
Formalizing and Enforcing Purpose Restrictions in Privacy Policies

Michael Carl Tschantz

Carnegie Mellon University

Email: mtschant@cs.cmu.edu

Anupam Datta

Carnegie Mellon University

Email: danupam@cmu.edu

Jeannette M. Wing

Carnegie Mellon University

Email: wing@cs.cmu.edu

Abstract—Privacy policies often place restrictions on the
purposes for which a governed entity may use personal
information. For example, regulations, such as the Health
Insurance Portability and Accountability Act (HIPAA), require
that hospital employees use medical information for only
certain purposes, such as treatment, but not for others, such as
gossip. Thus, using formal or automated methods for enforcing
privacy policies requires a semantics of purpose restrictions to
determine whether an action is for a purpose or not. We provide
such a semantics using a formalism based on planning. We
model planning using a modified version of Markov Decision
Processes (MDPs), which exclude redundant actions for a
formal definition of redundant. We argue that an action is for a
purpose if and only if the action is part of a plan for optimizing
the satisfaction of that purpose under the MDP model. We
use this formalization to define when a sequence of actions is
only for or not for a purpose. This semantics enables us to
create and implement an algorithm for automating auditing,
and to describe formally and compare rigorously previous
enforcement methods. To validate our semantics, we conduct
a survey to compare our semantics to how people commonly
understand the word “purpose”.

I. INTRODUCTION

Purpose is a key concept for privacy policies. For exam-

ple, the European Union requires that [1]:

Member States shall provide that personal data

must be [. . .] collected for specified, explicit and

legitimate purposes and not further processed in a

way incompatible with those purposes.

The United States also has laws placing purpose restrictions

on information in some domains such as the Health Insur-

ance Portability and Accountability Act (HIPAA) [2] for

medical information and the Gramm-Leach-Bliley Act [3]

for financial records. These laws and best practices motivate

organizations to discuss in their privacy policies the purposes

for which they will use information.

Some privacy policies warn users that the policy provider

may use certain information for certain purposes. For ex-

ample, the privacy policy of a medical provider states, “We

may disclose your [protected health information] for public

health activities and purposes [. . .]” [4]. Such warnings do

not constrain the behavior of the policy provider.

Other policies that prohibit using certain information for

a purpose do constrain the behavior of the policy provider.

Examples include the privacy policy of Yahoo! Email, which

states that “Yahoo!’s practice is not to use the content of

messages stored in your Yahoo! Mail account for marketing

purposes” [5, emphasis added].

Some policies even limit the use of certain information

to an explicit list of purposes. The privacy policy of The

Bank of America states, “Employees are authorized to

access Customer Information for business purposes only.” [6,

emphasis added]. The HIPAA Privacy Rule requires that

health care providers only use protected health information

about a patient with that patient’s authorization or for a fixed

list of allowed purposes, such as treatment and billing [2].

These examples show that verifying that an organization

obeys a privacy policy requires a semantics of purpose

restrictions. In particular, enforcement requires the ability

to determine that the organization obeys at least two classes

of purpose restrictions. Yahoo!’s privacy policy shows an

example of the first class: a rule requiring that an organiza-

tion does not use certain information for a purpose. HIPAA

provides an example of the second class: a rule requiring that

an organization use certain information only for a given list

of purposes. We call the first class of restrictions prohibitive

rules (not-for) and the second class exclusivity rules (only-

for). A prohibitive rule disallows an action for a particular

purpose. An exclusivity rule disallows an action for every

purpose other than the exceptions the rule lists. Each class

of rule requires determining whether the organization’s

behavior is for a purpose, but they differ in whether this

determination indicates a violation or compliance.

Manual enforcement of privacy policies is labor intensive

and error prone [7]. Thus, to reduce costs and build trust,

organizations should automate the enforcement of their pri-

vacy policies; tool support for this activity is emerging in the

market. For example, Fair Warning sells automated services

to hospitals for detecting privacy breaches [7]. Meanwhile,

previous research has proposed formal methods to enforce

purpose restrictions [8]–[15].

However, each of these endeavors starts by assuming that

actions or sequences of actions are labeled with the purposes

they are for. They avoid analyzing the meaning of purpose

and provide no method of performing this labeling other than

through intuition alone. The absence of a formal semantics

to guide this determination has hampered the development

of methods for ensuring policy compliance. Such a defini-

tion would provide insights into how to develop tools that

identify suspicious accesses in need of detailed auditing and

1

algorithms for determining whether an action could be for

a purpose. It would also show which enforcement methods

are most accurate. More fundamentally, it could frame the

scientific basis of a societal and legal understanding of

purpose and of privacy policies. Such a foundation can, for

example, guide implementers as they codify in software an

organization’s privacy policies.
The goal of this work is to study the meaning of pur-

pose in the context of enforcing privacy policies. We aim

to provide formal definitions suitable for automating the

enforcement of purpose restrictions. We focus on automated

auditing since we find that post-hoc auditing by a trusted

auditor provides the perspective often required to determine

the purpose of an action. However, we believe our semantics

is applicable to other enforcement mechanisms and may also

clarify informal reasoning. For example, in Section V-C,

we use it to create an operating procedure that encourages

compliance with a purpose restriction.
We find that planning is central to the meaning of purpose.

We see the role of planning in the definition of the sense of

the word “purpose” most relevant to our work [16]:

The object for which anything is done or made, or

for which it exists; the result or effect intended or

sought; end, aim.

Similarly, work on cognitive psychology calls purpose “the

central determinant of behavior” [17, p. 19]. In Section II, we

present an example making this relationship between plan-

ning and purpose explicit. We (as have philosophers [18])

conclude that if an auditee (the person or organization being

audited) chooses to perform an action a while planning to

achieve the purpose p, then the auditee’s action a is for the

purpose p. Our goal is to make these notions formal in a

manner useful for the automation of auditing.
In Section III, we present a formalism based upon these

intuitions. We formalize planning using Markov Decision

Processes (MDPs) and provide semantics to purpose restric-

tions based upon planning with MDPs. Section IV provides

an auditing method and discusses the ramifications of the

auditor observing only the behaviors of the auditee and not

the underlying planning process of the auditee that resulted

in these behaviors. We characterize circumstances in which

the auditor can still acquire enough information to determine

that the auditee violated the privacy policy. To do so, the

auditor must first use our MDP model to construct all

the possible behaviors that the privacy policy allows and

then compare it with all the behaviors of the auditee that

could have resulted in the observed auditing log. Section V

presents an implemented algorithm for auditing based on our

formal definitions and also shows how to use it to create

an operating procedure that encourages compliance with a

purpose restriction.
To validate our semantics, we perform an empirical study.

In Section VI, we present the results of a survey testing how

people understand the word “purpose”. The survey compares

our planning based method to the prior method based on

whether an action improves the satisfaction of a purpose.

We find that our method matches the survey participants’

responses much more closely than the prior method.
In Section VII, we use our formalism to discuss the

strengths and weaknesses of each previous method. In par-

ticular, we find that each method enforces the policy given

the set of all possible allowed behaviors, which is a set that

our method can construct. We also compare the previous

auditing methods, which differ in their trade-offs between

auditing complexity and accuracy of representing this set of

behaviors. Section VIII discusses other related work.
Our work makes the following contributions:

1) The first semantic formalism of when a sequence of

actions is for a purpose;

2) Empirical validation that our formalism closely corre-

sponds to how people understand the word “purpose”;

3) An algorithm employing our formalism and its imple-

mentation for auditing; and

4) The characterization of previous policy enforcement

methods in our formalism and a comparative study of

their expressiveness.

The first two contributions illustrate that planning can for-

malize purpose restrictions. The next two illustrate that our

formalism may aid automated auditing and analysis. While

we view these results as a significant step towards enforce-

ment of practical privacy policies with purpose restrictions,

we recognize that further work is needed before we will

have audit tools that are ready for use in organizations that

must comply with complex policies. We outline concrete

directions for future work towards this goal in Section IX.

Although motivated by our goal to formalize the notions

of use and purpose prevalently found in privacy policies, our

work is more generally applicable to a broad range of poli-

cies, such as fiscal policies governing travel reimbursement

or statements of ethics proscribing conflicts of interest.

A related technical report offers proofs and additional

details [19].

II. MOTIVATION OF OUR APPROACH

We start with an informal example that suggests that an

action is for a purpose if the action is part of a plan for

achieving that purpose. Consider a physician working at a

hospital who, as a specialist, also owns a private practice that

tests for bone damage using a novel technique for extracting

information from X-ray images. After seeing a patient and

taking an X-ray, the physician forwards the patient’s medical

record including the X-ray to his private practice to apply

this new technology. As this action entails the transmission

of protected health information, the physician will have

violated HIPAA if this transmission is not for one of the

purposes HIPAA allows. The physician would also run

afoul of the hospital’s own policies governing when outside

consultations are permissible unless this action was for a

2

legitimate purpose. Finally, the patient’s insurance will only

reimburse the costs associated with this consultation if a

medical reason (purpose) exists for them. The physician

claims that this consultation was for reaching a diagnosis.

As such, it is for the purpose of treatment and, therefore,

allowed under each of these policies. The hospital auditor,

however, has selected this action for investigation since the

physician’s making a referral to his own private practice

makes possible the alternate motivation of profit.

Whether or not the physician violated these policies

depends upon details not presented in the above description.

For example, we would expect the auditor to ask questions

such as: (1) Was the test relevant to the patient’s condition?

(2) Did the patient benefit medically from having the test?

(3) Was this test the best option for the patient? We will

introduce these details as we introduce each of the factors

relevant to the purposes behind the physician’s actions.

States and Actions: Sometimes the purposes for which

an agent takes an action depend upon the previous actions

and the state of the system. In the above example, whether

or not the test is relevant depends upon the condition of the

patient, that is, the state that the patient is in.

While an auditor could model the act of transmitting the

record as two (or more) different actions based upon the state

of the patient, modeling two concepts with one formalism

could introduce errors. A better approach is to model the

state of the system. The state captures the context in which

the physician takes an action and allows for the purposes of

an action to depend upon the actions that precede it.

The physician’s own actions also affect the state of the

system and, thus, the purposes for which his actions are. For

example, had the physician transmitted the patient’s medical

record before taking the X-ray, then the transmission could

not have been for treatment since the physician’s private

practice only operates on X-rays and would have no use for

the record without the X-ray.

The above example illustrates that when an action is for

a purpose, the action is part of a sequence of actions that

can lead to a state in which some goal associated with the

purpose is achieved. In the example, the goal is reaching a

diagnosis. Only when the X-ray is first added to the record

is this goal reached.

Non-redundancy: Some actions, however, may be part

of such a sequence without actually being for the purpose.

For example, suppose that the patient’s X-ray clearly shows

the patient’s problem. Then, the physician can reach a

diagnosis without sending the record to the private practice.

Thus, while both taking the X-ray and sending the medical

record might be part of a sequence of actions that leads

to achieving a diagnosis, the transmission does not actually

contribute to achieving the diagnosis: the physician could

omit it and the diagnosis could still be reached.

From this example, it may be tempting to conclude that

an action is for a purpose only if that action is necessary to

achieve that purpose. However, consider a physician who,

to reach a diagnosis, must either send the medical record to

a specialist or take an MRI. In this scenario, the physician’s

sending the record to the specialist is not necessary since

he could take an MRI. Likewise, taking the MRI is not

necessary. Yet, the physician must do one or the other and

that action will be for the purpose of diagnosis. Thus, an

action may be for a purpose without being necessary for

achieving the purpose.

Rather than necessity, we use the weaker notion of non-

redundancy found in work on the semantics of causation

(e.g., [20]). Given a sequence of actions that achieves a goal,

an action in it is redundant if that sequence with that action

removed (and otherwise unchanged) also achieves the goal.

An action is non-redundant if removing that action from the

sequence would result in the goal no longer being achieved.

Thus, non-redundancy may be viewed as necessity under an

otherwise fixed sequence of actions.

For example, suppose the physician decides to send the

medical record to the specialist. Then, the sequence of

actions modified by removing this action would not lead to a

state in which a diagnosis is reached. Thus, the transmission

of the medical record to the specialist is non-redundant.

However, had the X-ray revealed to the physician the diag-

nosis without needing to send it to a specialist, the sequence

of actions that results from removing the transmission from

the original sequence would still result in a diagnosis. Thus,

the transmission would be redundant.

Quantitative Purposes: Above we implicitly presumed

that the diagnosis from either the specialist or an MRI had

equal quality. This need not be the case. Indeed, many pur-

poses are actually fulfilled to varying degrees. For example,

the purpose of marketing is never completely achieved since

there is always more marketing to do. Thus, we model a

purpose by assigning to each state-action pair a number

that describes how well that action fulfills that purpose

when performed in that state. We require that the physician

selects the test that maximizes the quality of the diagnosis

as determined by the total purpose score accumulated over

all his actions.

We must adjust our notion of non-redundancy accordingly.

An action is non-redundant if removing that action from the

sequence would result in the purpose being satisfied less.

Now, even if the physician can make a diagnosis himself,

sending the record to a specialist would be non-redundant

if getting a second opinion improves the quality of the

diagnosis.

Probabilistic Systems: The success of many medical

tests and procedures is probabilistic. For example, with

some probability the physician’s test may fail to reach a

diagnosis. The physician would still have transmitted the

medical record for the purpose of diagnosis even if the test

failed to reach one. This possibility affects our semantics of

purpose: now an action may be for a purpose even if that

3

purpose is never achieved.

To account for such probabilistic events, we model the

outcome of the physician’s actions as probabilistic. For an

action to be for a purpose, we require that there be a non-

zero probability of the purpose being achieved and that

the physician attempts to maximize the expected reward. In

essence, we require that the physician attempts to achieve a

diagnosis. Thus, the auditee’s plan determines the purposes

behind his actions.

III. PLANNING FOR A PURPOSE

Now, we present a formalism for planning that accounts

for quantitative purposes, probabilistic systems and non-

redundancy. We start by modeling the environment in which

the auditee operates as a Markov Decision Process (MDP)—

a natural model for planning with probabilistic systems.

The reward function of the MDP quantifies the degree of

satisfaction of a purpose upon taking an action from a state.

If the auditee is motivated to action by only that purpose,

then the auditee’s actions must correspond to an optimal

plan for this MDP and these actions are for that purpose.

We develop a stricter definition of optimal than standard

MDPs, which we call NMDPs for Non-redundant MDP, to

reject redundant actions that neither decrease nor increase

the total reward. We end with an example illustrating the

use of an NMDP to model an audited environment.

A. Markov Decision Processes

An MDP may be thought of as a probabilistic automaton

where each transition is labeled with a reward in addition

to an action. Rather than having accepting or goal states,

the “goal” of an MDP is to maximize the total reward over

time.

An MDP is a tuple m = 〈S,A, t, r, γ〉 where

• S is a finite set of states;

• A is a finite set of actions;

• t : S × A → D(S), a transition function from a state

and an action to a distribution over states (represented

as D(S));
• r : S ×A → R, a reward function; and

• γ, a discount factor such that 0 < γ < 1.

For each state s in S, the agent using the MDP to plan

selects an action a from A to perform. Upon performing the

action a in the state s, the agent receives the reward r(s, a).
The environment then transitions to a new state s′ with

probability µ(s′) where µ is the distribution provided by

t(s, a). The goal of the agent is to select actions to maximize

its expected total discounted reward E
[
∑∞

i=0
γiρi

]

where

i ∈ N (the set of natural numbers) ranges over time

modeled as discrete steps, ρi is the reward at time i, and
the expectation is taken over the probabilistic transitions.

The discount factor γ accounts for the preference of people

to receive rewards sooner than later. It may be thought of

as similar to inflation. We require that γ < 1 to ensure that

the expected total discounted reward is bounded.
We formalize the agent’s plan as a stationary strategy

(commonly called a “policy”, but we reserve that word for

privacy policies). A stationary strategy is a function σ from

the state space S to the set A of actions (i.e., σ : S →
A) such that at a state s in S, the agent always selects

to perform the action σ(s). The value of a state s under

a strategy σ is Vm(σ, s) = E
[
∑∞

i=0
γir(si, σ(si))

]

. The

Bellman equation [21] shows that

Vm(σ, s) = r(s, σ(s)) + γ
∑

s′∈S

t(s, σ(s))(s′) ∗ Vm(σ, s′)

A strategy σ∗ is optimal if and only if for all states s,
Vm(σ∗, s) = maxσ Vm(σ, s). At least one optimal policy

always exists (see, e.g., [22]). Furthermore, if σ∗ is optimal,

then

σ∗(s) = argmax
a∈A

[

r(s, a) + γ
∑

s′∈S

t(s, σ(s))(s′) ∗ Vm(σ, s′)

]

We denote this set of optimal strategies as

opt(〈S,A, t, r, γ〉), or when the transition system is

clear from context, as opt(r). Such strategies are sufficient

to maximize the agent’s expected total discounted reward

despite depending only upon the current state of the MDP.
Given the strategy σ and the actual results of the prob-

abilistic transitions yielded by t, the agent exhibits an exe-

cution. We represent this execution as an infinite sequence

e = [s1, a1, s2, a2, . . .] of alternating states and actions

starting with a state, where si is the ith state that the agent

was in and ai is the ith action the agent took, for all i in

N. We say an execution e is consistent with a strategy σ if

and only if ai = σ(si) for all i in N where ai is the ith
action in e and si is the ith state in e. We call a finite prefix

of an execution a behavior. A behavior is consistent with

a strategy if it can be extended to an execution consistent

with that strategy.
Under this formalism, the auditee plays the role of the

agent optimizing the MDP to plan. We presume that each

purpose may be modeled as a reward function. That is, we

assume the degree to which a purpose is satisfied may be

captured by a function from states and actions to a real

number. The higher the number, the higher the degree to

which that purpose is satisfied. When the auditee wants to

plan for a purpose p, it uses a reward function, rp, such

that rp(s, a) is the degree to which taking the action a from

state s aids the purpose p. We also assume that the expected

total discounted reward can capture the degree to which a

purpose is satisfied over time. We say that the auditee plans

for the purpose p when the auditee adopts a strategy σ that

is optimal for the MDP 〈S,A, t, rp, γ〉.

B. Non-redundancy

MDPs do not require that strategies be non-redundant.

Even given that the auditee had an execution e from using a

4

strategy σ in opt(rp), some actions in e might not be for the

purpose p. The reason is that some actions may be redundant

despite being costless. The MDP optimization criterion

behind opt prevents redundant actions from delaying the

achievement of a goal as the reward associated with that

goal would be further discounted making such redundant

actions sub-optimal. However, the optimization criterion is

not affected by redundant actions when they appear after

all actions that provide non-zero rewards. Intuitively, the

hypothetical agent planning only for the purpose in question

would not perform such unneeded actions even if they have

zero reward. Thus, to create our formalism of non-redundant

MDPs (NMDPs), we replace opt with a new optimization

criterion nopt that prevents these redundant actions while

maintaining the same transition structure as a standard MDP.

To account for redundant actions, we must first contrast

that with doing nothing. Thus, we introduce a distinguished

action Stop that stands for stopping and doing nothing more.

For all states s, Stop labels a transition with zero reward

(i.e., r(s, Stop) = 0) that is a self-loop (i.e., t(s, Stop)(s) =
1). (We could put Stop on only the subset of states that

represent possible stopping points by slightly complicating

our formalism.) Since we only allow deterministic stationary

strategies and Stop only labels self-loops, this decision is

irrevocable: once the agent stops and does nothing, it does

nothing forever. As selecting to do nothing results in only

zero rewards henceforth, it may be viewed as stopping with

the previously acquired total discounted reward.

Given an execution e, let active(e) denote the prefix of

e before the first instance of the nothing actions. active(e)
will be equal to e in the case where e does not contain the

nothing action.

We use the idea of doing nothing to make formal when

one execution contains more actions than another despite

both being of infinite length. An execution e1 is a proper

sub-execution of an execution e2 if and only if active(e1)
is a proper prefix of active(e2) using the standard notion

of prefix. Note if e1 does not contain the nothing action, it

cannot be a proper sub-execution of any execution.

To compare strategies, we construct all the executions they

could produce. To do so, let a contingency κ be a function

from S × A × N to S such that κ(s, a, i) is the state that

results from taking the action a in the state s the ith time.

We say that a contingency κ is consistent with an MDP

if and only if κ only picks states to which the transition

function t of the MDP assigns a non-zero probability (i.e.,

for all s in S, a in A, and i in N, t(s, a)(κ(s, a, i)) > 0).
Given an MDP m, let m(s, κ, σ) denote the execution that

results from using κ to resolve all the probabilistic choices

in m, the agent using the strategy σ, and having the model

start in state s. Henceforth, we only consider contingencies

consistent with the model under discussion.

Given two strategies σ and σ′, we write σ′ ≺ σ if and

only if for all contingencies κ and states s, m(s, κ, σ′) is

a proper sub-execution of or equal to m(s, κ, σ), and for

at least one contingency κ′ and state s′, m(s′, κ′, σ′) is a

proper sub-execution of m(s′, κ′, σ). Intuitively, σ′ proves

that σ produces a redundant execution under κ′ and s′. As
we would expect, ≺ is a strict partial ordering on strategies:

Proposition 1. ≺ is a strict partial order.

We define nopt(r) to be the subset of opt(r) holding only
strategies σ such that for no σ′ ∈ opt(r) does σ′ ≺ σ.
nopt(r) is the set of non-redundant optimal policies.

The MDP model is useful because an optimal strategy is

guaranteed to exist. Fortunately, we can prove that nopt(r)
is also guaranteed to be non-empty. We may prove this result

using reasoning about well-ordered sets, Proposition 1, and

the fact that the space of all possible strategies is finite for

NMDPs with finite state and action spaces.

Theorem 1. For all NMDPs m, nopt(m) is not empty.

C. Example: Modeling the Physician’s Environment

Suppose an auditor is inspecting a hospital and comes

across a physician referring a medical record to his own

private practice for analysis of an X-ray as described in

Section II. As physicians may only make such referrals for

the purpose of treatment (treat), the auditor may find the

physician’s behavior suspicious. To investigate, the auditor

may formally model the hospital using our formalism.

After studying the hospital and how the physician’s

actions affect it, the auditor would construct the NMDP

mex1 = 〈Sex1,Aex1, tex1, r
treat
ex1 , γex1〉 shown in Figure 1. The

figure conveys all components of the NMDP except γex1.

For instance, the block arrow from the state s1 labeled take

and the squiggly arrows leaving it denote that after the agent

performs the action take from state s1, the environment will

transition to the state s2 with probability 0.9 and to state

s4 with probability of 0.1 (i.e., tex1(s1, take)(s2) = 0.9
and tex1(s1, take)(s4) = 0.1). The number over the block

arrow further indicates the degree to which the action

satisfies the purpose of treat. In this instance, it shows that

rtreat
ex1 (s1, take) = 0. This transition models the physician

taking an X-ray. With probability 0.9, he is able to make

a diagnosis right away (from state s2); with probability

0.1, he must send the X-ray to his practice to make a

diagnosis. Similarly, the transition from state s4 models

that his practice’s test has a 0.8 success rate of making a

diagnosis; with probability 0.2, no diagnosis is ever reached.

For simplicity, we assume that all diagnoses have the same

quality of 12 and that second opinions do not improve the

quality; the auditor could use a different model if these

assumptions are false.

Using the model, the auditor computes opt(rtreat
ex1), which

consists of those strategies that maximizes the expected

total discounted degree of satisfaction of the purpose of

treatment where the expectation is over the probabilistic

5

send, 0

s2

0.9 1
1s3

diagnose, 12

1
s6

s5

0.2

0.8

send, 0

s1

take, 0

s4

diagnose, 12

1

0.1

diagnose, 12

Figure 1. The environment model mex1 that the physician used. Circles represent states, block arrows denote possible actions, and squiggly arrows denote
probabilistic outcomes. Self-loops of zero reward under all actions, including the special action Stop, are not shown.

transitions of the model. opt(rtreat
ex1) includes the appropri-

ate strategy σ1 where σ1(s1) = take, σ1(s4) = send,

σ1(s2) = σ1(s3) = σ1(s5) = diagnose, and σ1(s6) = Stop.

Furthermore, opt(rtreat
ex1) excludes the redundant strategy σ2

that performs a redundant send where σ2 is the same as σ1

except for σ2(s2) = send. Performing the extra action send

delays the reward of 12 for achieving a diagnosis resulting

in its discounted reward being γ2
ex1 ∗ 12 instead of γex1 ∗ 12

and, thus, the strategy is not optimal.

However, opt(rtreat
ex1) does include the redundant strategy

σ3 that is the same as σ1 except for σ3(s6) = send.

opt(rtreat
ex1) includes this strategy despite the send actions

from state s6 being redundant since no positive rewards

follow the send actions. Fortunately, nopt(rtreat
ex1) does not

include σ3 since σ1 is both in opt(rtreat
ex1) and σ1 ≺ σ3. To

see that σ1 ≺ σ3 note that for every contingency κ and

state s, the mex1(s, κ, σ1) has the form b followed by an

finite sequence of nothing actions (interleaved with the state

s6) for some finite prefix b. For the same κ, mex1(s, κ, σ3)
has the form b followed by an infinite sequence of send

actions (interleaved with the state s6) for the same b. Thus,
mex1(s, κ, σ1) is a proper sub-execution of mex1(s, κ, σ3).
The above modeling implies that the strategy σ1 can be

for the purpose of treatment but σ2 and σ3 cannot be.

IV. AUDITING

In the above example, the auditor constructed a model of

the environment in which the auditee operates. The auditor

must use the model to determine whether the auditee obeyed

the policy. We first discuss this process for auditing exclu-

sivity policy rules and revisit the above example. Then, we

discuss the process for prohibitive policy rules. In Section V,

we provide an auditing algorithm that automates comparing

the auditee’s behavior to the set of allowed behaviors.

A. Auditing Exclusivity Rules

Suppose that an auditor would like to determine whether

an auditee performed some logged actions only for the

purpose p. The auditor can compare the logged behavior to

the behavior that a hypothetical agent would perform when

planning for the purpose p. In particular, the hypothetical

agent selects a strategy from nopt(〈S,A, t, rp, γ〉) where S,

A, and t models the environment of the auditee; rp is a

reward function modeling the degree to which the purpose

p is satisfied; and γ is an appropriately selected discounting

factor. If the logged behavior of the auditee would never have

been performed by the hypothetical agent, then the auditor

knows that the auditee violated the policy.

In particular, the auditor must consider all the possible

behaviors the hypothetical agent could have performed. For

a model m, let behv∗(rp) represent this set where a finite

prefix b of an execution is in nbehv(rp) if and only if there

exists a strategy σ in nopt(rp), a contingency κ, and a state

s such that b is a prefix of m(s, κ, σ).

The auditor must compare nbehv(rp) to the set of all

behaviors that could have caused the auditor to observe the

log that he did. We presume that the log ℓ was created by

a process log that records features of the current behavior.

That is, log:B → L where B is the set of behaviors and

L the set of logs, and ℓ = log(b) where b is the prefix

of the actual execution of the environment available at the

time of auditing. The auditor must consider all the behaviors

in log−1(ℓ) as possible where log−1 is the inverse of the

logging function. In the best case for the auditor, the log

records the whole prefix b of the execution that transpired

until the time of auditing, in which case log−1(ℓ) = {ℓ}.
However, the log may be incomplete by missing actions, or

may include only partial information about an action such

as that it was one of a set of actions.

If log−1(ℓ) ∩ nbehv(rp) is empty, then the auditor may

conclude that the auditee did not plan for the purpose p, and,
thus, violated the rule that the auditee must only perform

the actions recorded in ℓ for the purpose p; otherwise, the
auditor must consider it possible that the auditee planned for

the purpose p.

If log−1(ℓ) ⊆ nbehv(rp), the auditor might be tempted

to conclude that the auditee surely obeyed the policy rule.

However, as illustrated by the inconclusive example below,

this is not necessarily true. The problem is that log−1(ℓ)
might have a non-empty intersection with nbehv(rp′

) for

some other purpose p′. In this case, the auditee might

have been actually planning for a disallowed purpose p′

instead of the allowed purpose p, but the auditor cannot

6

tell the difference since both purposes can lead to the same

actions. Indeed, given the likelihood of such other purposes

for non-trivial scenarios, we consider proving compliance

practically impossible. However, this incapability is of little

consequence: log−1(ℓ) ⊆ nbehv(rp) does imply that the

auditee is behaving as though he is obeying the policy. That

is, in the worst case, the auditee is still doing the right things

even if for the wrong reasons.

B. Example: Auditing the Physician

Below we revisit the example of Section III-C and con-

sider two cases. In the first, the auditor shows that the

physician violated the policy. In the second, auditing is

inconclusive.

Violation Found: Suppose after constructing the model

as above in Section III-C, the auditor maps the actions

recorded in the access log ℓ1 to the actions of the model

mex1, and finds log−1(ℓ1) holds only a single behavior:

b1 = [s1, take, s2, send, s3, diagnose, s6, Stop, s6]. Next, us-
ing nopt(rtreat

ex1), as computed above, the auditor constructs

the set nbehv(rtreat
ex1) of all behaviors an agent planning for

treatment might exhibit. The auditor would find that b1 is

not in nbehv(rtreat
ex1).

To see this, note that every execution e1 that has b1 as a

prefix is generated from a strategy σ such that σ(s2) = send.

None of these strategies are members of opt(rtreat
ex1) for the

same reason that σ2 is not a member as found in Sec-

tion III-C: performing send at s2 needlessly delays (thereby

discounting) the reward from providing treatment. Thus, b1

cannot be in nbehv(rtreat
ex1). Since log−1(ℓ) ∩ nbehv(rtreat

ex1)
is empty, the audit reveals that the physician violated the

policy.

Inconclusive: Now suppose that the auditor sees a

different log ℓ2 such that log−1(ℓ2) = {b2} where b2 =
[s1, take, s4, send, s5, diagnose, s6, Stop, s6]. In this case,

our formalism would not find a violation since b2 is in

nbehv(rtreat
ex1). In particular, the strategy σ1 from above

produces the behavior b2 under the contingency that selects

the bottom probabilistic transition from state s1 to state

s4 under the action take. (Recall that σ1(s1) = take,

σ1(s4) = send, σ1(s2) = σ1(s3) = σ1(s5) = diagnose,

and σ1(s6) = Stop.)

Nevertheless, the auditor cannot be sure that the physician

obeyed the policy. For example, consider the NMDP m′
ex1

that is mex1 altered to use the reward function rprofit
ex1 instead

of rtreat
ex1 . rprofit

ex1 assigns a reward of zero to all transitions

except for the send actions from states s2 and s4, to which

it assigns a reward of 9. σ1 is in nopt(rprofit
ex1) meaning that

not only the same actions (those in b2), but even the exact

same strategy can be either for the allowed purpose treat

or the disallowed purpose profit. Thus, if the physician did

refer the record to his practice for profit, he cannot be caught

as he has tenable deniability of his ulterior motive of profit.

C. Auditing Prohibitive Rules

In the above example, the auditor was enforcing the rule

that the physician’s actions be only for treatment. Now,

consider auditing to enforce the rule that the physician’s

actions are not for personal profit. After seeing the log ℓ,
the auditor could check whether log−1(ℓ) ∩ nbehv(rprofit

ex1)
is empty. If so, then the auditor knows that the policy was

obeyed. If not, then the auditor cannot prove nor disprove

a violation. In the above example, just as the auditor is

unsure whether the actions were for the required purpose

of treatment, the auditor is unsure whether the actions are

not for the prohibited purpose of profit.
Leveraging Multiple Restrictions: An auditor might

decide to investigate some of the cases where log−1(ℓ) ∩
nbehv(rprofit

ex1) is not empty. The auditor can limit his atten-

tion to only those possible violations of a prohibitive rule

that cannot be explained away by some allowed purpose. For

example, in the inconclusive example above, the physician’s

actions can be explained with the allowed purpose of treat-

ment. As the physician has tenable deniability, it is unlikely

that investigating his actions would be a productive use of

the auditor’s time. Thus, the auditor should limit his attention

to those logs ℓ such that both log−1(ℓ) ∩ nbehv(rprofit
ex1) is

non-empty and log−1(ℓ) ∩ nbehv(rtreat
ex1) is empty.

A similar additional check using disallowed purposes

could be applied to enforcing exclusivity rules. However, for

exclusivity rules, this check would identify cases where the

auditee’s behavior could have been either for the allowed

purpose or a disallowed purpose. Thus, it would serve to

find additional cases to investigate and increase the auditor’s

workload rather than reduce it. Furthermore, the auditee

would have tenable deniability for these possible ulterior

motives, making these investigations a poor use of the

auditor’s time.

V. AUDITING ALGORITHM

A. Algorithm

Figure 2 presents the algorithm AUDIT that aids the

auditor in comparing the log to the set of allowed behaviors.

Since we are not interested in the details of the logging

process and would like to focus on the planning aspects

of our semantics, we limit our attention to the case where

log(b) = b (i.e., the log is simply the behavior of the

auditee). However, future work could extend our algorithm

to handle incomplete logs by constructing the set of all

possible behaviors that could give rise to that log.
As proved below (Theorem 2), AUDIT(m, b) returns true

if and only if log−1(b) ∩ nbehv(m) is empty. In the case

of an exclusivity rule, the auditor may conclude that the

policy was violated when AUDIT returns true. In case of a

prohibitive rule, the auditor may conclude the policy was

obeyed when AUDIT returns true.
The algorithm operates by checking a series of local con-

ditions of the NMDP m and behavior b that are equivalent

7

AUDIT(m = 〈S,A, t, r, γ〉, b = [s1, a1, . . . , sn, an]):
01 if (IMPOSSIBLE(m, b))
02 return true // behavior impossible for NMDP

03 V ∗
m := SOLVEMDP(m)

04 for (i := 1; i ≤ n; i++):

05 if (Q∗(V ∗
m, si, ai) < V ∗

m(si)):
06 return true // action suboptimal

07 if (Q∗(V ∗
m, si, ai) ≤ 0 and ai 6= Stop):

08 return true // action redundant

09 return false

Figure 2. The algorithm AUDIT

to the global property of whether log−1(b) ∩ nbehv(m) is

empty.

First, AUDIT checks whether the behavior b is possible

for m using the sub-routine IMPOSSIBLE. IMPOSSIBLE

checks whether every state and action is valid, every state

is reachable by the state proceeding it, and that the same

action is performed from equal states in b.

Next, AUDIT checks whether the behavior b is optimal

(Line 05) and non-redundant (Line 07). To do so, AUDIT

uses a sub-routine SOLVEMDP to compute V ∗
m, which for

each state s records V ∗
m(s), the optimal value for s. Since

NMDPs are a type of MDP, AUDIT may use any MDP

optimization algorithm for SOLVEMDP, such as reducing

the optimization to a system of linear equations [23].

AUDIT uses a function Q∗ that computes the value of

performing an action in a state: Q∗(V ∗
m, s, a) = r(si, ai) +

γ
∑

s′∈S
t(si, ai)(s

′) ∗ V ∗
m(s′).

Theorem 2. For all finite NMDPs m and behaviors b,
AUDIT is a decision procedure for whether log−1(b) ∩
nbehv(m) is empty.

The essence of the algorithm is checking whether

log−1(ℓ)∩nbehv(m) is empty. For simplicity, we presumed

that log−1(ℓ) holds only one behavior. If this is not the

case, but log−1(ℓ) is a small set, then the auditor may run

the algorithm for each behavior in log−1(ℓ). Alternatively,
in some cases the set log−1(ℓ) may have structure that a

modified algorithm could leverage. For example, if log−1(ℓ)
is missing what action is taken at some states of the

execution or only narrows down the taken action to a set

of possible alternatives, a conjunction of constraints on the

action taken at each state may identify the set.

The running time of the algorithm is dominated by the

MDP optimization conducted by SOLVEMDP. SOLVEMDP

may be done exactly by reducing the optimization to a

system of linear equations [23]. Such systems may be solved

in polynomial time [24], [25]. However, in practice, large

systems are often difficult to solve. Fortunately, a large

number of algorithms for making iterative approximations

exist whose running time depends on the quality of the ap-

proximation. (See [26] for a discussion.) In the next section,

we discuss an implementation using such a technique.

B. Approximation Algorithm and Implementation

We implemented the AUDIT algorithm using the standard

value iteration algorithm to solve MDPs (see, e.g., [22]).

The value iteration algorithm starts with an arbitrary guess

of an optimal strategy for an MDP and the value of each

state under that policy. With each iteration, the algorithm

improves its estimation of the optimal strategy and its value.

It continues until the improvement between one iteration and

next is below some threshold ǫ. The difference between its

final estimation of the value of each state under the optimal

policy and the true value is bounded by 2ǫγ/(1− γ) where

γ is the discount factor of the MDP [27]. The number of

iterations needed to reach convergence grows quickly in

γ making the algorithm pseudo-polynomial time in γ and

polynomial time in |A| and |S| [28]. Despite the linear

programming approach having better worst-case complexity,

value iteration tends to perform well in practice. Using value

iteration in our AUDIT algorithm results in it having the same

asymptotic running time of pseudo-polynomial in γ.
To maintain soundness, we must account for the approx-

imate nature of value iteration and replace Line 05 of the

algorithm with the following:

if (Q∗(V∗up, si, ai) < V∗low(si)):
We must also replace Line 07 with the following:

if (Q∗(V∗up, si, ai) ≤ 0 and ai 6= Stop):

where V∗low and V∗up are lower and upper bounds on V ∗.

In particular, V∗low(s, a) = V∗app(s, a) − 2ǫγ/(1 − γ) and

V∗up(s, a) = V∗app(s, a) + 2ǫγ/(1 − γ) where V∗app(s, a) is

the value of the approximation returned by value iteration

using ǫ for the accuracy parameter.

With these changes, the implementation is sound in that

it will return true only when the original algorithm solving

the MDPs exactly returns true. However, the implementa-

tion may return false in cases where AUDIT would return

true. These additional results of false mean that additional

violations of exclusivity rules might go uncaught and addi-

tional compliance with prohibitive rules might go unproven.

However, since false indicates an inconclusive audit, they do

not alter soundness of the implementation.

We programmed our implementation and the example that

follows in the Racket dialect of Scheme. They are available

at http://www.cs.cmu.edu/∼mtschant/purpose/.

C. Example: Creating an Operating Procedure

In some environments, an auditee may have difficulty

determining whether an action is allowed under a policy.

For example, Regional Health Information Organizations

(RHIOs) store and make available medical records for a

region. Since RHIOs are a new technology and do not

directly provide treatment, arguments may arise over what

actions are allowed under the exclusivity restriction that

records may only be used for the purpose of treatment.

8

A physician considering reading such a record may find

the circumstances too complex to understand without help,

but neither can we expect the physician to perform the

modeling required to use our auditing algorithm. However,

an RHIO may use our algorithm to audit simulated logs

of possible future uses and determine which actions the

restriction allows. The RHIO may generalize these quan-

titative results to a qualitative operating procedure, such as

the physician may read records of patients with whom he

does not have a current relationship only when seeing that

patient in the future is highly likely. Below, we show an

example of reasoning that could lead to this procedure.

Reading a patient’s record improves the ability of the

physician to treat the patient i by some amount δr
i . (r stands

for “read”.) Each patient i will seek treatment from the

physician with some probability pi. A simple model of an

RHIO modeling only these aspects would always allow the

physician to read the record of the patient i that maximizes

the expected improvement in treatment (pi ∗ δr
i). However, it

fails to account for the possibility that the physician studies

general medical literature that improves his ability to treat

all patients by some degree δs. (s stands for “study”.)

Since the values of pi, δr
i, and δs vary across circum-

stances, we formalize the above intuitions as a family of

MDPs varying in these and other factors. An additional

important factor is h, the physician’s memory span. For

simplicity, we assume that the number of patients in the

RHIO is equal to h as well, but we include the possibility of

seeing a patient not in the RHIO or not seeing any patient at

all. (Having more patients than the physician can remember

cannot change his behavior.)

Each state of an MDP in this family records the previous

h actions since reading records or studying can affect the

reward for treating a patient as many as h steps into the

future. From each state, the physician has the choice of doing

nothing, studying, reading a patient’s record, or treating a

patient when that patient is seeking treatment. These actions

result in a probabilistic transition since the identity of the

next patient (or the absence of one) is probabilistic.

We ran our implementation on 33 instances of this family

with h = 2 or h = 3 and the discounting factor γ ranging

from 0.01 to 0.9. For all instances, we set pi equal to a

single value for all i. This value pi ranged from 0.0001
to 0.01. The probability that the current patient is not in

the RHIO (denoted po) ranged over 0.8 to 0.9698. These
experiments showed that in most cases, reading a patient’s

record is allowed only when δr
i is greater than h∗pi+po

pi
δs.

However, when the discounting factor γ is large and the base

level of treatment small, reading may be justified at lower

values of δr
i. In this case, the physician may read records

even when a patient is waiting for treatment in hopes of

treating in the future a (possibly different) patient whose

record he has read.

Compliance officers at an RHIO may find these results

helpful while creating operating procedures. For example,

consider a large hospital where the odds of a physician see-

ing a typical patient is less than 1 in 10, 000. Our simulations

found for various models with pi = 0.0001 that δr
i must be

greater than about 9700δs. In many settings, managers may

find inconceivable an improvement from reading a patient’s

record of 9700 times the improvement from studying. In this

case, an operating procedure may summarize these results

as prohibiting a physician from reading a patient’s record

unless the physician has a reason to believe that the patient

is much more likely than average to seek care.
Experiments’ Running Times: Since the number of

states in the MDP is (h + 2)h+3 + (h + 2)h+1, we focused

on small values of h. For the h = 2 cases (1088 states),

the running time for a single call of the approximate AUDIT

algorithm varied between 1.3 and 27 seconds. For the h = 3
cases (16, 250 states), it varied between 261 seconds and

70 minutes. The large range is because the running time is

pseudo-polynomial in γ. We used binary search to estimate

for each model how large the improvement δr
i had to be

before reading a record became acceptable. This search took

10 to 12 calls to AUDIT. We ran our implementation on a

Lenovo U110 with 3GB of memory and a 1.60 GHz Intel

Core 2 Duo CPU.

VI. EMPIRICAL STUDY OF SEMANTICS

Both prior work and this work offer methods for enforcing

privacy policies that feature purpose restrictions. These

methods test whether a sequence of actions violates a clause

of a privacy policy that restricts certain actions to be only for

certain purposes. By providing a test for whether the purpose

restriction is violated, these methods implicitly provide a

semantics for these restrictions.

To ensure that these methods correctly enforce the privacy

policy, one must show that the semantics employed by a

method matches the intended meaning of the policy. Since

policies often act as agreements among multiple parties

who may differ in their interpretation of the policy, we

compare the semantics proposed by these methods to the

most common interpretations of a policy using a survey.
While prior work has not provided a formal semantics, it

appears that many works (e.g., [11], [13]) flag actions as a

violation if they do not further the purpose in question. (See

Section VII for a description of prior work.) In particular,

these works make assumptions about how people think

about purpose in the context of enforcing a privacy policy

that restricts an agent to only performing a certain class

of actions for a certain purpose. The following hypothesis

characterizes these assumptions:

H1 (furthering). The agent obeys the restriction

if and only if the action furthered the purpose.

Our work instead asserts that an action may be for a purpose

even if that purpose is never furthered. Our formalism

assumes the following hypothesis instead:

9

H2 (planning). The auditee obeys the restriction

if and only if the auditee performed that action as

part of a plan for furthering that purpose.

(Our algorithm is an approximation based on Hypothesis H2

while using only observable information.)

To show that our work provides a method of enforcing

purpose restrictions more faithful to their common meaning,

we disprove Hypothesis H1 while supporting Hypothesis H2.

We tested both of these hypotheses by providing example

scenarios of an auditee performing actions with descriptions

of his plans. To provide more evidence for the truth of Hy-

pothesis H2, we also tested the following related hypothesis:

H2c. Describing an action as being part of a plan

for furthering purpose as opposed to not being part

of such a plan in a scenario causes people to think

that the auditee obeyed the restriction.

H2c is a causal version of H2. Unlike H2, which may be

tested with unrelated scenarios, H2c must be tested with

scenarios that only differ from one another in whether the

action is part of a plan for the purpose in question. We also

tested the causal version of H1, called H1c.

A. Survey Construction

We constructed a questionnaire with four scenarios that

are identical except for varying in two factors: (1) whether or

not the action furthers the purpose in question in the scenario

and (2) whether or not the auditee performs the action as

part of a plan for furthering the purpose. The four scenarios

are (with repeated text elided for Sp̄f , Sp̄f , and Sp̄̄f):

Spf . A case worker employed by Metropolis General

Hospital meets with a patient. The case worker

develops a plan with the sole goal of treating the

patient. The plan includes sharing the patient’s

medical record with an outside specialist. Upon

receiving the record, the specialist succeeds in

treating the patient.

Sp̄fThe case worker develops a plan with the sole

goal of treating the patient. . . .the specialist did not

succeed in treating the patient.

Sp̄fThe case worker develops a plan with the sole

goal of reducing costs for the hospital. . . .the

specialist succeeds in treating the patient.

Sp̄̄fThe case worker develops a plan with the sole

goal of reducing costs for the hospital. . . .the

specialist did not succeed in treating the patient.

(E.g., Sp̄f stands for the scenario that was not planned (p̄)

for the purpose but furthered (f) it.) The auditee in these

four scenarios is subject to the following exclusivity rule:

Metropolis General Hospital and its employees

will share a patient’s medical record with an

outside specialist only for the purpose of providing

that patient with treatment.

For each scenario, we asked each participant the five fol-

lowing questions:

Q1. Did the case worker obey the above privacy policy?

Q2. Why did you answer [Q1] as you did?

Q3. Did the case worker share the record with the

specialist for the purpose of treatment?

Q4. Was the goal of the case worker’s plan to treat the

patient?

Q5. Did the specialist succeed in treating the patient?

For each question except Q2, the participant selected among

yes, no, and I don’t know. Question Q2 required a free form

response.

The responses to Question Q1 determines the truth of

Hypotheses H1 and H2. We conjectured that the majority

of participants would answer this question with yes for the

Scenarios Spf and Sp̄f , and with no for Sp̄f and Sp̄̄f . Ques-

tion Q2 provides insight into the participant’s reasoning and

discourages arbitrary responses. We included Question Q3 to

help determine whether the questionnaire was well worded.

Questions Q4 and Q5 have objectively correct answers

that the participant can easily find by reading the scenarios.

Checking that the participant chose the correct answer

allowed us to ensure that the participants actually read the

scenario and answered accordingly. On the questionnaire,

we ordered the questions as follows: Q4, Q5, Q3, Q1, Q2.

We used Amazon Mechanical Turk (www.mturk.com) to

recruit 200 participants with a payment of $0.50 (USD).

We randomly ordered the scenarios for each participant. We

decided before the survey to exclude from the results any

participants who got more than one of the Questions Q4

and Q5 wrong in total across all four scenarios.

B. Statistical Modeling

Hypotheses H1 and H2 each make predictions about

whether Question Q1 will be answered with yes or no. We

model these answers as a draw from a binomial distribution

(a series of coin flips) and we interpret the hypotheses as

predictions about probability of success for the binomial

distribution (how biased the coins are). We interpret a

prediction that a question will be answered with a certain

response as an assertion that the probability of success

(seeing that response) is at least 0.5.

For example, one prediction of the furthering hypothe-

sis H1 is that people will respond to Question Q1 with yes

under Scenario Sp̄f . That is, it predicts that pp̄fy ≥ 0.5 where

pp̄fy is the probability of a participant responding with yes to

Question Q1 for Scenario Sp̄f (i.e., the success parameter to

the binomial distribution). If we see a small number of yes

responses, we may reject this prediction providing evidence

against H1. By common convention, the number of yes

responses must be so small that the probability of seeing

that number or fewer under the assumption that pp̄fy ≥ 0.5
is true is less than α = 0.05 (the significance level).

10

To test the causal hypotheses H1c and H2c, we must

compare the responses across scenarios. These responses

are not independent since the same participant produces

responses for both scenarios. We use McNemar’s test to ex-

amine the number of respondents who change their answers

to Question Q1 across a pair of scenarios [29]. McNemar’s

test approximates the probability of the number of switches

being produced by two dependent draws from one distribu-

tion. If this probability is small (less than α = 0.05), then
we may conclude that the switch between scenarios affected

the respondents’ answers.

For example, for the causal planning hypothesis H2c, we

compare the responses to Question Q1 across the Scenar-

ios Spf and Sp̄f , which differ only in the case worker’s

planning. If we find that a large number of participants have

different responses across the two scenarios, then we can

conclude that the case worker’s planning does have an effect.

C. Results

While we only offered to pay the first 200 participants,

we received 207 completed surveys. The extra surveys may

have resulted from people misunderstanding the instructions

and not collecting payment.

Of these completed surveys, we excluded 20 participants

for missing two or more of the objective questions. All

of the statistics shown in this section are calculated from

the remaining 187 participants. Including the 20 excluded

participants does not change the significance of any of our

hypothesis tests.

Table I shows the distributions of responses for each

question. Informally examining the tables shows that the

vast majority of the participants conform to the planning

hypothesis H2. For example, 177 (95%) of the participants

answered Question Q1 for Scenario Sp̄f with the answer

of yes as predicted by Hypothesis H2, whereas only eight

(4%) answered with no as predicted by the furthering

hypothesis H1. However, the difference is less pronounced

for Scenario Sp̄f where 133 (71%) match Hypothesis H2’s

prediction of no and 45 (24%) matches H1’s prediction of

yes. Interestingly, 31 (17%) answered yes for Scenario Sp̄̄f

despite both hypotheses predicting no.

Every test in favor of the planning hypothesis H2 obtains

statistical significance at the level of α = 0.05. Eight of
the 16 tests against the furthering hypothesis H1 obtain

statistical significance. The eight that do not obtain signif-

icance are the cases where the two hypotheses agree. In

every case where the two disagree, both the test confirming

Hypothesis H2 and the one against Hypothesis H1 obtains

significance.

Table II shows the results of using McNemar’s Test to

compare the distribution of responses to one question across

two scenarios. For example, the last row compares the distri-

bution producing responses to Question Q1 for Scenario Sp̄f

to that producing responses for Scenario Sp̄̄f . McNemar’s

Table I SURVEY RESPONSES

Scenario Yes I don’t know No
Spf 182 (97%) 2 (01%) 3 (02%)
Sp̄f 177 (95%) 2 (01%) 8 (04%)

Sp̄f 45 (24%) 9 (05%) 133 (71%)
Sp̄̄f 31 (17%) 9 (05%) 147 (79%)

Q1: Was the policy obeyed?

Scenario Yes I don’t know No
Spf 185 (99%) 2 (01%) 0 (00%)
Sp̄f 183 (98%) 1 (01%) 3 (02%)

Sp̄f 43 (23%) 6 (03%) 138 (74%)
Sp̄̄f 38 (20%) 10 (05%) 139 (74%)

Q3: Was the action for the purpose?

Scenario Yes I don’t know No
Spf 186 (99%) 0 (00%) 1 (01%)
Sp̄f 184 (98%) 1 (01%) 2 (01%)

Sp̄f 12 (06%) 1 (01%) 174 (93%)
Sp̄̄f 6 (03%) 0 (00%) 181 (97%)

Q4: Was the goal treatment?

Scenario Yes I don’t know No
Spf 187 (100%) 0 (00%) 0 (00%)
Sp̄f 2 (01%) 0 (00%) 185 (99%)

Sp̄f 179 (96%) 0 (00%) 8 (04%)
Sp̄̄f 3 (02%) 0 (00%) 184 (98%)

Q5: Was the treatment successful?

Table II MCNEMAR’S TESTS ACROSS SCENARIOS

Testing Question Scenarios p-Value Significant?
For H1c Q1 Spf vs. Sp̄f NaN No

For H1c Q1 Sp̄f vs. Sp̄̄f 0.02674664 Yes

For H2c Q1 Spf vs. Sp̄f 1.020173e-029 Yes
For H2c Q1 Sp̄f vs. Sp̄̄f 3.112267e-031 Yes

Test shows that the differences in the observed responses

are statistically significant. This result indicates that the two

distributions differ as predicted by Hypothesis H2c. The

table also shows each test’s p-value, which is a measure

of how statistically significant a result is. Lower p-values

are more significant with any p-value below α = 0.05
being considered significant by common convention. The

statistic could not be computed in one case as the data was

too sparse for the calculation. The remaining results are all

significant providing support for both Hypotheses H1c and

H2c. However, those in favor of the planning hypothesis H2

have much lower (more significant) p-values.

D. Discussion

The results shown above provide evidence in favor of

defining an action to be for a purpose if and only if an

agent performed the action as part of a plan for furthering

that purpose (Hypothesis H2). The binomial tests provide

strong evidence against defining an action to be for a

purpose if and only if that action furthered the purpose

(Hypothesis H1). McNemar’s test provides some support for

11

Hypothesis H1. Indeed, informally examining the response

distributions (Table I), it appears Hypothesis H1 does ac-

curately model a small minority of participants. However,

Hypothesis H2 appears to accurately model a much larger

number of participants. For these reasons, we conclude that

the planning hypothesis H2 provides a superior model to

that of the furthering hypothesis H1.

Various factors affect the validity of our conclusions. By

mentioning whether or not the auditee is performing the

action as part of a plan, it forces the participant to consider

the relationship between purposes and plans. It is possible

that participants not primed to think about planning would

substantiate H1.

The use of Mechanical Turk raises questions about how

representative our population sample is. Berinsky, Huber,

and Lenz find that Mechanical Turk studies are as represen-

tative, if not more representative, than convenience samples

commonly used in research [30].

The use of paid but unmonitored participants, also raises

concerns that participants might provide arbitrary answers

to speed through the questionnaire. Kittur, Chi, and Suh

conclude that Mechanical Turk can be useful if one elim-

inates such spurious submissions by including questions

with known answers and rejecting participants who fail to

correctly answer these questions [31]. By including Ques-

tions Q4 and Q5, we follow their suggested protocol.

VII. APPLYING OUR FORMALISM TO PRIOR METHODS

Past methods of enforcing purpose restrictions have not

provided a means of assigning purposes to sequences of

actions. Rather, they presume that the auditor (or someone

else) already has a method of determining which behaviors

are for a purpose. In essence, these methods presuppose

that the auditor already has the set of allowed behaviors

nbehv(rp) for the purpose p that he is enforcing. These

methods differ in their intensional representations of the set

nbehv(rp). Thus, some may represent a given set exactly

while others may only be able to approximate it. These

differences mainly arise from the different mechanisms they

use to ensure that the auditee only exhibits behaviors from

nbehv(rp). We use our semantics to study how reasonable

these approximations are.

Byun et al. use role-based access control to present

a methodology for organizing privacy policies and their

enforcement [9], [14]. They associate purposes with sensitive

resources and with roles, and their methodology only grants

the user access to the resource when the purpose of the user’s

role matches the resource’s purpose. The methodology does

not, however, explain how to determine which purposes to

associate with which roles. Furthermore, a user in a role can

perform actions that do not fit the purposes associated with

his role allowing him to use the resource for a purpose other

than the intended one. Thus, their method is only capable of

enforcing policies when there exists some subset A of the

set of actions A such that nbehv(rp) is equal to the set of

all interleavings of A with S of finite but unbounded length

(i.e., nbehv(rp) = (S × A)∗). The subset A corresponds to

those actions that use a resource with the same purpose as

the auditee’s role. Despite these limitations, their method can

implement the run-time enforcement used at some organiza-

tions, such as a hospital that allows physicians access to any

record to avoid denying access in time-critical emergencies.

However, it does not allow the fine-grain distinctions used

during post-hoc auditing done at some hospitals to ensure

that physicians do not abuse their privileges.

Al-Fedaghi uses the work of Byun et al. as a starting

point but concludes that rather than associating purposes

with roles, one should associate purposes with sequences

of actions [11]. Influenced by Al-Fedaghi, Jafari et al. adopt

a similar position calling these sequences workflows [13].

The set of workflows allowed for a purpose p corresponds

to nbehv(rp). They do not provide a formal method of

determining which workflows belong in the allowed set

leaving this determination to the intuition of the auditor.

Our auditing algorithm could be used for this task as shown

in Section V-C. They also do not consider probabilistic

transitions and the intuition they supply suggests that they

would only include workflows that successfully achieve or

improve the purpose. Thus, our method appears more lenient

by including some behaviors that fail to improve the purpose.

As shown in Section VI, this leniency is key to capturing

the semantics of purpose restrictions.

Others have adopted a hybrid method allowing the roles

of an auditee to change based on the state of the system [12],

[15]. These dynamic roles act as a level of indirection

assigning an auditee to a state. This indirection effectively

allows role-based access control to simulate the workflow

methods to be just as expressive.

Agrawal et al. propose a methodology called Hippo-

cratic databases for protecting the privacy of subjects of a

database [8]. They propose to use a query intrusion model to

enforce privacy polices governing purposes. Given a request

for access and the purpose for which the requester claims

the request is made, the query intrusion model compares the

request to previous requests with the same purpose using

an approach similar to intrusion detection. If the request

is sufficiently different from previous ones, it is flagged as

a possible violation. While the method may be practical,

it lacks soundness and completeness. Furthermore, by not

being semantically motivated, it provides no insight into the

semantics of purpose. To avoid false positives, the set of

allowed behaviors nbehv(rp) would have to be small or have

a pattern that the query intrusion model could recognize.

Jif is a language extension to Java designed to enforce

requirements on the flows of information in a program [32].

Hayati and Abadi explain how to reduce purpose restrictions

to information flow properties that Jif can enforce [10]. Their

method requires that inputs are labeled with the purposes for

12

which the policy allows the program to use them and that

each unit of code be labeled with the purposes for which

that code operates. If information can flow from an input

statement labeled with one purpose to code labeled for a

different purpose, their method produces a compile-time type

error. (For simplicity, we ignore their use of sub-typing to

model sub-purposes.) In essence, their method enforces the

rule if information i flows to code c, then i and c must be

labeled with the same purpose. The interesting case is when

the code c uses the information i to perform some observable

action ac,i, such as producing output. Under our semantics,

we treat the program as the auditee and view the policy

as limiting these actions. By labeling code, their method

does not consider the contexts in which these actions occur.

Rather the action ac,i is aways either allowed or not based

on the purpose labels of c and i. By not considering context,

their method has same limitations as the method of Byun et

al. with the subset A being equal to the set of all actions

ac,i such that c and i have the same label.

VIII. RELATED WORK

We have already covered the most closely related work

in Section VII. Below we discuss work on related problems

and work on purpose from other fields.

Minimal Disclosure: The work most similar to ours in

approach has been on minimal disclosure, which requires

that the amount of information used in granting a request

for access should be as little as possible while still achiev-

ing the purpose behind the request. Massacci, Mylopoulos,

and Zannone define minimal disclosure for Hippocratic

databases [33]. Barth, Mitchell, Datta, and Sundaram study

minimal disclosure in the context of workflows [34]. They

model a workflow as meeting a utility goal if it satisfies

a temporal logic formula. Minimizing the amount of in-

formation disclosed is similar to an agent maximizing his

reward and thereby not performing actions that have costs

but no benefits. However, we consider several factors that

these works do not, including quantitative purposes that are

satisfied to varying degrees and probabilistic behavior result-

ing in actions being for a purpose despite the purpose not

being achieved, which is necessary to capture the semantics

of purpose restrictions (Section VI).

Expressing Privacy Policies with Purpose: Work on

understanding the components of privacy policies has shown

that purpose is a common component of privacy rules

(e.g., [35]). Some languages for specifying privacy policies

allow the purpose of an action to partially determine if access

is granted (e.g., [36], [37]). However, these languages do not

give a formal semantics to the purposes. Instead they rely

upon the system using the policy to determine whether an

action is for a purpose or not.

Philosophical Foundations: Taylor provides a detailed

explanation of the importance of planning to the meaning

of purpose, but does not provide any formalism [18].

The sense in which the word “purpose” is used in privacy

policies is also related to the ideas of desire, motivation,

and intention discussed in works of philosophy. The most

closely related to our work is that of Bratman’s on intentions

in his Belief-Desire-Intention (BDI) model [38]. In his work,

an intention is an action an agent plans to take where the

plan is formed while attempting to maximize the satisfaction

of the agent’s desires; Bratman’s desires correspond to our

purposes. Roy formalized Bratman’s work using logics and

game theory [39]. However, these works are concerned

with when an action is rational rather than determining the

purposes behind the action.

We borrow the notion of non-redundancy from Mackie’s

work on formalizing causality using counterfactual reason-

ing [20]. In particular, Mackie defines a cause to be a

non-redundant part of a sufficient explanation of an effect.

Roughly speaking, we replace the causes with actions and

the effect with a purpose.

Plan Recognition: Attempting to infer the plan that

an agent has while performing an action is plan recogni-

tion [40]. Plan recognition may predict the future actions of

agents allowing systems to anticipate them. However, our

auditing algorithm checks whether a sequence of actions is

consistent with a given purpose rather than attempting to

predict the most likely purpose motivating the actions.

The work most closely related to ours is that of Baker,

Saxe, and Tenenbaum [41], [42]. They use an MDP model

similar to ours to predict the most likely explanation for a

sequence of actions. Ramı́rez and Geffner extend this work

to partially observable MDPs for modeling an agent that

cannot directly observe the state it is in [43]. Rather than

having a reward function, under these models, the agent

attempts to reduce the costs of reaching a goal state. For

each possible goal state, their algorithms use the degree to

which the agent’s actions minimizes the costs of reaching the

goal state to assign a probability to that goal state being the

one pursued by the agent. Our reward functions are similar to

the negation of their cost functions, but these works predict

which goal state the agent is pursuing rather than which cost

function it is using. They do not consider non-redundancy.

Our algorithm for auditing is similar to their algorithms.

However, to maintain soundness, our algorithm accounts for

the error of approximate MDP solving. Furthermore, their

algorithms may assign a non-zero probability to a goal state

even if the agent’s actions are inconsistent with pursuing

that goal under our strict definition.

Also related is the work of Mao and Gratch [44]. While

it differs from our work in the same ways as the work of

Baker et al., it also differs in that rewards track how much

the agent wants to achieve the goal rather than the degree

of satisfaction of the goal.

Our work is related to adversarial plan recognition that

models possibly misleading agents [45]. Particularly related

are works using plan recognition to aid intrusion detec-

13

tion [46], [47]. These works, however, do not consider

quantitative purposes or probabilistic transitions.

IX. SUMMARY AND FUTURE WORK

We use planning to create the first formal semantics for

determining when a sequence of actions is for a purpose.

In particular, our formalism uses models similar to MDPs

for planning, which allows us to automate auditing for both

exclusivity and prohibitive purpose restrictions. We have

provided an auditing algorithm and implementation based on

our formalism. We have illustrated the use of our algorithm

to create operating procedures.

We validate that our method based on planning accurately

captures the meaning of purpose restrictions with intuitive

examples (Sections III-C, IV-B, IV-C, and V-C) and an em-

pirical study of how people understand the word “purpose”

in the context of privacy policy enforcement.

We use our formalism to explain and compare previous

methods of policy enforcement in terms of a formal seman-

tics. Our formalism highlights that an action can be for

a purpose even if that purpose is never achieved, a point

present in philosophical work on the subject (e.g., [18]),

but whose ramifications on policy enforcement had been

unexplored. Fundamentally, our work shows the difficulties

of enforcement due to issues such as the tenable deniability

of ulterior motives (Sections IV-B and IV-C).

However, we recognize the limitations of our formalism.

While MDPs are useful for automated planning, they are not

specialized for modeling planning by humans. While this

concern does not apply to creating operating procedures,

it holds human auditees to unrealistically high standards

leading to the search for models reflecting the bounded

abilities of humans to plan. However, “[a] comprehensive,

coherent theory of bounded rationality is not available” [48,

p. 14]. Nevertheless, we believe the essence of our work

is correct: an action is for a purpose if the actor selects to

perform that action while planning for the purpose. Future

work will instantiate our semantic framework with more

complete models of human planning.

Additionally, future work will make our formalism easier

to use. To use our auditing algorithm, an auditor must not

only log the auditee’s behavior but also know how the

auditee could have behaved with an environment model.

Given the difficulty of this task, we desire methods of

finding policy violations that do not require a full model. For

example, Experience-Based Access Management iteratively

refines a role hierarchy to improve the accuracy of Role-

Based Access Control [49]. Using our semantics, similar

refinements may improve an environment model.

Acknowledgments: We thank Lorrie Faith Cranor,

Joseph Y. Halpern, Dilsun Kaynar, Divya Sharma, Manuela

M. Veloso, and the anonymous reviewers for many helpful

comments on this work. This research was supported by

the U.S. Army Research Office grants W911NF0910273

and DAAD-190210389, by the National Science Foundation

(NSF) grants CNS083142 and CNS105224, and by the

HHS grant HHS 90TR0003/01. The views and conclusions

contained in this document are those of the authors and

should not be interpreted as representing the official policies,

either expressed or implied, of any sponsoring institution, the

U.S. government or any other entity.

REFERENCES

[1] The European Parliament and the Council of the European
Union, “Directive 95/46/EC,” Official Journal of the Euro-
pean Union, vol. L 281, pp. 31–50, 1995.

[2] Office for Civil Rights, U.S. Department of Health and
Human Services, “Summary of the HIPAA privacy rule,”
OCR Privacy Brief, 2003.

[3] United States Congress, “Financial services modernization act
of 1999,” Title 15, United States Code, Section 6802, 2010.

[4] Washington Radiology Associates, P.C., “Notice of privacy
practices,” 2003, accessed Feb. 4, 2011. http://www.
washingtonradiology.com/office-guide/privacy.asp

[5] Yahoo!, “Privacy policy: Yahoo Mail,” 2010. http://info.
yahoo.com/privacy/us/yahoo/mail/details.html

[6] Bank of America Corporation, “Bank of America privacy
policy for consumers,” 2005, accessed Feb. 4, 2011.
http://www.bankofamerica.com/privacy/pdf/eng-boa.pdf

[7] FairWarning, “Privacy breach detection for healthcare,” White
Paper, 2010. http://www.fairwarningaudit.com/documents/
2010-privacy-breach-detection-fairwarning.pdf

[8] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic
databases,” in VLDB ’02: Proc. of the 28th Int’l. Conf. on Very
Large Data Bases. VLDB Endowment, 2002, pp. 143–154.

[9] J.-W. Byun, E. Bertino, and N. Li, “Purpose based access
control of complex data for privacy protection,” in SACMAT
’05: Proc. of the 10th ACM Sym. on Access Control Models
and Technologies, 2005, pp. 102–110.

[10] K. Hayati and M. Abadi, “Language-based enforcement of
privacy policies,” in PET 2004: Workshop on Privacy En-
hancing Technologies. Springer-Verlag, 2005, pp. 302–313.

[11] S. S. Al-Fedaghi, “Beyond purpose-based privacy access
control,” in ADC ’07: Proc. of the 18th Australasian Database
Conf. Australian Computer Society, Inc., 2007, pp. 23–32.

[12] H. Peng, J. Gu, and X. Ye, “Dynamic purpose-based access
control,” in Int’l. Sym. on Parallel and Distributed Processing
with Applications. IEEE, 2008, pp. 695–700.

[13] M. Jafari, R. Safavi-Naini, and N. P. Sheppard, “Enforcing
purpose of use via workflows,” in WPES ’09: Proc. of the 8th
ACM Workshop on Privacy in the Electronic Society, 2009,
pp. 113–116.

[14] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat,
and A. Trombetta, “Privacy-aware role-based access control,”
ACM Trans. Inf. Syst. Secur., vol. 13, pp. 24:1–24:31, 2010.

14

[15] M. Enamul Kabir, H. Wang, and E. Bertino, “A conditional
purpose-based access control model with dynamic roles,”
Expert Syst. Appl., vol. 38, pp. 1482–1489, 2011.

[16] “purpose, n.” in The Oxford English Dictionary, 2nd ed.
Oxford University Press, 1989.

[17] J. P. Das, B. C. Kar, and R. K. Parrila, Cognitive Planning:
The Psychological Basis of Intelligent Behavior. Sage, 1996.

[18] R. Taylor, Action and Purpose. Prentice-Hall, 1966.

[19] M. C. Tschantz, A. Datta, and J. M. Wing, “Formalizing
and enforcing purpose restrictions in privacy policies (full
version),” School of Computer Science, Carnegie Mellon
University, Tech. Rep. CMU-CS-12-106, Mar. 2012.

[20] J. L. Mackie, The Cement of the Universe: A Study of
Causation. Oxford University Press, 1974.

[21] R. Bellman, “On the theory of dynamic programming,” Proc.
of the Nat. Academy of Sciences, vol. 38, pp. 716–719, 1952.

[22] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. Pearson Education, 2003.

[23] F. d’Epenoux, “A probabilistic production and inventory prob-
lem,” Management Science, vol. 10, no. 1, pp. 98–108, 1963.

[24] L. G. Khachian, “A polynomial algorithm in linear program-
ming,” Dokl. Akad. Nauk SSSR, vol. 244, pp. 1093–1096,
1979, English trans.: Soviet Math. Dokl. 20, 191-194, 1979.

[25] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” in STOC ’84: Proc. of the 16th Annual ACM
Sym. on Theory of Computing, 1984, pp. 302–311.

[26] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the
complexity of solving Markov decision problems,” in Proc. of
the 11th Annual Conf. on Uncertainty in Artificial Intelligence
(UAI 95), 1995, pp. 394–402.

[27] R. Williams and L. C. Baird, “Tight performance bounds on
greedy policies based on imperfect value functions,” in Proc.
of the 10th Yale Workshop on Adaptive and Learning Systems.
Yale University, 1994.

[28] P. Tseng, “Solving h-horizon stationary Markov decision
process in time proportional to log(h),” Operations Research
Letters, vol. 9, no. 5, pp. 287–297, 1990.

[29] Q. McNemar, “Note on the sampling error of the difference
between correlated proportions or percentages,” Psychome-
trika, vol. 12, pp. 153–157, 1947.

[30] A. J. Berinsky, G. A. Huber, and G. S. Lenz, “Using Me-
chanical Turk as a subject recruitment tool for experimental
research,” Submitted for review, 2011.

[31] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies
with Mechanical Turk,” in Proceeding of the 26th annual
SIGCHI conference on Human factors in computing systems.
ACM, 2008, pp. 453–456.

[32] S. Chong, A. C. Myers, K. Vikram, and L. Zheng, Jif
Reference Manual, 2009. http://www.cs.cornell.edu/jif

[33] F. Massacci, J. Mylopoulos, and N. Zannone, “Hierarchical
hippocratic databases with minimal disclosure for virtual
organizations,” The VLDB Journal, vol. 15, no. 4, pp. 370–
387, 2006.

[34] A. Barth, J. Mitchell, A. Datta, and S. Sundaram, “Privacy
and utility in business processes,” in CSF ’07: Proc. of the
20th IEEE Computer Security Foundations Sym., 2007, pp.
279–294.

[35] T. D. Breaux and A. I. Antón, “Analyzing regulatory rules for
privacy and security requirements,” IEEE Trans. Softw. Eng.,
vol. 34, no. 1, pp. 5–20, 2008.

[36] C. Powers and M. Schunter, “Enterprise privacy authorization
language (EPAL 1.2),” W3C Member Submission, 2003.

[37] L. F. Cranor, Web Privacy with P3P. O’Reilly, 2002.

[38] M. E. Bratman, Intention, Plans, and Practical Reason.
Cambridge, Mass.: Harvard University Press, 1987.

[39] O. Roy, “Thinking before acting: Intentions, logic, rational
choice,” Ph.D. dissertation, Institute for Logic, Language and
Computation; Universiteit van Amsterdam, 2008.

[40] C. Schmidt, N. Sridharan, and J. Goodson, “The plan recog-
nition problem: An intersection of psychology and artificial
intelligence,” Artificial Intelligence, vol. 11, no. 1-2, pp. 45
– 83, 1978.

[41] C. L. Baker, J. B. Tenenbaum, and R. Saxe, “Bayesian models
of human action understanding,” in Advances in Neural
Information Processing Systems (NIPS), vol. 18. MIT Press,
2006, pp. 99–106.

[42] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action under-
standing as inverse planning,” Cognition, vol. 113, pp. 329–
349, 2009.

[43] M. Ramı́rez and H. Geffner, “Goal recognition over POMDPs:
Inferring the intention of a POMDP agent,” in IJCAI,
T. Walsh, Ed. IJCAI/AAAI, 2011, pp. 2009–2014.

[44] W. Mao and J. Gratch, “A utility-based approach to intention
recognition,” in AAMAS 2004 Workshop on Agent Tracking:
Modeling Other Agents from Observations, 2004.

[45] J. Azarewicz, G. Fala, R. Fink, and C. Heithecker, “Plan
recognition for airborne tactical decision making,” in Nat.
Conf. on Artificial Intelligence, 1986, pp. 805–811.

[46] C. W. Geib and R. P. Goldman, “Plan recognition in intrusion
detection systems,” in DARPA Information Survivability Conf.
and Exposition (DISCEX), 2001.

[47] F. Cuppens, F. Autrel, A. Miège, and S. Benferhat, “Recog-
nizing malicious intention in an intrusion detection process,”
in 2nd Int’l. Conf. on Hybrid Intelligent Systems. IOS Press,
2002, pp. 806–817.

[48] G. Gigerenzer and R. Selten, Eds., Bounded Rationality: The
Adaptive Toolbox. MIT Press, 2002.

[49] W. Zhang, C. A. Gunter, D. Liebovitz, J. Tian, and B. Malin,
“Role prediction using electronic medical record system au-
dits,” in AMIA 2011 Annual Symposium. American Medical
Informatics Association, Oct. 2011, pp. 858–867.

15

