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Abstract. Privacy means something different to everyone. Against a
vast and rich canvas of diverse types of privacy rights and violations,
we argue technology’s dual role in privacy: new technologies raise new
threats to privacy rights and new technologies can help preserve pri-
vacy. Formal methods, as just one class of technology, can be applied to
privacy, but privacy raises new challenges, and thus new research oppor-
tunities, for the formal methods community.

1 Introduction

What is privacy? Today, the answer seems to be “It all depends on whom you
ask.” There are philosophical, legal, societal, and technical notions of privacy.
Cultures differ in their expectations regarding privacy. In some cultures, it is
impolite to ask someone’s age or someone’s salary. Governments differ in their
citizens’ rights to privacy; just witness the difference in privacy among the United
States, the European Union, and China. What an adult thinks as private differs
from what a teenager thinks, and vice versa [1].

New technologies give rise to new privacy concerns. Warren and Brandeis’s
1890 seminal paper, “The Right to Privacy,” was written after photographic
and printing technologies made it easier to share and spread images and text in
public [2]. Skipping ahead a century, with the explosion of the Internet, privacy
is finally getting serious attention by the scientific community. More and more
personal information about us is available online. It is by our choice that we give
our credit card numbers to on-line retailers for the convenience of on-line shop-
ping. Companies like Google, Yahoo, and Microsoft track our search queries to
personalize the ads we see alongside the response to a query. With cloud comput-
ing, we further entrust in third parties the storage and management of private
information in places unknown to us. We are making it easier for others to find
out about our personal habits, tastes, and history. In some cases it is deliberate.
The rise of social networks like Facebook, on-line community sites like Flickr,
and communication tools like Twitter raises new questions about privacy, as
people willingly give up some privacy to enhance social relationships or to share
information easily with friends. At the same time, cyberattacks have increased



in number and sophistication, making it more likely that unintentionally or not,
personal information will fall into the wrong hands.

The National Academies study Engaging Privacy and Information Technol-
ogy in a Digital Age [3] presents a compelling argument for the need for tech-
nology and policy experts to work together in addressing privacy, especially as
new technology raises new privacy concerns. It is our responsibility as scientists
and engineers to understand what can or cannot be done from a technical point
of view on privacy: what is provably possible or impossible and what is practi-
cally possible or impossible. Otherwise, society may end up in a situation where
privacy regulations put into place are technically infeasible to meet.

In this paper, we start in Section 2 by painting a broad picture of the diverse
types of privacy. Against this canvas, we discuss the dual role of technology: how
new technologies pose new threats to privacy (Section 3) and how technologies
can help preserve privacy (Section 4). Finally, focusing on formal methods, as
a specific class of technology, we identify some opportunities and challenges in
using formal methods to protect privacy (Section 5).

2 Types of Privacy Rights and Violations

Philosophers justify the importance of privacy in different ways. Bloustein de-
fends privacy as necessary for human dignity [4]. Others focus on privacy’s role in
enabling intimate relations [5–8] or interpersonal relations in general [9]. Gavison
views privacy as a means of controlling access to the person [10].

Given the numerous philosophical justifications, legal scholars, starting with
Prosser [11], have generally viewed privacy as a collection of related rights rather
than a single concept. Solove in 2006 provided a taxonomy of possible privacy
violations [12]. He collects these related violations into four groups: invasions,
information collection, information processing, and information dissemination.

Invasions represent interference in what is traditionally considered the private
sphere of life. Solove identifies two forms of invasions. The first involves physical
intrusions either upon private property (such as trespassing in the home) or
upon the body (such as blocking one’s passage). The second is decisional inter-
ference, which is interfering with personal decisions. For example, the Supreme
Court of the United States has used the right to privacy to justify limiting
the government’s ability to regulate contraceptives [13, 14], abortion [15], and
sodomy [16] (cf. [17]). However, some view invasions as violations of other rights
such as property and security rights in the case of intrusions [18], or the rights
to autonomy and liberty in the case of decisional interference [19].

Solove’s remaining three groupings of privacy rights are more difficult to
reduce to other rights. They all involve a data subject about whom a data holder
has information. The data holder may commit privacy violations in how he
collects the information, how he processes it, or how he disseminates it to others.

Information collection includes making observations through surveillance and
seeking information through interrogation. Information collection affects privacy
by making people uneasy in how the collected information could be used. Thus,



it is a violation of privacy even if the collected information is never used. Fur-
thermore, interrogation can place people in the awkward position of having to
refuse to answer questions. Even in the absence of these violations per se, in-
formation collection should be controlled to prevent other violations of privacy
such as blackmail.

Even if information is collected in privacy-respecting ways, it can be processed
in ways that violate privacy. Such information processing violations have the
following forms. Aggregation is similar to surveillance in that it makes infor-
mation available, but aggregation does so by combining diffuse pieces of infor-
mation rather than collecting new information. Aggregation enables inferences
that would be unavailable otherwise. Identification, linking information with a
person by way of an identifier, also makes information more available and may
alter how a person is treated. Insecurity makes information more available to
those who should not be granted access such as identity thieves and can also lead
to distortion of data if false data is entered. Secondary uses make information
available for purposes for which it was not originally intended. Exclusion is the
inability of a data subject to know what records are kept, to view them, to know
how they are used, or to correct them. All these forms of information processing
create uncertainty on the part of the data subject. Exclusion directly causes this
uncertainty by keeping information about the information kept on the data sub-
ject secret. The other forms of information processing create this uncertainty by
making information available in new, possibly unanticipated ways. Even in the
absence of more material misuse of the information, such uncertainty can be a
harm in of itself as it forces the data subject to live in fear of how his information
may be used.

After information is processed, the data holder will typically disseminate it
to others for use. Some forms of information dissemination can violate privacy
by providing information to inappropriate entities. A breach of confidentiality
occurs when a trusted data holder provides information about a data subject.
An example would be a violation of patient-physician confidentiality. Disclo-
sure involves not a violation of trust as with confidentiality, but rather the
making of private information known outside the group of individuals who are
expected to know it. Exposure occurs when embarrassing but trivial information
is shared stripping the data subject of his dignity. Distortion is the presenta-
tion of false information about a person. Distortion harms not only the subject,
whose reputation is damaged, but also third parties who are no longer able to
accurately judge the subject’s character. Appropriation is related to distortion.
Appropriation associates a person with a cause or product that he did not agree
to endorse. Appropriation adversely affects the ability of the person to present
himself as he chooses. Increased accessibility occurs when a data holder makes
previously available information more easily acquirable. It is a threat to privacy
as it makes possible uses of the information that were previously too inefficient,
and furthermore, potentially encourage unintended secondary uses. Rather than
disseminating information, blackmail involves the threat of disseminating infor-



mation unless some demand is met. It uses private information to create an
inappropriate power relation with no social benefits.

These types of violations exist independent of technologies. However, tech-
nology plays a dual role in privacy. On the one hand, new technologies can create
new ways of infringing upon privacy rights. On the other hand, new technologies
can create new ways of preserving privacy.

3 Technology Raises New Privacy Concerns

Technological advances normally represent progress. The utility of these ad-
vances, however, must be balanced against any new privacy concerns they cre-
ate. This tension forces society to examine how a new technology could affect
privacy and how to mitigate any ill effects.

The courts often lead this examination. The first important U.S. law review
article on privacy, Warren and Brandeis’s “The Right to Privacy,” was written in
response to the ability of new cameras to take pictures quickly enough to capture
images of unwilling subjects [2]. The advent of wire tapping technology led first
to its acceptance [20] and then to its rejection [21] by the U.S. Supreme Court as
its understanding of the technology, people’s uses of phones, and government’s
obligations to privacy changed. Other new forms of surveillance including aerial
observation [22, 23], tracking devices [24, 25], hidden video cameras [26], and
thermal imaging [27] have all also been studied by courts in the U.S.

New technology has driven governments to create new regulations. The rise
of large computer databases with new aggregation abilities led to the U.S. Fed-
eral Trade Commission’s Fair Information Practice Principles requiring security
and limiting secondary uses and exclusion [28]. In France, the public outcry over
a proposal to create an aggregate government database, the System for Admin-
istrative Files Automation and the Registration of Individuals (SAFARI), forced
the government to create the National Data Processing and Liberties Commis-
sion (CNIL), an independent regulatory agency. The rise of electronic commerce
and the privacy concerns it created resulted in Canada’s Personal Information
Protection and Electronic Documents Act. Privacy concerns about electronic
health records lead to the Privacy Rule under the Health Insurance Portability
and Accountability Act (HIPPA) in the U.S. to mixed results [29]. Each of these
regulations is designed to allow new technologies to be used, but not in ways
that could violate privacy.

Society is still forming its response to some new technologies. For example,
data mining, one technique used for aggregation, has received a mixed reaction.
In the U.S., the Total Information Awareness data mining program was largely
shut down by Congress, only to be followed by the Analysis, Dissemination,
Visualization, Insight and Semantic Enhancement (ADVISE) system, also shut
down. However, rather then banning the practice, the Federal Agency Data
Mining Reporting Act of 2007 requires agencies to report on their uses of data
mining to Congress. Apparently, Congress has not come to a consensus on how
to limit data mining and is still studying the concern on a case by case basis.



4 Technology Helps Preserve Privacy

Some of the new threats to privacy created by technology cannot efficiently
or effectively be addressed by government action alone. Further technological
advances can in some cases provide ways to mitigate these new threats.

In this section, we first give a quick tour through many different technical
approaches used to complement or to reinforce non-technical approaches to pre-
serving privacy (Section 4.1), and then focus in detail on two related classes of
privacy violations, disclosure and aggregation, which have garnered the most at-
tention recently from the computer science community (Section 4.2). We save till
Section 5 our discussion of the role that formal methods, as a class of technology,
can play in privacy.

4.1 A Diversity of Technical Approaches

While a government may legislate punishment for breaching the security of com-
puter systems storing private records, such punishments can at best only dis-
suade criminals; they do not prevent privacy violations in any absolute sense.
Cryptographic-based technologies with provably secure properties (e.g., one-time
pads that guarantee perfect secrecy) or systems that have been formally veri-
fied with respect to a given security property (e.g., secure operating systems
kernels [30–32]) can actually make some violations impossible. Likewise, iden-
tity theft laws might discourage the practice, but digital signatures can prevent
appropriation [33, 34]. Even security technologies, such as intrusion detection
systems and spam filters, which may not have provably secure properties, are
indispensable in practice for mitigating attacks of intrusion.

In some cases, a data subject might not trust the government or third-party
data holders to prevent a violation. For example, political bosses or coercive
agents might attempt to learn for which candidate someone voted. In such cases,
voting schemes that inherently prevent the disclosure of this information, even
to election officials, would be more trustworthy; such schemes have been devel-
oped using cryptography (e.g., [35, 36]) or paper methods inspired by cryptog-
raphy [37]. Political dissidents who wish to hide their online activities can use
onion routing, based on repeated encryption, for anonymous Internet use [38].
Privacy preserving data mining (e.g., [39]) offers the government a way of finding
suspicious activities without giving it access to private information [40, 41]. Van-
ishing data guarantees data subjects that their private data stored in the “cloud”
be permanently unreadable at a specific time; this recent work by Geambasu et
al. [42] relies on public-key cryptography, Shamir’s secret sharing scheme, and
the natural churn of distributed hash tables in the Internet.

Mathematical formulations of different notions of privacy are also useful for
guiding the development of privacy preserving technologies and making it easier
to identify privacy violations. Halpern and O’Neill formalize privacy relevant
concepts such as secrecy and anonymity using logics of knowledge [43]. In re-
sponse to Gavison’s desire for “protection from being brought to the attention
of others” [10], Chawla et al. formalize a notion of an individual’s record being



conspicuously different from the other records in a set [44]; they characterize
this notion in terms of high-dimensional spaces over the reals.

4.2 A Heightened Focus on Disclosure and Aggregation

As Solove notes, aggregation can violate privacy [12]. The form of aggregation
Solove describes is when the data holder combines data from multiple sources.
Another form of aggregation occurs when the data holder publishes a seemingly
harmless data set and an adversary combines this data set with others to find
out information that the data holder did not intend to be learned. In this case,
the adversary commits the violation of aggregation, but the data holder inad-
vertently commits the violation of disclosure. Thus, a responsible data holder
must ensure that any data he releases cannot be aggregated by others to learn
private information.

In the context of databases and anonymization, researchers have studied a
special case of the above attack, called linkage attacks. In its simplest form, a
collection of records, each about an individual, is anonymized by removing any
explicit identifiers, such as names or IP addresses. After a data holder releases
the anonymized database, an adversary compares it to another database that
is not anonymized but holds information about some of the same people in the
anonymized database. If one database holds a record r1 and the second database
holds a record r2 such that r1 and r2 agree on values of attributes tracked by
both databases, then the adversary can infer that the two records, r1 and r2,
refer to the same person with some probability. For example, suppose we know
a person, Leslie, is in two databases: one lists him as the only person who has
the zip code 15217 and who is male; the anonymized one contains only one
person who has the zip code 15217 and is male, and furthermore this person
has AIDS. We may conclude that Leslie has AIDS. This attack works despite
the first database listing no private information (presuming that one’s zip code
and gender are not private) and the second attempting to protect privacy by
anonymization.

In light of the 2006 release of AOL search data, attempts to anonymize search
query logs have shown they are prone to linkage and other attacks as well (e.g.,
see [45, 46]). In the same year Netflix released an anonymized database of rented
movies for its Netflix Prize competition; Narayanan and Shmatikov showed how
to use a linkage-based attack to identify subscriber records in the database, and
thus discover people’s political preferences and other sensitive information [47].

A variety of attempts have been made to come up with anonymization ap-
proaches not subject to this weakness. One such approach, k-Anonymity, places
additional syntactic requirements on the anonymized database [48]. However,
for some databases, this approach failed to protect against slightly more compli-
cated versions of the linkage attack. While further work has ruled out some of
these attacks (e.g., [49–51]), no robust, compositional approach has been found.

A different approach comes from the statistics community. Statistical dis-
closure limitation attempts to preserve privacy despite releasing statistics. (For
an overview see [52].) Two methods in this line of work are based on releasing



tables of data, where entries in the table are either frequencies (counts), e.g., the
number of respondents with the same combination of attributes, or magnitudes,
the aggregate of individual counts. A third method uses microdata, a sanitiza-
tion of individual responses. The public is most familiar with these statistical
approaches since they are the basis for publishing census data, performing med-
ical studies, and conducting consumer surveys. Surveyors collect information on
a large number of individuals and only release aggregations of responses. These
aggregations provide statistically significant results about the problem at hand
(e.g., the efficacy of a new pharmaceutical) while not including information that
an adversary may use to determine the responses of any of the individual re-
spondents.

A more semantic approach originates with Dalenius. He proposed the require-
ment that an adversary with the aggregate information learns nothing about any
of the data subjects that he could not have known without the aggregate infor-
mation [53]. Unfortunately, Dwork proves that if a data holder provides the exact
value of a “useful” aggregate (where “useful” is measured in terms of a utility
function), it is impossible for Dalenius’s requirement to hold [54]. Fortunately,
she with others showed that by adding noise to the value of the statistic, an ad-
versary could be kept from learning much information about any one individual,
leading to the formal definition of differential privacy [55]. This formal work on
differential privacy inspired practical applications such as the Privacy Integrated
Queries (PINQ) system, an API for querying SQL-like databases [56], and an
algorithm for releasing query click graphs [57].

Differential privacy is theoretical work, complete with formal definitions, the-
orems explaining its power, and provable guarantees for systems developed to
satisfy it [54]. While PINQ was developed with the specification of differential
privacy in mind, the development exemplifies “formal methods light” with no
attempt to verify formally that the resulting system satisfies the specification.
This line of work on differential privacy could benefit from formal methods that
enables such verification.

5 Opportunities and Challenges for Formal Methods

Formal methods can and should be applied to privacy; however, the nature of
privacy offers new challenges, and thus new research opportunities, for the formal
methods community.

We start in Section 5.1 with our traditional tools of the trade, and for each,
hint at some new problems privacy raises. We then point out in Section 5.2
privacy-specific needs, exposing new territory for the formal methods community
to explore.

5.1 Formal Methods Technology

All the machinery of the formal methods community can help us gain a more
rigorous understanding of privacy rights, threats, and violations. We can use for-
mal models, from state machines to process algebras to game theory, to model



the behavior of the system and its threat environment. We can use formal logics
and formal languages to state different aspects of privacy, to state desired prop-
erties of these systems, to state privacy policies, to reason about when a model
satisfies a property or policy, and to detect inconsistencies between different pri-
vacy policies. Automated analyses and tools enable us to scale the applicability
of these foundational models and logics to realistic systems. Privacy does pose
new challenges, requiring possibly new models, logics, languages, analyses, and
tools.

Models
In formal methods, we traditionally model a system and its environment and

the interactions between the two. Many methods may simply make assumptions
about the environment in which the system operates, thus focusing primarily on
modeling the system. To model failures, for example, due to natural disasters or
unforeseen events, we usually can get away with abstracting from the different
classes of failures and model a single failure action (that could occur at any
state) or a single failure state.

Security already challenges this simplicity in modeling. We cannot make as-
sumptions about an adversary the way we might about hardware failures or
extreme events like hurricanes. On the other hand, it often suffices to include
the adversary as part of the system’s environment, and assume the worst case
(e.g., treating an adversary’s action as a Byzantine failure).

Privacy may require yet a new approach to or at least a new outlook on
modeling. Privacy involves three entities: the data holder (system), an adversary
(part of the environment), and the data subject. Consider this difference between
security and privacy: In security, the entity in control of the system also has an
inherent interest in its security. In privacy, the system is controlled by the data
holder, but it is the data subject that benefits from privacy. Formal methods
akin to proof-carrying code [58], which requires the data holder to provide an
easy-to-check certificate to the data subject, might be one way to address this
kind of difference.

Privacy requires modeling different relationships among the (minimally) three
entities. Complications arise because relationships do not necessarily enjoy sim-
ple algebraic properties and because relationships change over time. For example
if person X trusts Y and Y trusts Z that does not mean X trusts Z. X needs
to trust that Y will not pass on any information about X to Z. Moreover, if
X eventually breaks his trust relation with Y then X would like Y to forget
all the information Y had about X . This problem is similar to revoking access
rights in security except that instead of removing the right to access information
(knowledge about X), it is the information itself that is removed.

Logics
The success of many formal methods rests on decades of work on defining

and applying logics (e.g., temporal logics) for specifying and reasoning about
system behavior. Properties of interest, which drive the underlying logics needed
to express them, are often formulated as assertions over traces (e.g., sequences



of states, sequences of state transitions, or sequences of alternating states and
transitions).

McLean, however, shows that a class of information-flow properties cannot
be expressed as trace properties [59]. In particular, non-interference, which char-
acterizes when no information flows from a high-level (e.g., top secret) subject
to a low-level (e.g., public) subject [60], cannot be expressed as a property over
a single trace. Non-interference formalizes the notion of keeping secure informa-
tion secret from an adversary. Since secrecy is often a starting point for thinking
about privacy, we will likely need new logics for specifying and reasoning about
such non-trace properties and other privacy properties more generally.

Formal Policy Languages
The privacy right of exclusion requires that data subjects know how their in-

formation will be used. Thus, data holders must codify their practices into pub-
licly available privacy policies. While most of these policies are written in natural
language, some attempts have been made to express them in machine readable
formats. For example, EPAL is a language for expressing policies with the in-
tention of allowing automated enforcement [61]. Other policy languages such as
P3P [62], which has a formal notation, inform website visitors of the site’s pri-
vacy practices and enable automated methods for finding privacy-conscientious
sites [63]. These languages, however, lack formal semantics.

Barth et al. do provide a formal language for specifying notions expressed
in privacy policies such as HIPAA, the Children’s Online Privacy Protection
Act, and the Gramm-Leach-Bliley Act (about financial disclosures) [64]. Their
language uses traditional linear temporal logic and its semantics is based on
a formal model of contextual integrity, Nissenbaum’s philosophical theory of
information dissemination [65]. Much work remains in extending such formal
languages to handle more forms of privacy.

Abstraction and Refinement
Formal methods have been particularly successful at reasoning above the

level of code. That success, however, relies fundamentally on abstraction and/or
refinement. Commuting diagrams allow us to abstract from the code and do
formal reasoning at higher levels of description, but these diagrams rely on well-
defined abstraction functions or refinement relations. Similarly, methods that
successively refine a high-level specification to a lower-level one, until executable
code is reached, rely on well-defined correctness-preserving transformations.

As discussed above, some privacy relevant properties, such as secrecy, are
not trace properties. Furthermore, while a specification may satisfy a secrecy
property, a refinement of the specification might not. Mantel [66], Jürjens [67],
and Alur et al. [68] define specialized forms of refinement that preserve such
secrecy properties. Similarly, Clarkson and Schneider [69] develop a theory of
hyperproperties (sets of properties), which can express information-flow prop-
erties, and characterize a set of hyperproperties for which refinement is valid.
These works just begin to address aspects of privacy; attention to other aspects
may require new abstraction and/or refinement methods.



Policy Composition
Given that different components of a system might be governed by different

policies or that one system might be governed by more than one policy, we
must also provide methods of compositional reasoning: Given two components,
A and B, and privacy policies, P1 and P2, if A satisfies P1 and B satisfies P2,
what does that say about the composition of A and B with respect to P1, P2,
and P1 ∧ P2? Privacy policies are likely in practice not to be compositional.
For example, the National Science Foundation has a privacy policy that says
reviewers of each grant proposal must remain anonymous to the grant proposers;
the National Institutes of Health has a different review policy where the names
of the study (review) group members are known to the grant proposers. For
NSF and NIH to have a joint program, therefore, some compromise between
the policies needs to be made, while still preserving “to some degree” the spirit
of both policies. This general challenge of composition already exists for other
properties such as serializability in databases, feature interaction in telephone
services, and noninterference in security. Privacy adds to this challenge.

Code-level Analysis
Formal methods, especially when combined with static analysis techniques,

have been successful at finding correctness bugs (e.g., [70]) and security vulner-
abilities (e.g., [71, 72]) at the code level. What kind of code-level reasoning could
we do for privacy, either to prove that a privacy policy is preserved or to discover
a privacy violation?

Automated Tools
One of the advantages of formal methods is that formal specifications are

amenable to machine manipulation and machine analysis (e.g., finding bugs or
proving properties). Automation not just helps us catch human errors, but also
enables us to scale up pencil-and-paper techniques.

We need to explore the use of and extensions required for formal methods
tools, such as theorem provers and models checkers, for verifying privacy policies
or discovering privacy violations. While much foundational work in terms of
models, logics, and languages remain, none will become of practical import unless
our automated analysis tools scale to work for realistic systems.

5.2 Privacy-Specific Needs

Statistical/Quantitative Reasoning
The statistical nature of privacy raises a new challenge for formal methods.

For example, aggregating the weights of a large number of individuals into the
average weight is expected to make it difficult for an adversary to learn much
about any one of the individuals. Thus, this form of aggregation can protect the
private information (individual weights) while still providing a useful statistic
(the average weight). In security, information flow is viewed as black and white:
if a flow occurs from high to low, a violation has occurred. In privacy, a “small”
amount of flow may be acceptable since we are unlikely to learn a lot about the



weight of any one person from learning the average of many. While some work
has been done on quantitative information flow (e.g., [73–76]), even the tools
developed from this work would consider the system as violating security (see [77]
for why and an approach that does not), and thus would be inappropriate for a
statistical notion of privacy.

More generally, formal methods may need to be extended to assure statistical
guarantees rather than our traditional black-and-white correctness guarantees. A
hybrid approach would be to combine traditional formal models with statistical
models or formal methods with statistical methods.

Trustworthy Computing: Conflicting Requirements
While trade-offs are hardly new to computer science, privacy raises a new set

of such trade-offs. Trustworthy computing requires balancing privacy with secu-
rity, reliability, and usability. It would be good to have a formal understanding
of the relationships among these properties. For example, we want auditability
for security, to determine the source of a security breach. However, auditability
is at odds with anonymity, a desired aspect of privacy. Thus, to what degree
can we provide auditability while providing some degree of anonymity? (This
is not suggest that security and privacy are opposites: security is necessary for
privacy.) To achieve reliability, especially availability, we often replicate data at
different locations; replicas increase the likelihood that an attacker can access
private data and make it harder for users to track and manage (e.g., delete)
their data. Trade-offs between privacy and usability are similar to those between
security and usability. We want to allow users to control how much of their in-
formation is released to others, but we want to make it easy for them to specify
this control, and even more challenging, to understand the implications of what
they specify and to be able to change the specifications over time.

6 Summary

Privacy touches the philosophy, legal, political, social science, and technical com-
munities. Technical approaches to privacy must be part of the basis in creating
privacy laws and in designing privacy regulations. Laws and policies need to be
technically feasible to implement.

In this paper we focused on the dual role of technology in this vast privacy
space: new technologies cause us to revisit old laws or create new ones; at the
same time, advances in technology can help preserve privacy rights or mitigate
consequences of privacy violations.

Formal methods is a technology that can help by providing everything from
foundational formalizations of privacy to practical tools for checking for pri-
vacy violations. However, we have barely begun to use formal methods to study
privacy in depth; we hope the community is ready to rise to the challenge.
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