
On the Horizon
Editors: Nancy R. Mead, nrm@sei.cmu.edu
Gary McGraw, gem@cigital.com

call to arms to the research commu-
nity to look toward the future.

In this article, I outline a few
suggestions for important research
directions: software design, usabil-
ity, and privacy. If we can make any
progress on the first two, we could
make a strong impact. I highlight
the third topic because I think it de-
serves more attention from the sci-
entific and technical communities,
to complement the attention it al-
ready receives from the policy and
legal communities. Because of my
own background in software engi-
neering, I will elaborate more on
the first research direction than the
other two, but I believe all three de-
serve equal attention.

Rationale
I make this call for three reasons:
First, while we will continue to see
today’s code-level attacks, we can
start defending against them, either
by applying static and dynamic
analysis tools or by coding in type-
safe programming languages. We
have the technical solutions in hand
to detect or prevent these attacks; so
it is a matter of deploying them in an
effective, scalable, and practical way. I

do not want to downplay the chal-
lenge in deploying technology, but I
do want to distinguish between hav-
ing and not having the basic science
we need.

Next, security watchdog organi-
zations such as the CERT Coordina-
tion Center (CERT/CC; www.
cert.org), MITRE’s Common Vul-
nerabilities and Exposures (CVE;
http://cve.mitre.org/), and Syman-
tec (www.symantec.com) suggest
that attacks are increasingly sophisti-
cated. As we get better at protecting
our systems, the enemy gets better at
attacking them. This trend likely will
escalate because industry and gov-
ernment have highlighted security’s
growing importance (for example,
Microsoft’s Trustworthy Computing
Initiative and the creation of the US
Department of Homeland Secu-
rity). Thus, we should be anticipat-
ing today what tomorrow’s “buffer
overrun” equivalent will be.

Finally, prevention is the most ef-
ficient defense. We must raise the
bar on ourselves, to deploy systems
that are more secure by design and
more reliably implemented than
those we currently know how to de-
sign and implement. We must con-

tinue to push against the limita-
tions—technical or otherwise—of
the state of the art in securing our
systems. Rather than reacting to at-
tacks, let’s avoid the vulnerabilities
in the first place.

Although focusing our atten-
tion on fixing today’s problems is
easy, the research community must
look beyond the horizon. The
technology we deploy to fix today’s
problems—for example, program
analysis algorithms and strongly-
typed programming languages—is
based on research that started more
than two decades ago. What are we
doing today that will make a differ-
ence for tomorrow?

There is no silver bullet. I’m not
only calling on experienced security
researchers to maintain their relent-
less efforts, but also on researchers
whose experience and expertise is
not in security. Everyone needs to
share the responsibility of making
our systems secure; we cannot “leave
it to the security guys,” especially not
after the fact. We all know it is better
to design and build with security in
mind rather than add it in as an after-
thought. Also, as with much re-
search, technological breakthroughs
likely will come from those who can
bring different and fresh perspectives
to the table.

My highlighting the three areas
of software design, usability, and pri-
vacy does not suggest that they are
the only important ones. My appeal
for help is to the entire research com-
munity, in all areas of computer sci-
ence and related disciplines.

JEANNETTE M.
WING

Carnegie
Mellon
University

T
oday’s most prevalent and widely discussed attacks

exploit code-level flaws such as buffer overruns and

type-invalid input. Now we should turn to tomor-

row’s attacks, and think beyond buffer overruns, be-

yond code-level bugs, and beyond the horizon. This article is a

A Call to Action

62 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY

Look Beyond the Horizon

On the Horizon

Software design
and security
My first call is to the software engi-
neering community. With security
in mind, we must revisit all phases of
the software life cycle: requirements,
design, testing, validation, measure-
ment, and maintenance. I will limit
my remarks here primarily to soft-
ware design.

Looking at software design and se-
curity simultaneously has two poten-
tial benefits. First, the security com-
munity benefits from studying attacks
at a system’s design and architectural
levels, not just at the code level. Sec-
ond, the software-engineering com-

munity benefits because coming up
with generic “design” principles—
for example, to evaluate when one
design is better than another—often
yields results that are too abstract;
coming up with rules specifically for
security has more likelihood of yield-
ing results we can use in practice.
Moreover, we might be able to apply
variations or generalizations of these
specific rules to other nonfunctional
properties such as resource usage and
usability.

Toward
compositional security
Tomorrow’s attacks will exploit vul-

nerabilities at software’s design and
architectural levels, not just at its
data-structure and procedure-call
levels. Design or architectural mis-
matches are potentially exploitable
weaknesses. Often these mismatches
are between a component and its op-
erating environment, for example,
because the component makes as-
sumptions beyond what the envi-
ronment can provide.

A good example of an exploitable
design vulnerability is the Domain
Name Service (DNS) spoofing at-
tack.1 The vulnerable component is
the browser, which operates in the
DNS infrastructure environment. To

http://computer.org/security/ � IEEE SECURITY & PRIVACY 63

Readers motivated by this call to arms to the security research

community can begin to explore the three directions discussed

here by reading the following references and discussing and pub-

lishing their own ideas at the conferences listed here.

Software security design
Books particularly relevant to security design and architecture:

• R. Anderson, Security Engineering, John Wiley & Sons, 2001.

• M. Howard and D. LeBlanc, Writing Secure Code, Microsoft Press, 2003.

• J. Viega and G. McGraw, Building Secure Software: How to Avoid Secu-

rity Problems the Right Way, Addison-Wesley, 2001.

Also, a previous column in “On the Horizon” discussed the

importance of architecture in software security:

• G. McGraw, “From the Ground Up: The DIMACS Software Security

Workshop,” IEEE Security and Privacy, vol. 1, no. 2, 2003, pp. 59–66.

Of note are the following conferences, many of which have

tracks devoted to software security and architecture:

• Foundations of Software Eng., www.isr.uci.edu/FSE-12/cfp.html

• IEEE Symposium on Security and Privacy, www.ieee-security.org/

TC/SP-Index.html

• International Conference on Software Engineering, http://

conferences.iee.org/icse2004/

• ISOC Network and Distributed System Security Symposium,

www.isoc.org/isoc/conferences/ndss/04/

• Usenix Security Symposium, www.usenix.org/events/sec04/

Usability and security
Seminal reference books on usability and security are few.

Interested readers should start with more general usability books.

• J. Nielsen, Usability Engineering, Morgan Kaufmann, 1994

• D.A. Norman, The Design of Everyday Things, Basic Books, 2002

Usability conferences include:

• ACM Computer–Human Interaction, www.acm.org/sigs/sigchi/

• ACM Computer Supported Cooperative Work, www.acm.org/

cscw2002/

Technical treatments of privacy and security
On the privacy front, several active research groups are beginning

to address important technical issues. They include:

• Electronic Privacy Information Center, www.epic.org

• Privacy Forum, www.vortex.com/privacy.html

Groundbreaking technical work in privacy can be found here:

• Freedom to Tinker, www.freedom-to-tinker.com/

• Carnegie Mellon Laboratory for International Data Privacy, http://

privacy.cs.cmu.edu/

• IBM Privacy Research Institute, www.research.ibm.com/privacy/

• Stanford University Privacy and Databases, http://crypto.

stanford.edu/portia/

Some conferences include:

• Computers, Freedom, and Privacy, www.cfp.org/

• IEEE Symposium on Security and Privacy, www.ieee-security.org/

TC/SP-Index.html

Girding yourself for the security research battle

On the Horizon

enforce the policy that an applet must
connect to the same server from
which it originated, Netscape Navi-
gator’s original check used two DNS
name lookups. Let n2a be the many-
to-many relation that maps names to
Internet protocol (IP) addresses, X be
the name of the server from which
the applet originated, and Y be the
name of the server to which the ap-
plet wishes to connect. If the lookup
on both names yields a nonempty in-
tersection of IP addresses, then the
assumption is that X and Y are “the
same server,” and we allow the con-
nection. More succinctly,

if n2a(X) ∩ n2a(Y) ≠ ∅

then ∃x ∈ n2a(X) ∃y ∈ n2a(Y)
such that connect(x, y)

The problem is that we could estab-
lish a connection with any one of
the IP addresses x in n2a(X), per-
haps connecting to a victim IP ad-
dress in n2a(X) but not correspond-
ing to the actual originating server.
The design vulnerability is that
Netscape’s intersection check is too
weak: the existence of a nonempty
intersection says nothing about ma-
chines x and y used in the actual
connection; in particular, x ∈
n2a(X) does not imply n2a(X) ∩
n2a(Y). The Netscape fix—storing
the actual IP address i of the origi-
nating server—eliminates the first
lookup and changes the intersec-
tion check to a membership check,
i ∈ n2a(Y), which, if successful, en-
sures that we connect to the origi-
nating server.

The point here is that the vulner-
ability occurred above the code
level; the code correctly imple-
mented the specified check. While
the burden to patch the vulnerability
was on Netscape, we also could
blame the DNS infrastructure archi-
tecture: it is too easy for someone to
run his or her own domain name re-
solver, too easy for the server n to as-
sociate false n2a bindings for n to ar-
bitrary IP addresses, and too liberal,
though arguably needed for flexibil-

ity, to let n2a be a relation rather than
a many-to-one function. We also
could blame Netscape for its design
decision in using a weak intersection
check. Or, we could blame the am-
biguity of the specification itself
(does “same server” mean same
name or same IP address?).

A different kind of compositional
attack combines several legitimate
acts to produce emergent abusive be-
havior. Even a single legitimate act—
multiplied many times over on the
scale of the Internet—can turn into a
malicious act. A prevalent simplistic
example is a denial-of-service (DoS)
attack. Sending a packet to a host is
perfectly legitimate. A multiplicity
of sends can flood the receiving host,
which then shuts down, denying any
further service. Moreover, multiply-
ing this attack across a range of recip-
ient hosts yields a distributed DoS at-
tack. CERT/CC trends show that
DoS attacks are on the rise and have
surpassed buffer-overrun attacks.

Another example of emergent
abusive behavior is spam: the single
legitimate behavior of sending an
email message multiplied many times
over results in abusive behavior. A
third example is making repeated
queries on small data sets. A slightly
more sophisticated version of this at-
tack class is to use the reach of trusted
third parties such as Google, Amazon,
or eBay to gain a multiplicative factor.

These kinds of attacks are hard to
define, let alone detect, because it is
not clear how many is too many.
Moreover, they can be subjective—
what is spam to one person could be
perfectly acceptable to someone else.
Recovering from them can be costly,
especially if the good name of trusted
third parties is involved. In the ex-
treme, they can cause people to for-
sake the benefits of a useful service to
avoid potential annoyances. We now
are at the tip of the iceberg for this
kind of attack.

Here is a general framework in
which to study the problem of com-
positional security. Let M1 . . . Mn be n
possibly different components, + be a

composition operator, |= be a satisfies
relation, and φ be some desired secu-
rity property. Ideally, we would like
the following implication to hold:

M1 |= φ ∧ . . . ∧ Mn |= φ
⇒ M1 + . . . + Mn |= φ, (1)

which says that if each component
Mi for 1 ≤ i ≤ n satisfies a given prop-
erty φ, then the composition of the n
components also satisfies that prop-
erty. A vulnerability arises when the
interfaces between any two compo-
nents do not match; that is, the two
components do not compose ac-
cording to the meaning of composi-
tion +, for example, an assumption
made by one is not discharged by the
other. Emergent abusive behavior
arises if n grows too large (and, pre-
sumably, φ captures what “too large”
means). What we need to understand
is what we can vary or relax in For-
mula 1: different notions of composi-
tion (+), different notions of satisfies
(|=), and different kinds of properties
(φ). For example, by fixing the first
two (+ and |=), we can ask, “for
what kind of property does the for-
mula hold?” Or by fixing the second
two (|= and φ), we can ask, “for what
relaxed notion of composition can
we guarantee the given property
holds in the composed system?”

This suggested framework in-
tentionally does not fix what a
component is. It can be small (for
example, a procedure or class) or
large (for example, a browser or
database). It can be static (a class in-
terface) or dynamic (a procedural
execution). A browser and a script-
ing engine—each of which might
be secure in its own right—when
composed can lead to an entire cat-
egory of attacks. In the DNS spoof-
ing attack, the interface (or assump-
tions) mismatch is between the
DNS infrastructure and the
browser. In the spam attack, send-
ing an email message satisfies the
desired property (communication
between sender and receiver); send-
ing a multiplicity results in an unde-
sired property (unwanted commu-

64 IEEE SECURITY & PRIVACY � NOVEMBER/DECEMBER 2003

nication between a sender and a
multitude of receivers).

The challenge in achieving com-
positional security is that security is a
global property, yet the only way we
know how to build big systems is by
using smaller pieces. When we put
small pieces together, predicting the
consequences of their composition is
hard. Thus, we need to have ways
that let us model, predict, and evalu-
ate what effects putting components
together have on the composed sys-
tem’s security.

Toward security
design principles
To increase Windows Server 2003’s
security with respect to its predeces-
sors, Microsoft developers abided by
many design principles. The inspira-
tion for many of those principles,
such as defense in depth and princi-
ple of least privilege, comes from the
security community.

To illustrate the benefits of apply-
ing security principles to software
design, consider the security vulner-
ability reported in Microsoft Security
Bulletin MS03-007 of 20 May 2003.
Windows Server 2003 is unaffected
by this vulnerability, but earlier ver-
sions of Windows are. The underly-
ing vulnerability is an unchecked
buffer in ntddl.dll, a core operat-
ing system component. One way to

exploit the vulnerability is to send an
ill-formed Web-based distributed
authoring and versioning (WebDAV)
request to an Internet Information
Services (IIS) 5.0 Web server, thereby
gaining control over it. (WebDAV is
an extension to HTTP that lets au-
thorized users remotely add and
manage content on the Web server.)
Windows Server 2003 was protected
because of a series of design decisions
made at different abstraction layers, as
shown in Table 1.

At the innermost layer, the devel-
opers made the code more conserva-
tive by performing input validation
checks. But even if they had not, at
the next layer, IIS 6.0 in Windows
Server 2003 (compared to IIS 5.0 in
Windows 2000) does not run by de-
fault. Even if it were running by de-
fault, IIS 6.0 does not run WebDAV
by default. Even it did, the ill-formed
URL needed to exploit the
unchecked buffer would have to be
greater than 64 Kbytes and the maxi-
mum URL length IIS 6.0 allows is 16
Kbytes by default. Even if the buffer
were large enough, the process would
halt—rather than run the malicious
code—because of buffer-overrun-
detection code inserted in the com-
piler. Finally, even if there were an ex-
ploitable buffer overrun, the potential
scope of damage would have been
limited because the process would be

running with network-service privi-
leges, which are more restrictive than
administration privileges.

Overall, the example illustrates
the defense-in-depth principle by
applying other design rules such as
Secure by default and principle of
least privilege at each abstraction
layer.2,3 Moreover, it also illustrates
the application of security-related
software design principles—for ex-
ample, check precondition. Here, an
implementer following robust pro-
gramming practice did not assume
that a precondition would hold, but
checked it explicitly in case the caller
had not established it.

These security design principles
are well known for designing secure
systems—for example, where to
place firewalls and intrusion detec-
tion systems. However, we also
should look beyond these principles
and think of new ones specific to is-
sues raised by software: for example,
mobile code, memory management,
interfacing to program libraries, syn-
chronization constraints, race condi-
tions, and architectural software de-
sign. We should find ways to codify
them, ideally, in terms of static
checks, but at least in the form of de-
sign patterns, checklists, or templates.
My call to the software-engineering
community is to use these principles
when designing secure software.

POTENTIAL PROBLEM PROTECTION MECHANISM DESIGN PRINCIPLES

The underlying dll (ntdll.dll) Code was made more conservative during Check precondition

was not vulnerable because… the Security Push.

Even if it were vulnerable… Internet Information Services (IIS) 6.0 is Secure by default

not running by default on Windows Server 2003.

Even if it were running… IIS 6.0 does not have WebDAV enabled by default. Secure by default

Even if Web-based Distributed Authoring The maximum URL length in IIS 6.0 is 16 Kbytes Tighten precondition, secure by

and Versioning (WebDAV) had been enabled… by default (> 64 Kbytes needed for the exploit). default

Even if the buffer were large enough… The process halts rather than executes malicious Tighten postcondition, check

code due to buffer-overrun detection code precondition

inserted by the compiler.

Even if there were an exploitable It would have occurred in w3wp.exe, which is Least privilege

buffer overrun… running as a network service (rather than

as admininstrator). (Data courtesy of David Aucsmith.)

On the Horizon

http://computer.org/security/ � IEEE SECURITY & PRIVACY 65

Table 1. Secure by design.

On the Horizon

Usability
Security is only as strong as a system’s
weakest link.4 Usually, that weakest
link involves the system’s interaction
with a human. Whether the prob-
lem is with choosing good pass-
words, hard-to-use user interfaces,
complicated system-installation and
patch-management procedures, or
social-engineering attacks, the
human link always will be present.

My next call to action is to the
human–computer interaction com-
munity. We must design user interfaces
that make security less obtrusive and
less intrusive.5,6 As computing devices
become ubiquitous, we must hide se-
curity from users but still provide them
control where appropriate. How
much security should we have and
could we make transparent to users?

We also need behavioral scientists
to help computer scientists. Technol-
ogists should design systems with re-
duced susceptibility to social--
engineering attacks. Also, as the
number and nature of attackers
changes in the future, we must un-
derstand attackers’ psychology: from
script kiddies to well-financed politi-
cally motivated adversaries. As bio-
metrics become commonplace, we
also need to understand whether and
how they help or hinder security
(perhaps by introducing new social-
engineering attacks) or help or hin-
der privacy.7

This usability problem occurs at all
system levels: at the top are users who
are not computer savvy but interact
with computers for work or for fun; in
the middle are computer- savvy users
who do not and should not have the
time or interest to twiddle with set-
tings; at the bottom are system admin-
istrators who have the unappreciated
and scary task of installing the latest se-
curity patch without being able to
predict the consequence of doing so.

We need to make it possible for
normal humans to use our comput-
ing systems easily, but securely.

Privacy
My last call is to the general technical

community. Much past privacy re-
search addressed nontechnical ques-
tions. I believe that privacy is the
next big area related to security for
technologists to tackle.

There is no consensus among
technologists on what privacy is,
when it is violated, and so on—let
alone among technologists, govern-
ments, and the general public. Com-
puter scientists in this area must inter-
act with policymakers, legal experts,
and behavioral and social scientists to
get a comprehensive scope of the is-
sues.8 What technical problems are
possible, impossible, or impractical to
solve? What must or should we leave
for law and public policy to solve?

One technical viewpoint is that
preserving privacy means protecting
people from unauthorized informa-
tion uses. Confidentiality—prevent-
ing unauthorized access to informa-
tion—is thus a subcase of privacy.
Technical work on privacy has fo-
cused primarily on ensuring confi-
dentiality by analyzing information
flow—for example, within a state-
machine system model or among
program modules.9,10 We can anno-
tate program variables with sensitiv-
ity labels (nonpersonal, personal, sen-
sitive, and so on) and apply static
analysis techniques to determine in-
formation leaks (for example, assign-
ing a sensitive value to a nonpersonal
variable). While this code-level work
is a promising step in the right direc-
tion, I’m asking the technical com-
munity to address broader questions.

I also would like the theoretical
community to design provably cor-
rect protocols that preserve privacy
for some formal meaning of privacy,
to devise models and logics for rea-
soning about privacy, to understand
what is or is not impossible to achieve
given a particular formal privacy
model, to understand more funda-
mentally what the exact relationship
is between privacy and security, and
to understand the role of anonymity
in privacy (when it is inherently
needed and what the trade-off is be-
tween anonymity and forensics).

I want the software engineering
community to think about software
architectures and design principles
for privacy. The systems community
should think about privacy when de-
signing the next network protocol,
distributed database, or operating
system. I would like the artificial-in-
telligence community to think about
privacy when using machine learn-
ing to do data mining and data fusion
across disparate databases. How do
we prevent unauthorized reidentifi-
cation of people when doing traffic
and data analysis? I hope to see re-
searchers in biometrics, embedded
systems, robotics, sensor nets, ubiq-
uitous computing, and vision address
privacy concerns when designing
their next-generation systems.

As a concrete goal, we need
some equivalent of Butler Lamp-
son’s access matrix11 for privacy.
Once we have a formal structure
that can help us think about privacy
from a scientific viewpoint, we can
formally define mechanisms and
policies for privacy, just as we do for
security. We need a characterization
of the direct and hidden relations
among users, their data, their con-
trol over data, their control over sub-
sequent release and use of their data,
and how these relations change over
time. Another concrete goal would
be to relate policy with technology, I
would like to see how we could
codify privacy policies of “fair infor-
mation practices” (notice, choice,
access, security, and redress) and
check them in software.

Privacy is getting a lot of atten-
tion in the press because of home-
land security, computer-assisted
passenger prescreening, radio-fre-
quency identification tags, identity
theft, and so on. It will become
even more important as computing
becomes more ingrained in our
daily lives. Privacy would be at the
heart of our democratic society if
society could trust electronic vot-
ing. Thus, it is a timely opportunity
for scientists to step up to the tech-
nical challenges privacy raises.

66 IEEE SECURITY & PRIVACY � NOVEMBER/DECEMBER 2003

On the Horizon

I view the security problem as a race
between the good guys and the bad

guys. Usually, the good guys are try-
ing to catch up or just stay even. The
security problem is not going to go
away anytime soon; it has been with
us since the computing age began,
and no matter how much money we
throw at it, it won’t completely disap-
pear. The problem is on our radar
screens today because of increased se-
curity demand by businesses and in-
creased awareness by end users (usu-
ally in an unfortunate way—by
having to install a critical update for
the latest security vulnerability).

My call to action is to the good
guys—to look beyond the horizon.
While we continue to slog through
today’s buffer-overrun problems, we
need to stay even with the bad guys,
who are ready to attack at system and
architectural levels. Working together,
keeping our focus on and beyond the
horizon, will ensure we do not fall too
far behind in the security race.

Acknowledgments
Much of my thinking presented in this article
was done during a one-year sabbatical at Mi-
crosoft Research in Redmond, Washington. I
thank Jim Larus, Amitabh Srivastava, Dan
Ling, and Rick Rashid for hosting my visit. I
also thank all the attendees of the UW-MSR-
CMU Software Security Summer Institute
(http://research.microsoft.com/projects/
SWSecInstitute/) for their lively discussions,
which helped sharpen my thoughts. I heard
many of the ideas and examples presented in
this article from some of these participants. In
particular, I thank Tom Longstaff for his sta-
tistics pointing out the growing DoS trend;
Udi Manber for introducing me to the term
emergent abusive behavior; Steve Lipner
for presenting Mike Howard’s slides, which in-
clude Dave Aucsmith’s MS03-007 example;
and Doug Tygar for his talk about privacy ar-
chitectures. Finally, I thank Jon Pincus, my
close working colleague at Microsoft, for our
endless conversations and technical discussions
during my sabbatical. Many of Jon’s ideas, es-
pecially on privacy, are reflected herein.

References
1. D. Dean, E.W. Felten, and DS. Wal-

lach, “Java Security: From HotJava
to Netscape and Beyond,” Proc. 1996
IEEE Symp. Security and Privacy,”
1996, IEEE Press, pp. 190–200.

2. J. Saltzer and M. Schroeder, “The
Protection of Information in Com-
puter Systems,” Proc. IEEE, vol. 63,
no. 9, 1975, pp. 1278–1308.

3. J. Viega and G. McGraw, Building
Secure Software: How to Avoid Secu-
rity Problems the Right Way, Addi-
son-Wesley, 2001.

4. B. Schneier, Secrets and Lies: Digital
Security in a Networked World, John
Wiley & Sons, 2000.

5. M.A. Sasse, S. Brostoff, and D.
Weirich, “Transforming the ‘weak-
est link’—A Human/Computer
Interaction Approach to Usable and
Effective Security, BT Tech. J., vol.
19, no. 3, 2001, pp. 122–131.

6. A. Whitten and D. Tygar, “Why
Johnny Can’t Encrypt,” Proc. 8th
Usenix Security Symp., Usenix,
1999, pp. 169–184.

7. L. Palen and P. Dourish, “Unpack-
ing Privacy for a Networked
World,” Proc. Conf. Human Factors
in Computing Systems, ACM Press,
2003, pp. 129–136.

8. E.W. Felten, “Freedom to Tinker;”
www.freedom-to-tinker.com/
archives.

9. J.A. Goguen and J. Meseguer,
“Security Policies and Security
Models,” Proc. 1982 IEEE Symp.
Security and Privacy, IEEE Press,
1982, pp. 11–20.

10. A. Sabelfeld and Andrew Myers,
“Language-Based Information-
Flow Security,” IEEE J. Selected
Areas in Comm., vol. 21, no. 1,
2003, pp. 5–19.

11. B. Lampson, “Protection,” Operat-
ing Systems Rev., vol. 8, no. 1, 1974,
pp. 18–24.

Jeannette M. Wing is professor of computer
science, associate department head for the
PhD program, and associate dean for aca-
demic affairs at Carnegie Mellon University.
Her research interests include software spec-
ification, verification, and security and pro-
gramming languages and methodology.
She has a PhD in computer science from
MIT. She is an IEEE and an ACM fellow.
Contact her at wing@cs.cmu.edu.

http://computer.org/security/ � IEEE SECURITY & PRIVACY 67

To receive regular updates, email

dsonline@computer.org

d
s
o

n
lin

e
.c

o
m

p
u

t
e

r.o
r
g

IEEE Distributed

Systems Online brings

you peer-reviewed

features, tutorials, and

expert-moderated

pages covering a

growing spectrum of

important topics,

including

❍ Grid Computing

❍ Mobile and

Wireless

❍ Distributed

Agents

❍ Security

❍ Middleware

❍ and more!

IEEE Distributed

Systems Online

supplements the

coverage in IEEE

Internet Computing

and IEEE Pervasive

Computing. Each

monthly issue includes

magazine content and

issue addenda such as

interviews and tutorial

examples.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

