupts participants in a dis-
tributed protocol at a constant rate. Herzberg et al [25, 26]
propose a PSS protocol in which each shareholder period-
ically distributes update shares to all other shareholders.
Zhou, Schneider, and van Renesse propose a PSS proto-
col for asynchronous, wide-area networks, and employ it
in an on-line certification authority [46]; they also indepen-
dently postulated conditions similar to our SHARES-VALID
and SUBSHARES-VALID conditions as sufficient for ensur-
ing the validity of shares after protocol execution [45]. Our
VSR protocol, unlike these PSS protocols, can redistribute
shares to arbitrary access structures. However, we assume
that there exists reliable broadcast among all participants in
our protocol, which Zhou et al avoid in their protocol.
Frankel et al [16, 17, 18] and Rabin [35] propose PSS

protocols in which each shareholder periodically distributes
a subshare of its share to each of the other shareholders.
Each shareholder combines the received subshares to gen-
erate a new share. A drawback of these protocols is that
their witnesses for verification depend on the initial thresh-
old scheme parametersm and n, and thus one cannot redis-
tribute from an (m,n) to an (m′,n′) access structure.
Our VSR protocol, in contrast to the earlier PSS proto-

cols, can guard against mobile adversaries with permanent
compromise; that is, we can deal with compromise that can-
not be recoveredwith a reboot operation. Of course, we still
require that at any given point of time, the number of faulty
shareholders in the current set of shareholders is less than
the threshold value.

6 Summary

We have presented a verifiable secret redistribution pro-
tocol in the context of building archive systems. The
archival nature of the system calls for heavyweight protec-
tion mechanisms to ensure the long-term availability and
confidentiality of stored data. Additionally, we must ac-
count for the addition and removal of storage servers within
the lifetime of the data. Our protocol uses threshold sharing
schemes and incorporates a verification capability to sup-

10

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

port redistribution between arbitrary sets of shareholders.
We identified a vulnerability in Desmedt and Jajodia’s

redistribution protocol and proved that two conditions,
SHARES-VALID and SUBSHARES-VALID, are sufficient to
guarantee that new shareholders have valid shares after re-
distribution. We also proved that an adversary cannot com-
bine old shares and new shares to reconstruct the secret, pro-
vided that the adversary has less than m old shares and m′

new shares. Our redistribution protocol can tolerate up to
m − 1 faulty old shareholders (provided that there are at
least m honest members). We pointed out that the identi-
fication and removal of faulty members is not immediately
possible if the new members must rely on the old share-
holders to distribute verification information. In the worse

case,

(
n
m

)
−

(
n − m + 1

m

)
restarts are required to elimi-

nate faulty shareholders and complete the protocol.
Our research follows other work that employs thresh-

old schemes to build secure, distributed archive systems
[27, 30, 41]. In contrast to earlier systems, ours can accom-
modate dynamic server group membership changes. We
have implemented a simple prototype of the protocol itself
using the Ensemble group communication toolkit [24], and
are currently implementing a prototype archive system that
is based upon the PASIS survivable storage system [43, 44].

Acknowledgements

This research is sponsored in part by the Army Research
Office (ARO) under contract no. DAAD19-01-1-0485 and
the National Science Foundation under contracts no. CCR-
0121547 and no. CCR-0208853. This research is also spon-
sored in part by the DARPA/ITO OASIS program, under
Air Force contract no. F30602-99-2-0539-AFRL.
We thank the members of the PDL Consortium (includ-

ing EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft,
Network Appliance, Panasas, Seagate, Sun, and Veritas) for
their interest, insights, feedback, and support.
The U.S. Government is authorized to reproduce and dis-

tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of ARO,
NSF, DARPA, PDL Consortium members, or the U.S. Gov-
ernment.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment. In Proc.

of the 5th Symp. on Operating Systems Design and Imple-
mentation. Dec. 2002.

[2] R. A. Beaumont. Linear algebra. Harcourt, Brace & World,
Inc., 1965.

[3] J. C. Benaloh. Secret sharing homomorphisms: Keeping
shares of a secret secret. In Proc. of CRYPTO 1986, the 6th
Ann. Intl. Cryptology Conf., pp 213–222. 1987.

[4] T. Beth, H.-J. Knobloch, andM. Otten. Verifiable secret shar-
ing for monotone access structures. In Proc. of the 1st ACM
Intl. Conf. on Computer and Communications Security, pp
189–194. Nov. 1993.

[5] B. Blakley, G. R. Blakley, A. H. Chan, and J. L. Massey.
Threshold schemes with disenrollment. In Proc. of CRYPTO
1992, the 12th Ann. Intl. Cryptology Conf., pp 540–548. Aug.
1992.

[6] G. R. Blakley. Safeguarding cryptographic keys. In Proc. of
the Natl. Computer Conf., 1979.

[7] C. Blundo, A. Cresti, A. D. Santis, and U. Vaccaro. Fully
dynamic secret sharing schemes. Theoretical Comput. Sci.,
165(2):407–440, Oct. 1996.

[8] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on an
existing set of desktop PCs. In Proc. of SIGMETRICS 2000,
the Intl. Conf. on Measurement and Modeling of Computing
Systems, pp 34–43. June 2000.

[9] C. Cachin. On-line secret sharing. In Proc. of the 5th IMA
Conf. on Cryptography and Coding, pp 90–198. Dec. 1995.

[10] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and
P. Yianilos. A prototype implementation of archival inter-
memory. In Proc. of the 4th ACM Intl. Conf. on Digital Li-
braries, pp 28–37. Aug. 1999.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the pres-
ence of faults (Extended abstract). In Proc. of the 26th IEEE
Ann. Symp. on Foundations of Computer Science, pp 383–
395. Oct. 1985.

[12] Y. Desmedt. Some recent research aspects of threshold cryp-
tography. In Proc. of the 1st Intl. Information Security Work-
shop, pp 158–173. Sept. 1997.

[13] Y. Desmedt and S. Jajodia. Redistributing secret shares to
new access structures and its applications. Technical Report
ISSE TR-97-01, George Mason University, Fairfax, VA, July
1997.

[14] P. Feldman. A practical scheme for non-interactive verifiable
secret sharing. In Proc. of the 28th IEEE Ann. Symp. on
Foundations of Computer Science, pp 427–437. Oct. 1987.

[15] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Op-
timal resilience proactive public-key cryptosystems. In Proc.
of the 38th IEEE Ann. Symp. on Foundations of Computer
Science, pp 384–393. Oct. 1997.

[16] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung.
Proactive RSA. In Proc. of CRYPTO 1997, the 17th Ann.
Intl. Cryptology Conf., pp 440–454. Aug. 1997.

11

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

[17] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptively-
secure optimal-resilience proactive RSA. In Proc. of ASI-
ACRYPT1999, the 5th Intl. Conf. on the Theory and Appli-
cation of Cryptology and Information Security, pp 180–194.
Nov. 1999.

[18] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptive secu-
rity for the additive-sharing based proactive RSA. In Proc.
of PKC 2001, the 4th Intl. Workshop on Practice and Theory
in Public Key Cryptography, pp 240–263. Febraury 2001.

[19] J. A. Garay, R. Gennaro, C. S. Jutla, and T. Rabin. Secure
distributed storage and retrieval. Theoretical Comput. Sci.,
243(1–2):363–389, July 2000.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Ro-
bust threshold DSS signatures. In Proc. of EUROCRYPT
1996, the Intl. Conf. on the Theory and Application of Cryp-
tographic Techniques, pp 354–371. May 1996.

[21] R. Gennaro and S. Micali. Verifiable secret sharing as secure
computation. In Proc. of EUROCRYPT 1995, the Intl. Conf.
on the Theory and Application of Cryptographic Techniques,
pp 168–182. May 1995.

[22] A. V. Goldberg and P. N. Yianilos. Towards an archival In-
termemory. In Proc. of the IEEE Forum on Reasearch and
Technology Advances in Digital Libraries, pp 147–156. Apr.
1998.

[23] O. Goldreich, S. Micali, and A. Wigderson. How to prove
all NP statements in zero-knowledge and a methodology of
cryptograhpic protocol design. In Proc. of CRYPTO 1986,
the 6th Ann. Intl. Cryptology Conf., pp 171–185. 1987.

[24] M. Hayden and R. van Renesse. Optimizing layered commu-
nications protocols. In Proc. of the 6th IEEE Symp. on High
Performance Distributed Computing, Aug. 1997.

[25] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive public key and signature systems. In
Proc. of the 4th ACM Intl. Conf. on Computer and Commu-
nications Security, pp 100–110. Apr. 1997.

[26] A. Herzberg, S. Jarekci, H. Krawczyk, and M. Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage.
In Proc. of CRYPTO 1995, the 15th Ann. Intl. Cryptology
Conf., pp 339–352. Aug. 1995.

[27] A. Iyengar, R. Cahn, J. A. Gray, and C. Jutla. Design and im-
plementation of a secure distributed data repository. In Proc.
of IFIP/SEC 1998, the 14th Ann. Intl. Conf. on Information
Security. Sept. 1998.

[28] K. P. Kihlstrom, L. Moser, and P. Melliar-Smith. The Se-
cureRing group communication system. ACM Trans. on In-
formation and System Security, 4(4), Nov. 2001.

[29] A. I. Kostrikin. Introduction to algebra. Springer-Verlag,
1982.

[30] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels,
R. Gummadi, S. Rhea, W. Weimer, C. Wells, H. Weather-
spoon, and B. Zhao. OceanStore: An architecture for global-
state persistent storage. In Proc. of ASPLOS IX, the Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pp 190–201, Nov. 2000.

[31] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Trans. Prog. Lang. Syst., 4(3):382–401,
July 1982.

[32] R. Ostrovsky and M. Yung. How to withstand mobile virus
attacks. In Proc. of the 10th Ann. ACM Symp. on Principles
of Distributed Computing, pp 51–59. Aug. 1991.

[33] T. P. Pedersen. Non-iteractive and information-theoretic se-
cure verifiable secret sharing. In Proc. of CRYPTO 1991, the
11th Ann. Intl. Cryptology Conf., pp 129–140. Aug. 1991.

[34] T. Rabin. Robust sharing of secrets when the dealer is honest
or cheating. J. ACM, 41(6):1089–1109, Nov. 1994.

[35] T. Rabin. A simplified approach to threshold and proactive
RSA. In Proc. of CRYPTO 1998, the 18th Ann. Intl. Cryptol-
ogy Conf., pp 89–104. Aug. 1998.

[36] T. Rabin and M. Ben-Or. Verifiable secret sharing and mul-
tiparty protocols with honest majority. In Proc. of the 21st
Symp. on the Theory of Computing, pp 73–85. May 1989.

[37] M. K. Reiter. A secure group membership protocol. IEEE
Trans. Softw. Eng., 22(1):31–42, Jan. 1996.

[38] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahalingam.
Taming aggressive replication in the Pangaea wide-area file
system. In Proc. of the 5th Symp. on Operating Systems De-
sign and Implementation. Dec. 2002.

[39] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, Nov. 1979.

[40] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-based
failure detection service. In Proc. of the IFIP Intl. Conf.
on Distributed Systems Platforms and Open Distributed Pro-
cessing, pp 55–70, Sept. 1998.

[41] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web publishing
system. In Proc. of the 9th USENIX Security Symp., pp 59–
72. Aug. 2000.

[42] T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret re-
distribution for threshold sharing schemes. Technical Report
CMU-CS-02-114-R, Sch. of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213, Sept. 2002.

[43] J. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. W. Bigrigg,
S. Oguz, K. Tew, C. Williams, G. R. Ganger, and P. K.
Khosla. Selecting the right data distribution scheme for a sur-
vivable storage system. Tech. Rep. CMU-CS-01-120, Sch. of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, May 2001.

[44] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kiliççöte, and P. K. Khosla. Survivable information stor-
age systems. IEEE Computer, pp 61–68, Aug. 2000.

[45] L. Zhou, F. B. Schneider, and R. van Renesse. APSS: Proac-
tive secret sharing in asynchronous systems. In preparation.

[46] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A
secure distributed on-line certification authority. ACM Trans.
Comput. Syst., 20(4):329–368, Nov. 2002.

12

Proceedings of the First International IEEE Security in Storage Workshop (SISW’02)
0-7695-1888-5/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

