
Proving Correctness of a Controller Algorithm for the RAID Level 5

System�

Mandana Vaziriy, Nancy Lynchy and Jeannette Wingz

yLaboratory for Computer Science zComputer Science Department

Massachusetts Institute of Technology Carnegie Mellon University

Cambridge, MA 02139 Pittsburgh, PA 15213

Abstract

Most RAID controllers implemented in industry are
complicated and di�cult to reason about. This com-
plexity has led to software and hardware systems that
are di�cult to debug and hard to modify. To overcome
this problem Courtright and Gibson have developed a
rapid prototyping framework for RAID architectures
which relies on a generic controller algorithm [1]. The
designer of a new architecture needs to specify parts of
the generic controller algorithm and must justify the
validity of the controller algorithm obtained. However
the latter task may be di�cult due to the concurrency
of operations on the disks. This is the reason why it
would be useful to provide designers with an automated
veri�cation tool tailored speci�cally for the RAID pro-
totyping system.

As a �rst step towards building such a tool, our
approach consists of studying several controller algo-
rithms manually, to determine the key properties that
need to be veri�ed.

This paper presents the modeling and veri�cation
of a controller algorithm for the RAID Level 5 System
[5]. We model the system using I/O automata [6], give
an external requirements speci�cation, and prove that
the model implements its speci�cation. We use a key
invariant to �nd an error in a controller algorithm for
the RAID Level 6 System [5].

1 Introduction
Most RAID controllers implemented in industry are

complicated and di�cult to reason about. This com-
plexity has led to software and hardware systems that
are di�cult to debug and hard to extend. To overcome
this problem Courtright and Gibson have developed a
rapid prototyping framework for RAID architectures

�This work was supported by DARPA contracts F19628-95-
C-0118 and F30602-97-2-0031, and AFOSR contract F49620-
97-1-0337.

which relies on a generic controller algorithm [1]. The
designer of a new architecture needs to specify parts of
the generic controller algorithm and must justify the
validity of the controller algorithm obtained. However
the latter task may be di�cult due to the concurrency
of operations on the disks. This is the reason why
it would be useful to provide designers with an au-
tomated veri�cation tool tailored speci�cally for the
RAID prototyping system.

As a �rst step towards building such a tool, our
approach consists of studying several controller algo-
rithms manually, to determine the key properties that
need to be veri�ed.

This paper presents the correctness of a controller
algorithm [5] for the RAID Level 5 system. We chose
this architecture because of its popularity, as well as
for its relative simplicity.

Our method consists of modeling the controller for-
mally, giving an external requirements speci�cation
and proving that the model satis�es its speci�cation.

Our study results in a key invariant for the con-
troller that can be generalized for other architectures.
We use this invariant to �nd an error in a RAID Level
6 controller [5].

The outline of the paper is as follows. Section
2 gives background on RAID systems. Section 3
presents the RAID Level 5 system informally. Sec-
tion 4 gives conventions used throughout the paper.
Section 5 describes the speci�cation and Section 6 our
model of RAID Level 5. Section 7 presents the proof of
correctness and Section 8 the extension of our work to
the study of RAID Level 6, as well as the error found.
Finally, Section 9 is a summary of our conclusions and
future work.

2 RAID Systems

RAID or Redundant Arrays of Inexpensive Disks
were developed in the 1980's to address the need for

secondary storage systems with higher performance
[9].

A RAID system is composed of a disk array, and
a disk array controller. The controller's function is to
receive an operation from the user of the disk array,
and to carry it out by performing a set of low-level
operations (or low-level op) on speci�c disks.

When the number of disks increases in a disk array,
the availability of data and the reliability of the disk
array may decrease dramatically [4]. We consider in-
dependent catastrophic disk failures, i.e., disk failures
in which all data stored on the disk becomes inaccessi-
ble and the disk cannot be written any further. RAID
systems are designed to be fault-tolerant by storing re-
dundant data [3] on extra disks and to tolerate 1 or 2
disk failures. The redundancy can be an identical copy
of each disk, also known as disk mirroring, or it can
involve having a parity disk [9], for n disks containing
data. The parity disk contains blocks, called parity
blocks, that cover groups of n blocks independently
stored. A set of n blocks along with the parity block
that covers them is called a parity group. The par-
ity block is computed by performing a bit-wise XOR
on the blocks it covers. Given any set of n blocks,
the (n+1)st block can be recovered by performing an
XOR on the n blocks.

There are several RAID architectures that are clas-
si�ed into �ve \levels" [9]. Di�erent RAID architec-
tures can be distinguished based on their type of en-
coding, mapping and algorithms used to access data.
The encoding indicates the type of redundancy infor-
mation used, and the mapping the placement of data
and redundant information on the disk array.

Algorithms used to access data can be classi�ed as
normal-mode and failed-mode ones. In normal-mode,
the controller knows about failed disks, if any, and
operates on the disk array with this knowledge. In
failed-mode, a disk failure has occurred in the middle
of controller operation. The controller then needs to
recover from the error and complete the operation.
This process is called error recovery.

Most RAID architectures use forward error recov-
ery. This scheme consists of transitioning from a state
in which an error has occurred in the middle of con-
troller operation directly to completion. This method
involves enumerating a large number of erroneous
states. Furthermore it results in architecture-speci�c
controller algorithms, making extension to new archi-
tectures di�cult.

To overcome this problem, Courtright and Gibson
propose a form of backward error-recovery method [1],

based on retry1. When an error is encountered, the
state of the system is modi�ed to note which disk has
failed, and the operation is retried based on the new
state.

In this approach, operations are represented as Di-
rected Acyclic Graphs (DAGs). Each node in a DAG
is a low-level op to be performed on a disk or a low-
level op that computes data.

Courtright and Gibson's method of error recovery
[1] has two requirements. First, each low-level op must
be idempotent, which ensures that a low-level op that
is executed several times has the same e�ect as if it is
executed only once. Secondly, the execution of DAGs
must leave the array in a consistent state, that is the
redundant information must be correct.

Due to the concurrency of low-level ops and the
existence of failures, reasoning about the correctness
of an algorithm using Courtright and Gibson's error
recovery method may be di�cult. This task would be
easier if an automated veri�cation tool were provided.

As a �rst step towards building such a tool, our
approach consists of studying several controller algo-
rithms manually. This paper studies the correctness
of a controller algorithm [1] for the RAID Level 5 sys-
tem [5], that uses Courtright and Gibson's error re-
covery method. We chose this architecture because of
its popularity, as well as for its relative simplicity.

We model the algorithm using I/O automata [7],
and give an external requirements speci�cation. We
then prove that the model implements its speci�ca-
tion, in the sense that there exists a simulation rela-
tion [7] from the model to its speci�cation.

3 Informal Description of the RAID

Level 5 System

RAID Level 5 [5] uses parity and can tolerate
one disk failure. In this architecture, data is block-
interleaved and parity blocks are distributed among
all the disks in the array. A parity block is the bit-
wise XOR of all the blocks it covers. We assume that
there are n+ 1 disks in the array.

The controller receives read and write operations
from the environment sequentially. Note that each op-
eration requires low-level reads and writes to be per-
formed concurrently on the disks. For each operation
it �gures out where the data to be read/written is
located in the array, and what parity groups are con-
cerned. For each parity group, the controller chooses
an algorithm for carrying out the operation and starts
executing it. If a disk needed in an algorithm fails

1Courtright has since moved on to a similar but di�erent
error recovery method called roll-away error recovery [2]

i0RD

RD im-1

Figure 1: DAG1, Fault Free Read DAG.

RD 0

RD f-1

RD f+1

RD n

XOR

Figure 2: DAG2, Degraded Read DAG.

while the algorithm is running, then the controller
stops the execution of that algorithm and chooses an-
other one to complete the operation. The controller
assumes at most one failure.

Disk array algorithms are represented as Directed
Acyclic Graphs (DAGs). Each node in a DAG repre-
sents a disk read or write or an XOR. All the low-level
ops of a single DAG refer to a unique parity group and
represent reads and writes to disk sectors. In a read
DAG, we denote the indices of disks to be read by i0
to im�1 in an arbitrary order, where m is an integer
such that 0 � m < n. Similarly, in a write DAG, we
denote the indices of disks to be written by i0 to im�1.
In this case, im to in�1 represent indices of disks not
to be written. We denote the index of the failed disk
by f. In the DAGs, the notation RD i means read
disk with index i (similarly for WR i). DAGs and the
criteria for choosing them are described below.

DAGs and DAG selection Figures 1 through 6
present the DAGs. Note that these are informal and
do not contain information about how to compute par-
ity blocks. We do not give formal semantics for these
DAGs. An arrow from node A to node B indicates that
node A must be performed before node B. Low-level
ops are atomic. Moreover, if a low-level op fails be-
cause of a disk failure, then the DAG stops executing
and the controller chooses another DAG to complete
the operation.
Fault Free Read (DAG1, Figure 1) The Fault-

Free Read DAG is used when there is no failure among
the disks to be read. It consists of reading disks con-

RD i0

RD n

WR i0

WR im-1

XOR WR n

im-1RD

Figure 3: DAG3, Small Write DAG

RD n-1

WR i0

WR im-1

WR n

RD im

XOR

Figure 4: DAG 4, Large Write DAG, no failure

taining the data to be read directly.

Degraded Read (DAG2, Figure 2) The Degraded
Read DAG is used when one of the disks to be read has
failed. It consists of reading the entire array, except
the failed disk, and reconstructing the missing data,
by taking the bit-wise XOR of the data read.

Small Write (DAG3, Figure 3) The Small Write
DAG is used in the absence of failures, when less than
half of the array is to be written. In the presence of
a failure in a disk that is not to be written, the Small
Write is also used regardless of the number of disks to
be written. It consists of reading the old data on the
disks to be written and the parity, computing the new
parity and writing the new parity and the new data.
The new parity is the bit-wise XOR of the old data,
the new data and the old parity.

Large Write, absence of failure (DAG4, Fig-
ure 4) DAG4 is chosen when there are no failures and
more than half of the array is to be written. DAG4
consists of reading the data from the disks that are not
to be written, computing the parity from the data read
and the data to be written and writing the new par-
ity and data. In DAG4, there is an antecedence from
each read to each write. Without these antecedences,
there exists an execution of the DAG that leaves the
disk array in an inconsistent state and no DAG can
restore consistency. For example, assume that these
antecedences were not there. DAG4 may start by writ-
ing a disk, and a disk not to be written fails. In this
case, the parity group being modi�ed cannot be re-
stored to a consistent state, because a disk has failed,
another one has been modi�ed and the parity contains

RD im

RD n-1

WR i0

WR f-1

WR f+1

WR n

WR im-1

XOR

Figure 5: DAG5, Large Write DAG, failure in disk to
be written.

WR i0

WR im-1

Figure 6: DAG6, Large Write DAG, parity failure.

old information. Thus the antecedences are needed.
Large Write, failure in disk to be written

(DAG5, Figure 5) In the presence of a failure in a
disk that is to be written, DAG5 is used regardless of
the number of disks to be written. DAG5 is identical
to DAG4 except that the failed disk is not written.
Large Write, failure in parity disk (DAG6, Fig-

ure 6) DAG6 is used when the parity disk has failed.
It consists of writing the disks to be written directly.

4 Conventions
In this section, we introduce the notation we use

throughout the paper. We use the type V = f0,1g
to denote values of bits read or written. The sym-
bol ? denotes the unde�ned value, and ?+ denotes
a marked version of the unde�ned value. The usage
of the latter will become apparent when we introduce
the models. The type V+ denotes V [f?+g. We de-
�ne the ordering relation � on V+ [f?g as follows:
v � v0 , (v = v0) _ (v 2 f?;?+g ^ v0 2 f0; 1g).

We next de�ne types needed for the indices of disks.
We use I to denote the set f0, ..., n�1g and In the set
I [fng. B is the set of all subsets of I, and Bn the set
of all subsets of In. We de�ne the following operators,
for B 2 B, Bco = I�B and Bn = B[fng. We use the
notation Bco

n to denote (Bco)n. We use the shortcut
notation B=j to denote B=fjg (where = denotes set
di�erence), for B 2 Bn and j 2 In [fnoneg. In
this notation, j intuitively represents a disk that has

failed. The value none represents no failure. So B=j
intuitively means all indices in B except the one that
has failed, if any.

Finally, P is the set of all partial functions from I
to V+. Likewise, Pn is the set of all partial functions
from In to V+. We use the symbol ? to represent the
unde�ned value for a partial function. P0 of type P
is such that 8i 2 I, P0[i] = ?. Similarly, Pn0 of type
Pn is such that 8i 2 In, Pn0[i] = ?.
We also de�ne the following functions.

� For P 2 Pn, indices(P)= fi j P [i] 2 Vg, and

�

L
P =

� L
i2indices(P) P [i] if indices(P) 6= ;,

0 otherwise.

We also introduce the following shortcuts for the
code in our models. For P 2 Pn, B 2 Bn and v 2 V+,
P (B) := v is equivalent to the following piece of code:
for all i 2 B do P [i] := v od .

For P 2 Pn, Q 2 P , P := Q is equivalent to the
following piece of code:
for all i 2 I do P [i] := Q[i] od ; P [n] := ?

5 Speci�cation
In this section, we describe the speci�cation, Spec,

for the system using I/O Automata [7]. Spec makes
the assumption that there are n bits, indexed from
0 to n � 1 that can be read or written. It captures
the property that the value returned on a read from
a bit corresponds to the last write to that bit, or an
arbitrary value if no write has been performed. It in-
teracts with an environment automaton Env, which
requests one operation at a time. We use Spec0 to
denote the composition of Spec with Env. Thus the
inputs in Spec0 happen one at a time, and each in-
put is submitted until after the previous one has been
processed.

Figure 7 presents the model for the speci�cation.
Underlined variables and statements are not part of
the basic model. These variables are history variables
and will be introduced below. The model has the ex-
ternal interface shown in Figure 7.

Spec has the following state variables. Bit is an
array of n bits, indexed from 0 to n� 1, initially arbi-
trary. ReadPairs is of type P and is initially P0. It is
used to record what bits need to be read. WritePairs
is of type P and is initially P0. It is used to record
what bits and values need to be written. pc ranges
over fidle,read,writeg and is initially idle.

Spec works as follows. Read(B) is an input from
the environment. It has the e�ect of placing a place-
holder ?+ in ReadPairs for every index that needs

Spec

Signature

Inputs:

Read(B) B 2 B
Write(P) P 2 P

Internals:
read(i) i 2 I
write(i,v) i 2 I, v 2 V

Outputs:

ReadBack(P) P 2 P
WriteOK

State

Bit Array of n bits, indexed from 0 to n-1,
initially arbitrary.

ReadPairs P, initially P0.
WritePairs P, initially P0.
pc fidle,read,writeg, initially idle.

Indices B, initially empty.
WritePairsPerm P, initially P0.

Transitions

Read(B)
E�:

ReadPairs(B) := ?+

pc := read
Indices := B

read(i)
Pre:
pc = read
ReadPairs[i] = ?+

E�:

ReadPairs[i] := Bit[i]

ReadBack(P)
Pre:
pc = read
8i 2 I, ReadPairs[i] 6= ?+

P = ReadPairs
E�:
ReadPairs := P0
pc := idle
Indices := fg

Write(P)
E�:

WritePairs := P
pc := write
Indices := indices(P)
WritePairsPerm := P

write(i,v)
Pre:
pc = write
WritePairs[i] = v,

where v 2 V
E�:

WritePairs[i] := ?
Bit[i] := v

WriteOK
Pre:
pc = write
WritePairs = P0
E�:

pc := idle
Indices = fg

WritePairsPerm := P0

Figure 7: I/O Automaton for Spec.

to be read. Upon receiving a Read(B) input, the au-
tomaton performs a series of internal read(i) actions
to perform the read. Each such action reads Bit[i]
and records that value in ReadPairs. When all bits
that had to be read have been read, the automaton
performs a ReadBack(P) output, where P is identi-
cal to ReadPairs. This action resets state variables.
Write(P) is the other input from the environment. It
has the e�ect of setting the variable WritePairs to P ,
thereby recording which bits need to be written with
what values. Upon receiving a Write(P) input, the
automaton performs a series of internal write(i,v) ac-
tions to perform the writes. Each such action writes
value v to Bit[i] and sets WritePairs[i] to ?. When
WritePairs has no more values to be written, the au-
tomaton performs a WriteOK output, which sets pc
back to idle.

We add the following history variables to Spec. The
modi�ed automaton is shown in Figure 7. The changes
are shown by underlining. These variables are useful
for the main proof of correctness. The �rst one is
Indices of type B, initially empty. Actions Read(B)
and Write(P) set it and ReadBack(P) and WriteOK
reset it. It records what bits need to be read during
a read operation and what bits need to be written
during a write. The second one is WritePairsPerm of
type P , initially P0. It records bits and values to be
written during a write operation. It does not change as
the write progresses. Actions Write(P) and WriteOK
modify it.

6 Model for the RAID Level 5 System

In this section, we give our model for the RAID
Level 5 System. The model makes the following as-
sumptions. First, the controller uses the same set of
DAGs on every parity group and two DAGs on dif-
ferent parity groups do not interfere with each other's
execution. Therefore it is su�cient to show that the
controller's behavior is correct on one parity group.
Thus the model assumes a single parity group consist-
ing of n+ 1 disks, indexed from 0 to n, where disk n
is the parity disk. Secondly, all parity computations
are bit-wise. Therefore the model assumes one bit per
disk, and this restriction can be removed trivially. Fi-
nally, the model assumes at most one disk failure.

We present the RAID Level 5 model in Figures 8
and 9, and refer to this model as RAID. In the �gures,
underlined variables and statements are not part of the
basic model. These variables are history variables and
will be introduced below.

The external interface of RAID is the same as the
one for Spec. RAID interacts with the same environ-
ment Env as Spec. Env requests one operation at a
time. We use RAID0 to denote the composition of
Env and Spec.

RAID has the following state variables. Disk is an
array of n+1 bits, indexed from 0 to n. This variable
models a single parity group in a physical RAID sys-
tem. Disk[n] models the parity. The values in Disk are
initially such that:

L
0�i�n Disk[i] = 0. Indices is of

type B, initially empty, and is used to hold the indices
of disks to be written or read. ReadPairs is of type Pn,
initially Pn0. It is used to remember values read from
Disk. It is also used to indicate which indices need to

RAID

Signature

Inputs:

Read(B) B 2 B
Write(P) P 2 P

Internals:
read(i), fail(i) i 2 In
write3(i,v), write45(i,v), write6(i,v) i 2 In, v 2 V
chooseDAG1, chooseDAG2
chooseDAG3, chooseDAG4
chooseDAG5, chooseDAG6

Outputs:

ReadBack(P) P 2 P
WriteOK

State

Disk Array of n+1 bits, indexed from 0 to n,

initially such that
L

i
Disk[i] = 0.

Indices B, initially empty.
ReadPairs Pn, initially Pn0.
WritePairs Pn, initially Pn0.
WritePairsPerm P, initially P0.
DAG fnone,chooseR,chooseW,1,2,3,4,5,6g,

initially none
f In [fnoneg, initially none.

VD V, initially 0.
Rec Boolean, initially false.

Transitions

Read(B)
E�:
Indices := B
ReadPairs(B) := ?+

DAG := chooseR

chooseDAG1
Pre:
DAG = chooseR
f 62 Indices
E�:

DAG := 1

chooseDAG2
Pre:
DAG = chooseR
f 2 Indices
E�:

DAG := 2
ReadPairs(Indicesco

n
) := ?+

read(i)
Pre:
DAG 2 f1,2,3,4,5g
i 6= f
ReadPairs[i] = ?+

E�:
ReadPairs[i] := Disk[i]

ReadBack(P)
Pre:
DAG 2 f1,2g
8i 2 Indices=f,

P [i] = ReadPairs[i]
8i 2 Indicesco,

P [i] = ?
8i 2 Indices=f,

ReadPairs[i] 2 V
if DAG = 2
then

8i 2 Indicesco
n

ReadPairs[i] 2 V

P [f] =
L

ReadPairs

�
E�:

ReadPairs := Pn0

Indices := fg
DAG := none
Rec := false

Figure 8: I/O Automaton for RAID with history variables.

be read. WritePairs is of type Pn, initially Pn0. It is
used to remember values that are to be written to Disk
and that have not been written yet. WritePairsPerm
is of type P , initially P0. It is used to remember the
values that are to be written to disks other than the
parity, for the duration of a write operation. DAG
ranges over fnone,chooseR,chooseW,1,2,3,4,5,6g and
indicates which DAG is currently running or whether
a DAG is to be chosen. It is set to none when the
automaton is idle, which is also its initial value. f is of
type In [fnoneg and indicates which disk has failed.
If it is equal to none, then no disk has failed. A failed
disk cannot be read or written any further. This mod-
els the catastrophic failure of disks. f is initially none.

We de�ne the following derived variables for RAID,
which are used in the statement of properties in sub-
sequent sections: All = In=f, and StartedWriting, is
a boolean equivalent to 9i 2 Indices, WritePairs[i] 6=
WritePairsPerm[i].

RAID does not represent DAGs explicitly. DAG
nodes are represented by the actions read(i),
write3(i,v), write45(i,v) and write6(i,v). DAG prece-
dences are represented in the preconditions of low-
level writes. DAG selection is done using actions
chooseDAG1, through chooseDAG6. Note that XOR
nodes in the DAGs are not present in the model as
separate actions, the XORs are computed in the pre-
conditions of low-level writes to Disk[n].

We now explain how RAID works. When RAID
receives a Read(B) input, it records which indices
are to be read in the variable Indices. It also sets
ReadPairs[i], for i 2 B , to ?+. The symbol ?+ is
used as a placeholder. The values read from the disk
array will be placed into this state variable and ?+

will be replaced with values read. When RAID re-
ceives a Write(P) input, it records which indices are
to be written along with corresponding values in vari-
able WritePairs.

After receiving an input, RAID proceeds to choos-
ing a DAG to execute. The selection criteria appear
in the precondition of each chooseDAG action, and is
the same as what we described in Section 3.

chooseDAG actions may change ReadPairs by
putting placeholders for indices to be read. They may
also change WritePairs[n] to ?+, which signi�es that
Disk[n] needs to be written. When Disk[n] is actually
written, then WritePairs[n] is set back to ?.

After a DAG has been chosen it executed by per-
forming low-level read and write actions. The precon-
dition for a low-level read action includes ReadPairs[i]
= ?+, which means that the read needs to be per-
formed and has not been performed yet. The action
records the value read in place of the placeholder ?+.

The preconditions for low-level write actions in-
clude WritePairs[i] 2 V , if i 6= n, and WritePairs[i] =
?+, if i = n. These expressions indicate that the low-

Write(P)
E�:
WritePairs := P
WritePairsPerm := P
Indices := indices(P)
DAG := chooseW

chooseDAG3
Pre:
DAG = chooseW
f = none ^ jIndicesj � n=2
_ f 2 Indicesco

E�:

DAG := 3
ReadPairs(Indicesn) := ?+

WritePairs[n] := ?+

chooseDAG4
Pre:
DAG = chooseW
f = none ^ n=2 < jIndicesj
E�:

DAG := 4
ReadPairs(Indicesco) := ?+

WritePairs[n] := ?+

chooseDAG5
Pre:

DAG = chooseW
f 2 Indices
E�:
DAG := 5
ReadPairs(Indicesco) := ?+

WritePairs[n] := ?+

chooseDAG6
Pre:
DAG = chooseW
f = n
E�:
DAG := 6

write3(i,v)
Pre:

DAG = 3
i 6= n
i 6= f
WritePairs[i] = v, v 2 V
ReadPairs[i] 6= ?+

E�:
WritePairs[i] := ?
Disk[i] := v

WriteOK
Pre:
DAG 2 f3,4,5,6g ^
WritePairs = Pn0

E�:
Indices := fg
ReadPairs := Pn0

WritePairsPerm := P0
DAG := none
Rec := false

if f 2 Indices then

VD :=
WritePairsPerm[f] �

write3(n,v)
Pre:
DAG = 3
n 6= f
WritePairs[n] = ?+

v=
L

ReadPairs

�
L

WritePairsPerm

8i 2 Indicesn
ReadPairs[i] 6= ?+

E�:
WritePairs[n] := ?
Disk[n] := v

write45(i,v)
Pre:
DAG 2 f4,5g
i 6= n
i 6= f
WritePairs[i] = v, v 2 V
8i2 Indicesco

ReadPairs[i] 6= ?+

E�:
WritePairs[i] := ?
Disk[i] := v

write45(n,v)
Pre:
DAG 2 f4,5g
n 6= f
WritePairs[n] = ?+

v =
L

ReadPairs

�
L

WritePairsPerm
8i 2 Indicesco

ReadPairs[i] 6= ?+

E�:
WritePairs[n] := ?
Disk[n] := v

write6(i,v)
Pre:

DAG = 6
i 6= n
WritePairs[i] = v, v 2 V
E�:
WritePairs[i] := ?
Disk[i] := v

fail(i)
Pre:
f = none
E�:

f := i
if ReadPairs[i] = ?+

_ WritePairs[i] 6= ?
then

if DAG 2 fchooseR,1g
then

ReadPairs(Indices) := ?+

DAG := chooseR
�
if DAG 2 fchooseW,3,4g
then
ReadPairs := Pn0

WritePairs :=
WritePairsPerm

DAG := chooseW
�
Rec := true

�

if i 6= n then

VD := Disk[i] �

Figure 9: I/O Automaton for RAID with history vari-
ables (Continued).

level write needs to be performed and has not been
performed yet. The action has the e�ect of setting
WritePairs[i] to ?. The precondition of these actions
also encodes the precedences in DAGs.

If DAG 2 f1,2g and all the appropriate low-level
reads have been performed, then the controller per-
forms a ReadBack(P) output. In the case of DAG2,
this action computes the value of disk f by taking the
XOR of every value in ReadPairs. This variable has
a value in V for every i 2 In except f. Therefore the
value computed for disk f is the XOR of every other
disk. The e�ect of the action is to reset state variables.

If DAG 2 f3,4,5,6g and all the appropriate low-level
writes have been performed, then the controller per-
forms a WriteOK action. Its e�ect is to reset state
variables.

A fail(i) action may occur at most once. It sets vari-
able f to i. The test ReadPairs[i] =?+ _WritePairs[i]
6=? checks whether there is any low-level read or write
on Disk[i] that needs to be executed. In that case,
the action stops the execution of the current DAG by
changing DAG to either chooseR or chooseW, which
causes a new DAG to be chosen using the same rules
as before. Otherwise, DAG remains unchanged.

Finally, we add the following history variables to
RAID. The changes are shown in Figures 8 and 9
by underlining. The �rst one is VD of type V , which
stands for Virtual Disk and is initially 0. It is used to
keep the last value written to a disk, except the parity
disk, if it has failed. VD is updated as indicated in
the �gure. The second one is Rec, which is a boolean,
initially false. It is true when a DAG has stopped
execution because of a failure and a second DAG is
running to complete the operation. Rec is updated by
fail(i), ReadBack(P) and WriteOK.

7 Proof of Correctness
This section presents the proof of correctness. We

show that RAID0 implements Spec0, by showing that
there exists a simulation relation [7] from RAID0 to
Spec0. Section 7.1 presents the key invariant called
consistency. Section 7.2 gives the simulation relation
to be proved. Section 7.3 gives the step correspon-
dence of the proof. The complete formal proof of the
simulation relation is not presented here and appears
in [10].

7.1 Consistency

In this section, we present the consistency property.
A proof of this Lemma appears in [10]. Informally, a
parity group with no failure is consistent, if the XOR
of all bits is equal to 0. If there is a failure at a disk
other that the parity disk, then the XOR of all bits,
except the one that has failed, is equal to the last

value written to the failed bit. Thus consistency can
be expressed as: If f 6= n, then

L
i2All Disk[i] = VD.

Note that if there is no failure then VD = 0.

Lemma 7.1 Consistency In all reachable states of
RAID0, if n 6= f, then:

1. If DAG 2 fnone,chooseR,1,2g _
DAG = chooseW ^ f 62 Indices _ DAG = 4 ^
: StartedWriting, then

L
i2All Disk[i] = VD.

2. If DAG 2 f3,5g _ DAG= 4 ^ StartedWriting,
then

L
ReadPairs�

L
ReadPairs[i]=?+ Disk[i]�

L
i2Indicesco=f Disk[i] =

�
VD if f 62 Indices
0 otherwise

Lemma 7.1 consists of two parts. The �rst part
expresses under what conditions the parity group is
consistent. These conditions are: when the controller
is idle or doing a read operation, when the controller
is about to choose a write DAG and the failed disk, if
any, is not among the disks to be written, and when
DAG4 is executing and it has not started writing. This
last condition is true because of the dependencies in
DAG4 that force all the writes to occur after all the
reads.

When the controller is executing a write DAG and
it has started writing, the parity group is no longer
consistent. The second part of Lemma 7.1 expresses
an invariant relevant to the execution of write DAGs
(3,4,5) that is needed to restore the parity group to
a consistent state when the write operation is done.
Note that the parity group is trivially consistent after
the execution of DAG6, since f = n in that case.

The second property expresses the fact that during
the execution of a write DAG, the XOR of the disks
read, the disks to be read, and the disks not to be writ-
ten except for the failed one, is equal to VD if there is
no failure among disks to be written, and 0 otherwise.
The second property is a technical invariant needed to
prove the �rst.

7.2 Simulation Relation

In this section, we give a relation between states of
RAID0 and Spec0. We need to show that this relation is
a simulation relation. Let s and u be states of RAID0

and Spec0 respectively, and f the following relation.

f(s,u) , f1(s,u) ^ f2(s,u) ^ f3(s,u) ^ f4(s,u)
^ f5(s,u), where f1(s,u) through f5(s,u) are de�ned
below.

� f1(s,u) , 8 i s.t. 0 � i < n
if s.f 6= i then u.Bit[i] = s.Disk[i]
else u.Bit[i] = s.VD

� f2(s,u) , 8i 2 s.Indices
if s.DAG 2 fchooseR,1,2g ^
(s.Rec = false _ i = s.f)
then s.ReadPairs[i] = u.ReadPairs[i]
else s.ReadPairs[i] � u.ReadPairs[i]

� f3(s,u) , 8i 2 s.Indices
if s.DAG 2 fchooseW,3,4,5,6g ^
(s.Rec = false _ i = s.f)
then u.WritePairs[i] = s.WritePairs[i]
else u.WritePairs[i] � s.WritePairs[i]

� f4(s,u) , if s.DAG = none then u.pc = idle
elseif s.DAG 2 fchooseR,1,2g then u.pc = read
else u.pc = write

� f5(s,u) , u.WritePairsPerm =
s.WritePairsPerm ^ u.ready = s.ready.

f1 gives the correspondence between Bit and Disk
variables. If disk i has failed, then u.Bit[i] = s.VD.
f2 and f3 give the correspondence for ReadPairs and
WritePairs variables. If the controller is running a
DAG right after receiving an input (s.Rec = false),
then the variables are equal to their counterparts in
Spec. On the other hand, if a DAG has failed and
the controller is running a second DAG to complete
the operation then the variables are related to their
counterparts with the � relation, de�ned previously
in Section 4. In either case, if a disk i has failed, then
these variables evaluated at i are equal to their coun-
terparts. f4 gives the correspondence between DAG
and pc. f5 gives some trivial equalities.

Theorem 7.2 f is a simulation relation from RAID0

to Spec0.

7.3 Step Correspondence

In order to prove that f is a simulation relation,
we need to show that each execution of RAID0 has
a corresponding execution in Spec0 having the same
external actions. For each transition of RAID0 we need
to give the corresponding sequence of steps in Spec0.
Let s and u be reachable states of RAID0 and Spec0,
respectively, such that f(s,u) = true, and (s,�,s0) is a
transition of RAID0.

� � 2 fRead(B),Write(P)g. Let the correspond-
ing execution fragment be u,Read(B),u0, and

u,Write(P),u0, respectively.

� � = read(i). If s.DAG 2 f3,4,5g _ s.DAG = 2 ^
i 62 s:Indices.
Let the corresponding execution fragment be
none. In this case, the value read by � is not

directly returned to Env. These reads are per-
formed to compute parity or the value of a lost
data being read.

If s.DAG = 1 _ s.DAG = 2 ^ i 2 s:Indices. In
this case, the value read by � needs to be re-
turned directly to Env. Thus Spec0 needs to per-
form a read(i). However it could be that RAID0 is
running a second DAG for the current operation
and that a read(i) has already been performed,
in which case Spec0 has also already performed a
read(i). In this case, u.ReadPairs[i] 2 V , and the
corresponding execution fragment is none. Oth-
erwise it is u,read(i),u0.

� � 2 fwrite3(i,v),write45(i,v),write6(i,v)g, where
i 6= n. Spec0 also needs to perform write(i,v).
However it could be that RAID0 is running a sec-
ond DAG for the current operation and that �
has already been performed, in which case Spec0

has also already performed a write(i,v). In this
case, u.WritePairs[i] = ?, and the correspond-
ing execution fragment is none. Otherwise, it is
u,write(i,v),u0.

� � = ReadBack(P). If s.DAG = 1, then
let the corresponding execution fragment be
u,ReadBack(P),u0.

If s.DAG = 2, then let the corresponding execu-
tion fragment be u,read(s.f),u00,ReadBack(P),u0.
In this case, there is a failure among disks to be
read. In RAID0, reads of failed disks do not occur.
But the value needs to be read in Spec0. We use
the consistency property presented previously, to
argue that RAID0 returns the right value for the
failed disk.

� � = WriteOK. If s.DAG 2 f3,4,6g, then
let the corresponding execution fragment be
u,WriteOK,u0.

If s.DAG = 5, then let the corresponding exe-
cution fragment be u,write(s.f,v),u00,WriteOK,u0,
where v = WritePairsPerm[f]. In this case, there
is a failure among disks to be written. In RAID0,
writes to failed disks do not occur. But the write
needs to be performed in Spec0.

� � 2 ffail(i), chooseDAG1 � chooseDAG6,
write(n,v)g. Let the corresponding execution
fragment be none.

Recall from the introduction that, informally, the
two conditions for correctness are consistency and
idempotency. We indicate in what follows where these

RD i0

RD im-1

RD n1

RD n2

WR i0

WR im-1

WR n2

WR n1XOR

Q

Figure 10: RAID Level 6 - Small Write.

properties are used. Consistency is used to give the
step correspondence for ReadBack(P), in the case
where there is a failure among disks to be read. Idem-
potency of read (write) low-level ops is used for the
step correspondence of read(i) (write(i,v)), in the case
where RAID0 is running a second DAG to complete
an operation and this low-level op has been performed
once before.

8 Extension

We now turn our attention to a controller algorithm
for the RAID Level 6 architecture [5]. We generalize
part of the main invariant, consistency, and use it to
�nd an error in a RAID Level 6 DAG.

8.1 RAID Level 6

RAID Level 6 uses two parity blocks for each group
of n blocks stored on separate disks. It can tolerate
two disk failures. One parity block (n1) is computed
by taking the XOR of all data blocks. The other parity
(n2) is computed using Reed-Solomon codes.

RAID Level 6 uses Courtright and Gibson's error
recovery method analogously to RAID Level 5. It has
DAGs that are similar. In particular the Small Write
DAG is shown in Figure 10. The symbol Q indicates
the computation of n2.

8.2 Error found

We use a generalized version of part of the consis-
tency Lemma to �nd an error in the Small Write DAG,
without performing the entire proof of correctness for
RAID Level 6. Consider the following part of the con-
sistency Lemma (Invariant 1): In all reachable states
of RAID0, if n 6= f and DAG = chooseW ^ f 62 Indices,
then

L
i2All Disk[i] = VD.

Consider the case in which there is a failure in a
disk not to be written. Intuitively, this invariant says
that if the controller is about to choose a write DAG,
then the value implied by the system for the failed
disk (

L
i2All Disk[i]) is equal to the value of the last

write to that disk (VD).

Consequently, for this invariant to be true, it must
be that if a write DAG fails in such a way that there
is a failure among the disks not to be written, then
the value implied by the system for the failed disk is
equal to the value last written to it. In other words,
the failure of a write DAG should not cause the loss
of data in disks not to be written.

We use this idea to �nd an error in the DAG pre-
sented above. Consider a scenario in which, RD i0 and
WR i0 are performed, then disk indexed im (not to be
written) fails. This does not cause the DAG to stop.
But suppose disk i1 then failed as well. In this case,
the DAG stops and a new DAG needs to be chosen
to complete the operation. However the value of disk
im has been lost, because the array has been partially
updated. In addition, when a DAG fails the state is
reset and thus it is impossible to recover the value of
the failed disk.

9 Summary and Future Work
In this paper, we used I/O Automata to model and

verify a controller algorithm for the RAID Level 5 sys-
tem, which uses Courtright and Gibson's error recov-
ery method. By performing this case study, we for-
malized a key invariant, consistency, which helped in
�nding an error in a di�erent more complicated RAID
controller algorithm.

This project started out by a preliminary study us-
ing the model checker SMV [8]. We modeled the DAGs
for RAID Level 5 separately and used the tool to show
that the DAGs preserve consistency. However it be-
came clear that our notion of consistency was not ac-
curate and that we needed to formalize this property.
This led us to the study of the controller algorithm as
a whole.

With the formalization of the consistency invariant
we can envisage a tool that takes a model of a con-
troller algorithm based on Courtright and Gibson's er-
ror recovery, and checks that consistency is preserved
in all reachable states. Such a tool can be built based
on a model checker.

The advantage of such a tool is that it would be
speci�cally tailored to Courtright and Gibson's proto-
typing system. Its users will not need to know about
the formalization of the consistency property and will
not need to reproduce the hand-proof present in this
case study. However hand-proofs are essential at this
stage of the design of the tool, because they allow us to
determine the exact expression of properties to verify.

Courtright credits our work in his PhD thesis [2]
as playing a role in debugging his designs and he en-
courages continued work in this direction, especially
in collaboration with industry partners.

Future work consists of proving correctness of other
RAID controllers using Courtright and Gibson's error
recovery, as well as considering controller algorithms
that use Courtright's latest error recovery method [2].
Finally, we plan to build a special-purpose veri�cation
tool.

References
[1] W. V. Courtright II and G. A. Gibson. \Backward

error recovery in redundant disk arrays." Proceed-
ings of the 20th International Conference for the Re-
source Management and Performance Evaluation of
Enterprise Computing Systems (CMG). December 4{
9 1994, pp. 63{74.

[2] William V. Courtright II, "A Transactional Approach
to Redundant Disk Array Implementation." Dept. of
Electrical and Computer Engineering, Carnegie Mel-
lon University, Pittsburgh, PA, Ph.D. thesis, April
1997.

[3] Garth Gibson. \Redundant Disk Arrays: Reliable,
Parallel Secondary Storage". PhD thesis, University
of California at Berkeley, 1990. Report UCB/CSD
91/613.

[4] G. A. Gibson and D. A. Patterson, \Designing disk
arrays for high data reliability", Journal of Parallel
and Distributed Computing. 17(1-2), 1993, 4-27.

[5] G. Gibson, W. Courtright II, M. Holland, and J. Ze-
lenka, \RAIDframe: Rapid prototyping for disk ar-
rays," Computer Science Technical Report CMU-CS-
95-200, Carnegie Mellon University, 1995.

[6] N. Lynch and M. Tuttle. An Introduction to In-
put/Output Automata. CWI-Quaterly, 2(3): 219-
246, September 1989. Centrum voor Wiskunde en In-
formatica, Amsterdam, The Netherlands.

[7] Nancy A. Lynch, \Distributed Algorithms", Morgan
Kaufmann Publishers, San Mateo, CA, 1996.

[8] K.L. McMillan, \Symbolic Model Checking: an Ap-
proach to the State Explosion Problem", Ph.D. The-
sis, Carnegie Mellon University, 1992, CMU-CS-92-
131.

[9] David A. Patterson, Garth A. Gibson, and Randy
Katz. \A Case for Redundant Arrays of Inexpensive
Disks (RAID)". Proceedings SIGMOD International
Conference on Data Management, 1988, pp. 109-116.

[10] Mandana Vaziri and Nancy Lynch. \Proving Cor-
rectness of a Controller Algorithm for the RAID
Level 5 System". MIT Laboratory for Computer Sci-
ence, Technical Report, December 1997. Available by
anonymous ftp at
ftp://theory.lcs.mit.edu/pub/tds/raid.ps.Z.

