
Experience with the Larch Prover

Jeannette M. Wing and Chun Gong
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

March 8, 1990

1. Experimental Goals and Summary

Many people have argued the importance
of mechanical theorem-proving for reasoning
about programs. Proving the correctness of
programs by hand is usually hard and error-
prone. People often miss boundary cases or
forget to state hidden assumptions. On the other
hand, can current mechanical theorem provers
deal with a wide scope of non-trivial problems?
Here, the question of scale is in diversity of
problems as well as in complexity of each prob-
lem. Some provers are more suitable for one
class of problems than others and all provers
have space and time bounds that set practical
limits on the size of an individual problem that
can be handled.

This position paper summarizes our expe-
rience 1181 using the Larch Prover (LP) (61
as a mechanical aid for proving properties of
Avalon/C++ programs [5]. Avalon/C++ is a
programming language that deals with concur-
rency and faults. Its semantics are based on a
client/server model of distributed transactions.
The Larch Prover is a proof checker based on
rewrite-rule theory. It is more than a rewrite-
rule engine, but not quite a general-purpose
first-order logic theorem prover. ’

We
view our application of LP to Avalon/C++ from
two ways. From the Avalon/Ci+ viewpoint, we
consider how LP can help in the proofs of non-
trivial properties like atomicity, the basic cor-

‘We have implemented AvaIon/C++ at CMU as an ex-
tension of C++ [171, using the Camelot transaction facility
[161 for its runtime system. The Larch Prover was imple-
mented at MIT.

rectness condition that must be shown of each
Avalon/C++ object. From the LP viewpoint, we
consider how LP fares on a non-trivial exam-
ple like an Avalon/Ci+ program. Our example
is different from those which LP-like checkers
are traditionahy good at or designed for (e.g.,
groups, sets, and other algebraic structures), and
from those drawn from domains, such as hard-
ware and operating system kernels, addressed
before by LP and other checkers such as Gypsy
[8], LCF [Xl], HOL [9], and Clarke’s model
checker [2].

We began our specification and proof exer-
with the following general goals in mind:

To see how amenable Avalon-like proper-
ties are to specification and proof within
the Larch framework [ll];

To see what can be gained in our under-
standing of Avalon through the use of ma-
chine aids; and

To determine the limitations of one of the
state-of-the-art mechanized proof check-
ers.

When we began, we were familiar with and
knowledgeable about both the specificand do-
main, Avalon/C++, and the specification lan-
guage, Larch; one of us (IMW) was involved in
the design of both. Our knowledge of LP at first
was only superficial, but not naive. As a quick
summary, we conclude that the Larch speci-
fication language is best suited for describing
theories of underlying Avalon/C++ data types,
but less suited for describing globai properties
of Avalon/C* computations. Though we did
not gain a deeper understanding of Avalon/Ctt I

Permission to copy without fee all or part of this matenar IS

granted provided that the copies are not made or distributed for
direct commercial advantage; the ACM copyright notice and the

title of the publication and its date appear, and notice is given
Proceedings of the ACM SIGSOFT International

that copying is by permission of the Association for Computing
Workshop on Formal Methods in Software Develop-

Machinery. To copy otherwise, or to republish, requires a fee 1
ment. Napa, California, May 9-11, 1990.

and/or specific permission.
g 1990 ACM 089791.415.5/90/0010-0140...$1.50

140

weigand

weigand

with our use of LP, we were forced to be ex-
tremely explicit about Avalon/C++‘s computa-
tional model and, sometimes more than we felt
necessary, about certain equality and member-
ship relations among objects. Finally, LP’s only
major technical limitation is its inability to han-
dle explicit existential quantification. Its prag-
matic limitation is that its users still have to be
fairly sophisticated. In its favor, LP is a robust,
efficient and well-engineered proof checker.

2. The Experiment and Concrete Results

The Experiment. We encoded in the Larch
Shared Language (LSL) [l I] an implementa-
tion of a FIFO queue written in Avalon/Cte.
In particular, we wrote LSL specifications to
describe the underlying history-based computa-
tional model for Avalon/C++, the queue rep-
resentation (a pair of a partially ordered heap
and a stack), the queue operations (enqueue and
dequeue), constraints on an abstraction funo
tion mapping a representation state to an ab-
stract (queue) “state” (see below), and a queue-
specific correctness condition. We performed a
trivial transformation tiom LSL specifications
to LP input.2 Finally, we used LP to prove the
correctness condition, which essentially states
that all histories (which may have interleaving
queue operations performed by different trans-
actions) preserve the first-in first-out property
of queues.

Results. One concrete result from this exer-
cise is a three-page LSL specification of a one-
page Avalon/C++ implementation of a FIFO
queue. This specification includes an encoding
of Avalon/C++‘s computational model special-
ized for the queue. Since an abstraction func-
tion for Avalon/C++ objects maps a single rep-
resentation state to a set of sequences of abstract
operations, rather than to a single abstract state,
this encoding is non-trivial

Another concrete result is a set of proofs of
properties, ranging from simple, but general
properties about sequences to more complex
and very specific properties about the queue
implementation. The proof transcripts of the
queue’s correctness condition plus all helping

‘Them was no direct interface between the LSL syntax
checker and LF’ at the time we did the experiment.

lemmas came to 168 pages, though the proof
outline (user commands only) of the correct-
ness condition is only one page long.

3. What We Learned and Where to Co
From Here

The specij?cand domain is complex. We knew
this from the start. Going through the exercise
of formally specifying Avalon/C++‘s computa-
tional model and the specific queue example
down to the level of detail that can be used
as input to a proof checker made Avalon/C++‘s
intricacies painstakingly clear. Yes, the speci-
ficand is complex and no amount of machine
assistance is going to make that less complex.

The prover is complex. We used only a small
subset of the full functionality of LP. To use LP
at its fullest and perhaps more effectively than
we did, the user needs to understand concepts
from rewrite-rule theory (e.g., confluence, ter-
mination, convergence, and termination order-
ings), and needs to know the theoretical and
practical implications of invoking each of the
related commands. For example, given a set
of equations and rewrite rules, the complete
command wiIl attempt (by computing all crit-
ical pairs) to find a convergent set of rewrite
rules that decides the equational theory of the
original system. Instead of naively applying
complete to our specifications, which would
certainly exhaust heap space and probably not
terminate, we chose the more conservative and
more manageable strategy of computing spe-
cific sets of critical pairs at “critical” instances
in our proofsP

Proving is like programming. Using LP is
like programming since the user designs a proof
and lets LP execute it. Getting a proof to go
through requires iterations through specification
(of the speciticand), design (of the proof), and
“implementation” (checking the proof). Debug-
ging occurs at all phases. The specitication
changes because not enough has been stated
for the proof to go through. The proof de-
sign changes because the current proof path
leads nowhere or because the specification has
changed.

31nformally, computing critical pairs produces equa-
tional consequences from incomplete rewriting systems.

141

Using a proof checker requires forethought,
patience (human cycles), and machine cycles.
Given mechanical tools for theorem proving,
users may easily be lured into thinking or hop-
ing that the tool will find the proof for them.
A proof checker does not decrease the amount
of thinking required on the user’s part; it can
alleviate some of the bookkeeping and symbol
pushing, but no more.

These conclusions may all sound like plati-
tudes, and are certainly familiar to those who
have worked with proof checkers, but they are
worth repeating. Harder questions to answer ate
how far has theorem proving technology gone,
where is it going, and where should it go? To
what use can we put mechanical theorem prov-
ing tools in practice?

We believe that current mechanical theorem
proving tools can be used today for medium-
sized, well-defined, domain-specific problems,
e.g., hardware circuits [7,3], microprocessors
[13,4], operating systems kernels [l], and se-
cure systems [15]. We suggest two areas of
research to push against our current technolog-
ical limits:

1. To build parallel systems that exploit par-
allel architectures and parahelized versions
of standard theorem-proving algorithms
(like Knuth-Bendix [14]). In theory, it
would have been more convenient to in-
voke the complete command to have LP
produce all consequences by computing all
the critical pairs of our entire Avalon/C++
queue specification. In practice, we would
have paid significant performance penal-
ties. A parallel proving system could in-
stead support a proof strategy in which
relatively independent calculations are per-
formed in parahel, e.g., computing critical
pairs in parallel with executing the main
proof.

2. To build a library of theories that are rele-
vant to computer science. We had to start
from scratch (booleans, sets, sequences,
stacks, etc.) before we could even state the
queue’s correctness condition. with the
exception of the Larch Handbook of Traits
[12], there is a lack of pre-defined reusable
theories for standard mathematical con-
cepts that programmers use or assume.
Ideally such a library of theories would be

reusable across different theorem-proving
tools, but they at least should be general
enough for a variety of applications. They
should also be extensible so that users can
specialize the general theories as well as
add their own application-specific theories.

Though it may be a long time before a pow-
erful enough mechanical theorem proving tool
is built such that software engineers can use it
in practice, pursuing the above two lines of re-
search may help get us there quicker.

Acknowledgments

We thank members of the Larch Project at
MIT and DEC/SRC, in particular Steve Gar-
land, John Guttag, and Jim Homing, for provid-
ing us with LP. All three were extremely helpful
and patient in providing guidance and answer-
ing questions as we used LP. We also thank
members of the Avalon Project, in particular
David Detlefs, for realizing Avalon/C++, and
Maurice Herlihy for his work with us on the
hand-proof of the queue example.

This research was sponsored by the Defense
Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, monitored by the Air
Force Avionics Laboratory Under Contract No.
F33615-87-C-1499. Additional support was
provided in part by the National Science Foun-
dation under grant CCR-8620027. The views
and conclusions contained in this document are
those of the authors and should not be inter-
preted as representing the official policies, ei-
ther expressed or implied, of the Defense Ad-
vanced Research Projects Agency, the National
Science Foundation or the U.S. Government.

142

References

[1] W.R. Bevier. A Verified Operating System
Kernel. Technical Report 11, Computa-
tional Logic, Inc., March 1987.

[2] E.M. Clarke, E.A. Emerson, and A.P.
Sistla. Automatic verification of tinite-
state concurrent systems using tempo-
ral logic specifications. ACM TOPLAS,
8(2):244-263, 1986.

[3] E.M. Clarke and 0. Grumberg. Research
on automatic verification of finite-state
concurrent systems. Ann. Rev. Comput.
Sci., 2:269-290, 1987.

[4] W.J. Cullyer. Implementing safety-critical
systems: the Viper microprocessor. In
VLSI SpeciJication, VeriJication and Syn-
thesis, Kluwer, 1987.

[5] D. L. Detlefs, M. P. Herlihy, and J. M.
Wing. Inheritance of synchronization and
recovery properties in Avalon/C++. IEEE
Computer, December 1988.

[6] S.J. Garland and J.V. Guttag. An overview
of LP, the Larch Prover. In Proceed-
ings of the Third International Confer-
ence on Rewriting Techniques and Appli-
cations, pages 137-151, Chapel Hill, NC,
April 1989. Lecture Notes in Computer
Science 355.

[7] S.J. Garland, J.V. Guttag, and J.
Staunstrup. Verification of VLSI circuits
using LP. In Proceedings of the IFIP WG
10.2, The Fusion of Hardware Design and
Verification, North-Holland, 1988.

[8] D.I. Good, R.L. London, and W.W. Bled-
soe. An interactive program verification
system. IEEE Transactions on Software
Engineering, l(1):59-67, 1979.

[9] M. Gordon. HOL: a proof generating
system for higher-order logic. In VLSI
Specification, Verification and Synthesis,
Kluwer, 1987.

[101 M. J. Gordon, A. J. Milner, and C. P.
Wadsworth. Edinburgh LCF. Volume 78
of Lecture Notes in Computer Science,
Springer-Verlag, 1979.

[11] J.V. Guttag, J.J. Homing, and J.M. Wing.
The Larch family of specification lan-
guages. IEEE Sofhvare, 2(5):24-36,
September 1985.

[123 J.V. Guttag, J.J. Homing, and J.M. Wing.
Larch in Five Easy Pieces. Technical Re-
port 5, DEC Systems Research Center,
July 1985.

[13] W.A. Hunt. The Mechanical Verifica-
tion of a Microprocessor Design. Techni-
cal Report 6, Computational Logic, Inc.,
1987.

[141 Knuth and Bendix. Simple Word Problems
in Universal Algebras, pages 263-297.
Pergamon Press, Elmsford, NY, 1970.

[15] A.P. Moore. Investigating formal spec-
ification and verification techniques for
comsec software security. In Proceedings
of rhe 1988 National Compurer Security
Conference, October 1988.

[16] A.Z. Spector, R. Pausch, and G. Bruell.
Camelot: a flexible, distributed transac-
tion processing system. In Proceedings of
Compcon 88, San Francisco, CA, Febru-
ary 1988.

[17] B. Stroustrup. The C++ Programming
Language. Addison Wesley, 1986.

[181 J.M. Wing and C. Gong. Machine-
Assisted Proofs of Properties of Avalon
Programs. Technical Report CMU-89-
171, Carnegie Mellon University, August
1989.

143

