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Abstract. A majority of attacks on computer systems result from a
combination of vulnerabilities exploited by an intruder to break into the
system. An Attack Graph is a general formalism used to model security
vulnerabilities of a system and all possible sequences of exploits which
an intruder can use to achieve a specific goal. Attack Graphs can be con-
structed automatically using off-the-shelf model-checking tools. However,
for real systems, the size and complexity of Attack Graphs greatly ex-
ceeds human ability to visualize, understand and analyze. Therefore, it is
useful to identify relevant portions of an Attack Graph. To achieve this,
we propose a ranking scheme for the states of an Attack Graph. Rank of
a state shows its importance based on factors like the probability of an
intruder reaching that state. Given a Ranked Attack Graph, the system
administrator can concentrate on relevant subgraphs to figure out how
to start deploying security measures. We also define a metric of security
of the system based on ranks which the system administrator can use to
compare Attack Graphs and determine the effectiveness of various de-
fense measures. We present two algorithms to rank states of an Attack
Graph based on the probability of an attacker reaching those states. The
first algorithm is similar to the PageRank algorithm used by Google to
measure importance of web pages on the World Wide Web. It is flexible
enough to model a variety of situations, efficiently computable for large
sized graphs and offers the possibility of approximations using graph
partitioning. The second algorithm ranks individual states based on the
reachability probability of an attacker in a random simulation. Finally,
we give examples of an application of ranking techniques to multi-stage
cyber attacks.
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1 Introduction

A large computer system builds upon multiple platforms, runs diverse software
packages and supports several modes of connectivity. Despite the best efforts
of software architects and coders, such systems inevitably contain a number of
residual faults and security vulnerabilities. Hence, it is not feasible for a system
administrator to try and remove each and every vulnerability present in these
systems. Therefore, the recent focus in security of such systems is on analyz-
ing the system globally, finding attacks which are more likely and severe, and
directing resources efficiently to increase confidence in the system.

To evaluate security of such a system, a security analyst needs to take into
account the effects of interactions of local vulnerabilities and find global vul-
nerabilities introduced by interactions. This requires an appropriate modeling
of the system. Important information such as the connectivity of elements in
the system and security related attributes of each element need to be modeled
so that analysis can be performed. Analysis of security vulnerabilities, the most
likely attack path, probability of attack at various elements in the system, an
overall security metric etc. is useful in improving the overall security and robust-
ness of the system. Various aspects which need to be considered while deciding
on an appropriate model for representation and analysis are: ease of modeling,
scalability of computation, and utility of the performed analysis.

There has been much work on modeling specific systems for vulnerability
analysis. Zhu [24] models computer virus infections using an Infection Graph,
where nodes represent hosts and an arc represents the probability of transfer of
a virus from source to target host independent of the rest of the system. Infec-
tion Graphs are used to find the most vulnerable path for virus infection on a
particular host. Ortalo et al. [19] describe a methodology for modeling known
Unix security vulnerabilities as a Privilege Graph, where a node represents the
set of privileges owned by a user and an arc represents grant of an access priv-
ilege. Dawkins and Hale [5] present a multi-stage Network Attack Model which
contains a DAG (Directed Acyclic Graph) similar to the Infection Graph in [24].
However, their model is generalized for different kinds of attacks and an XML
description is proposed. Sheyner et al. [21,9,22] present a data structure called
an Attack Graph to model the security vulnerabilities of a system and their ex-
ploitation by the attacker. An Attack Graph is a succinct representation of all
paths through a system that end in a state where an intruder has successfully
achieved his/her goal. An attack is viewed as a violation of a safety property of
the system, and off-the-shelf model checking [3] techniques are used to produce
Attack Graphs automatically.

Various techniques for quantitative security analysis are presented in
[4,10,20,17]. Dacier et al. [4] use Privilege Graphs to model the system, therefore
restricting the analysis to a specific family of attacks. Empirical and statistical
information is used to estimate the time and effort required for each type of
attack. MTTF (mean time to failure) is computed as a metric of the security
level of a system. The framework proposed in [20] requires attacker profiles and
attack templates with associated probabilities as part of the input. An ad hoc
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algorithm is used to generate Attack Graphs. Using a modified shortest path
algorithm, the most likely attack sequences are computed. Madan et al. [17] give
a theoretical description of various methods which can be used to quantify se-
curity based attributes of an intrusion tolerant system. Security intrusion and
response of an intrusion tolerant system are modeled using a Semi-Markov Pro-
cess (SMP). Security quantification analysis is carried out to compute measures
like steady state availability, mean time to failure and probabilities of security
failure due to violations of different security attributes. However, the analysis is
based on the availability of values for various model parameters and is feasible
for small Markov Chains only. Another related approach is the one described in
[8], where Alternating Probabilistic Attack Graphs are used for analysis. How-
ever, the system designer has to provide a priori probabilities for most events in
the system.

We propose a ranking scheme for the states of an Attack Graph. Rank of
a state shows its importance based on factors such as the probability of an
intruder reaching the state. The framework we propose is summarized in Figure
1. First we obtain a formal description of the system to be analyzed, an Attack
Model, that captures all possible behaviors of the system as it interacts with
possibly malicious peers. Given a security property, we then model check the
Attack Model, thus obtaining a compact description of all executions that violate
the security property, an Attack Graph. At the same time, we apply a ranking
algorithm to the state transition graph of the Attack Model to compute the
ranks of its states. We present two ranking algorithms to rank states based
on the probability of an intruder reaching those states. The first algorithm is
similar to the PageRank algorithm [2,1,15] used by Google. The second algorithm
ranks states based on the reachability probability of an intruder in a random
simulation. As there is a direct correspondence between the states of an Attack
Model and an Attack Graph, we also get the ranks of states of the Attack Graph.
The Ranked Attack Graphs are valuable for a system administrator as they allow
him to estimate the security level of the system and provide a guide for choosing
appropriate corrective or preventive measures.

The main advantages of our approach are:

– Ease and flexibility of modeling : Finding ranks using our technique
does not necessarily require a priori probabilities for all events. If the prob-
abilities are available, then we can use them for more accurate modeling.
Even if the exact probabilities are not available, modeling the attacks ran-
domly is expected to perform as good as PageRank performs on the World
Wide Web graph. In realistic situations, an attacker very rarely has complete
information about the network and the attack mostly proceeds using a re-
peated scan-probe approach. This is similar to a websurfer navigating across
webpages on the World Wide Web by following hyperlinks. Likewise, in the
case of automated attacks by computer viruses and worms, the attacks are
random in nature [25,23].
The ranking technique we use is also very flexible, since we can model dif-
ferent knowledge levels of the attacker and his intentions by simply adding
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Fig. 1. Ranking to analyze security of Attack Models

a bias in the rank computation. This is similar to personalization [7,1,15] of
PageRank. Moreover, we can combine the ranks obtained using this algo-
rithm with other criteria for ranking states such as the severity of different
failures in the system.

– Scalability : There exist efficient algorithms to compute PageRank over
graphs containing billions of webpages. Techniques based on sparse matri-
ces [6], extrapolation methods [13], adaptive methods [11], hierarchical block
rank computation [12], aggregation methods [16] are used to accelerate the
computation of PageRank. Since one of our algorithms is similar to PageR-
ank, we can also handle state transition graphs of comparable sizes.

– Applicability to a variety of situations : Attack Graphs and Attack
models are a very general formalism which can be used to model a variety
of situations and attacks. The system under attack could be anything: a
computer network under attack by hackers, a city under siege during war,
an electric grid targeted by terrorists. Moreover, Attack Graphs can be au-
tomatically generated using off-the-shelf model checking techniques. Hence,
a variety of situations can potentially be modeled and analyzed.

– Useful Analysis : A number of useful analyses can be carried out over
the Ranked Attack Graphs, which help a system administrator determine
the security level of the system and decide amongst various possible defense
measures. Ranks provide a detailed security metric which can be subse-
quently used by the system architect / administrator. Ranks of states can
be used to determine the probability and severity of security failures at var-
ious elements in the system. For realistic examples, the size and complexity
of Attack Graphs greatly exceeds the human ability to understand and an-
alyze. Ranks provide a way to determine the relevant parts of the Attack
Graph to figure out how to best deploy security measures.

In the next section, we give formal definitions of an Attack Model and an
Attack Graph. In Section 3, we explain the algorithms used to rank states of an
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Attack Graph. In Section 4, we describe various analyses that can be performed
on the Ranked Attack Graphs. In Section 5, we give examples of applying our
ranking techniques to real-life systems and applications.

2 Attack Models and Attack Graphs

Sheyner et al. [21] introduced the concept of Attack Models and Attack Graphs
to model the security vulnerabilities of a system and their exploitation by an
attacker.

An Attack Model is a formal representation of security related attributes
of the attacker, the defender and the underlying system. Formally,

Definition 1. Let AP be a set of atomic propositions. An Attack Model is a
finite automaton M = (S, τ, s0, l), where S is a set of states, τ ⊆ S × S is the
transition relation, s0 ∈ S is the initial state, and l : S → 2AP is a labeling of
states with the set of propositions true in that state.

A state in the model is a valuation of variables describing the attacker, the
defender and the system. The transitions in the system correspond to actions
taken by an attacker which lead to a change in the overall state of the system.
The starting state of the model denotes the state of the system where no damage
has occurred and the attacker has just entered the system using an entry point.
As an example, if we consider the case of a computer network Attack Model,
a state represents the state of the intruder, the system administrator and the
network of computers. The transitions correspond to actions of the attacker such
as running a network scan, probing a computer for vulnerabilities and exploiting
vulnerabilities to get more privileges on that computer.

An Attack Graph is a subgraph of an Attack Model, which consists of all
the paths in an Attack Model where the attacker finally succeeds in achieving
his goal. Formally,

Definition 2. Let AP be a set of atomic propositions. An Attack Graph or AG
is a finite automaton G = (S, τ, s0, E, l), where S is a set of states, τ ⊆ S × S
is the transition relation, s0 ∈ S is the initial state, E ⊆ S is the set of error
states, and l : S → 2AP is a labeling of states with the set of propositions true
in that state.

Given an Attack Model, model checking techniques are used to generate Attack
Graphs automatically. The negation of the attacker’s goal is used as the cor-
rectness property during model checking. These properties are called security
properties. An example of a security property in computer networks would be
“the intruder cannot get root access on the main web server”. A model checker
is used to find out all states in the Attack Model where the security property
is not satisfied. We call these states error states, comprising set E. An Attack
Graph is a subgraph of the Attack Model which only contains paths leading to
one of the error states. [21,9,22] describe the details of the algorithm to construct
an Attack Graph, given an Attack Model and a security property.
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In order to be able to find the reachability probability of various states in an
Attack Model, we associate probabilities with transitions in the model. We call
the resulting model a Probabilistic Attack Model. Formally,

Definition 3. A Probabilistic Attack Model is a 4-tuple M = (S, τ, s0, l), where
S is a set of states, τ : S × S → [0, 1] is the transition relation such that
∀s ∈ S,

∑
s′∈S τ(s, s′) = 1, s0 ∈ S is the initial state, and l : S → 2AP is a

labeling of states with the set of propositions true in that state.

3 Two Ranking Algorithms

We first describe the theory of the basic PageRank algorithm used to rank web-
pages on the World Wide Web. Then, we give a slightly modified version of
the PageRank algorithm to rank states of an Attack Graph. We also provide
an alternative algorithm for ranking states of an Attack Graph based on the
reachability probability of an attacker in a random simulation.

3.1 Using PageRank to Rank Attack Graphs

Google’s PageRank Algorithm. PageRank is the algorithm used by Google
to determine the relative importance of webpages on the World Wide Web.
PageRank is based on a model of user behaviour. It assumes there is a “random
surfer” who starts at a random webpage and keeps clicking on links, never hitting
the ‘back’ button, but eventually gets bored and starts on another random page.
The computed rank of a page is the probability of the random surfer reaching
that page. PageRank can be interpreted as a Markov Process, where the states
are pages, and the transitions are the links between pages which are all equally
probable. To capture the notion that a random surfer might get bored and restart
from another random page, a damping factor d is introduced, where 0 < d < 1.
The transition probability from a state is divided into two parts: d and 1 − d.
The d mass is divided equally among the state’s successors. Random transitions
are added from that state to all states with the residual probability of 1 − d
equally divided amongst them. If the random surfer arrives at a page with no
hyperlinks (called adangling state), he picks another page at random and restarts
from there. So, new hyperlinks are added from a dangling state to all other states
with the transition probability equally divided amongst them. In what follows,
these links are treated as ordinary links.

Consider a web graph with N pages linked to each other by hyperlinks. Let
Out(j) be the set of outlinks (hyperlinks) from page j and In(j) be the set of
pages linking to page j. After a sufficiently long period of time, the probability
πi of the surfer being at page i is given by:

πi =
1 − d

N
+ d

∑

j∈In(i)

πj

|Out(j)| (1)
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The first term in the equation corresponds to the probability transferred to
a state from the random transitions. The second term represents the prob-
ability transferred to a state from its predecessors and dangling states. Let
R = (r1, r2, .., rN )T be the PageRank vector, where ri is the rank of page i.
The PageRank of page i is defined to be the probability πi as used in Eq. 1.
Because Eq. 1 is recursive, it must be iteratively computed until πi converges.
The PageRank values are the entries of the dominant eigenvector of the modified
and normalized adjacency matrix Z:

Z = (1 − d)
[ 1

N

]
N×N

+ dA, (2)

where Aij =
{ 1

|Out(j)| if there is an edge from j to i
0 otherwise

One iteration of Eq. 1 is equivalent to computing Rt+1 = ZRt. After conver-
gence, we have RF+1 = RF, or RF = ZRF, which means RF is an eigenvector
of Z.

Various issues like the complexity of computation, storage, stability, and con-
vergence of PageRank have been extensively studied [1,15] . A number of tech-
niques based on sparse matrix computations, matrix permutations, utilization
of the block structure of the WWW etc. have been developed, allowing efficient
computation of PageRank over large web graphs [6,7,11,12,13,16]. PageRank
for a 100 million webpages can be computed in a few hours on a medium size
workstation.

RankingStates of anAttackGraph. Given an AttackModel M =(S, τ, s0, L),
we first construct a Probabilistic Attack Model for the system. As described in Sec-
tion 2, a transition from a state to another represents an atomic attack or event that
leads to a change in the overall system state. We assignprobabilities to these events
so that the probability for the whole system to converge to a certain state after a
long run can be computed. Similar to the Google PageRank algorithm, we divide
each state’s probability into d and 1−d, where d is a parameter to be tuned (termed
as damping factor in PageRank). We further divide the d mass equally among the
state’s successors. This is a realistic assumption, since many known attacks use a
brute force probe-scan approach. Automated attacks, such as viruses and worms
[25,23], are often designed to behave randomly. In addition, we add a transition
from each state pointing back to the initial state with probability 1 − d, modeling
that at any time there is a chance that either the attacker will abort the current
attack and try a different way to attack the system or that the attack may be dis-
covered and the system administrator will isolate the system and recover it. This is
different from the basic PageRank algorithm where for each state, edges are added
towards all other states to model that at any time the web surfer may randomly
select any other webpage in the world from which to continue surfing. In the case of
Attack Models, it is unreasonable to assume that the attacker can move the system
to any arbitrary state by jumping into the middle of an attack.
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Now the Probabilistic Attack Model is established, and we want to find out
the long term probability πj for the system to arrive at a certain state j from
the initial state. We define the rank of a state in the Probabilistic Attack Model
to be equal to the probability πj . With probability theory, πj may not always
exist, or may not be interesting (for example, maybe 0). A detailed proof is
available in the appendix to justify that for the Probabilistic Attack Model con-
structed with the above mentioned method, πj always exists. We prove that the
Probabilistic Attack Model corresponds to an ergodic Markov Chain, which is
a necessary condition for the iterative computation to converge. We compute
the ranks of all states using the method for computing PageRank described in
Section 3.1.

Now, we label the states of the Attack Graph with the ranks obtained above.
The states in an Attack Graph are a subset of the states in the Probabilistic
Attack Model. Hence, every state in the Attack Graph is labeled with the rank
of the corresponding state in the Probabilistic Attack Model. We are particularly
interested in the rank of error states in the Attack Graph. High probability (or
rank) of error states means that the system is insecure. Section 4 describes
different kinds of analyses possible using a Ranked Attack Graph.

3.2 Alternative Algorithm for Ranking Attack Graphs

Kuehlmann et al. [14] give a method to rank states in a state transition graph to
guide state space search. The rank of a particular state gives the probability of
reaching one of the target states starting from that state in a random simulation
run. The ranks are computed using a random walk based strategy. Our alterna-
tive ranking algorithm to rank states of an Attack Graph is a modification of the
algorithm given in [14]. The rank of a particular state here gives the probability
of reaching that state starting from the initial state in a random simulation run.

We give a brief description of the algorithm. Given an Attack Model M =
{S, τ, s0, l} with k states, we construct the transition probability matrix P . Let
pij denote the probability of transition from state sj to si. We define the transi-
tion probability pij as the reciprocal of the number of successors of the state sj . If
the exact transition probability is known, we use that instead. Let s = (s1, ...sk)T

be a vector where si = 1 if si is a start state, 0 otherwise. The vector r(m) rep-
resenting the reachability probabilities for all states in a random simulation run
of length up to m is given by:

r(m) =
m∑

n=0

Pns (3)

We consider a set of finite simulation runs with a given distribution of their
lengths. We assume a geometric distribution of lengths, for which the number of
simulation steps m is given by the following probability mass function:

d(m) =
1 − η

η
ηm for m > 0 and 0 < η < 1 constant (4)
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We use a geometric distribution of simulation lengths as we believe that longer
attacks are less probable. Also, using this distribution, error states closer to
the initial state and hence, easier to be attacked, are ranked higher. Let ri

be the reachability probability of state si. The following formula computes the
reachability probability r = (r1, ..., rk)T .

r =
1 − η

η

∞∑

m=1

ηm
m∑

n=0

Pns (5)

The reachability probability ri is defined as the rank of state si in the Attack
Model. As the states of an Attack Graph are a subset of the states in an Attack
Model, we label each state of the Attack Graph with the rank of the correspond-
ing state in the Attack Model. Thus, we obtain a Ranked Attack Graph.

4 Using Ranked Attack Graphs for Security Analysis

1. Security Metric: The total rank of all error states provides a good measure
of security of the system. By the model checking terminology error state, we
mean a state whose certain user-specified security property is violated and
an undesirable situation happens in the system. If the error states have tiny
ranks such as 0.001 or 0.002 for example, it indicates that the whole system
is secure enough, thus increasing the confidence of the system users.

2. Security Improvement: A system administrator can apply different de-
fense measures with the objective of reducing the total rank of error states.
For example, a system administrator may change security policies, or add
hardware/software/human at certain components (for example a computer
host) of the system, and observe the reduction in the total rank of error
states. By these experiments, the administrator is able to improve the secu-
rity level of the system to a customized desirable level.

It would be better for a system administrator to eliminate all the highly
ranked error states. This can be achieved by making local changes to the At-
tack Graph which bring about a reduction in the rank of the highly ranked
error states. For example, the system administrator can stop a service at
a computer or add an intrusion detection component such that it removes
some of the incoming transitions of the highly ranked error states in the At-
tack Graph. This would lead to a reduction in the rank of the highly ranked
error states.

3. Derived Analysis: In addition, more analysis can be derived from the
ranks. One such example is the probability of a host being attacked. By
summing up the ranks of states in which a particular host is attacked, the
probability of this host being attacked is found. This type of analysis was
shown to be useful in some situations such as computer virus attacks [24].
By reducing the infection probability of a certain host through anti-virus
measures, it was shown that the epidemic probability can be reduced. Such
analysis is also useful to identify the weak grid in a power system targeted
by terrorists.
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4. Aid in Visual Analysis: Attack Graphs suffer from a visual complex-
ity problem. For real situations, the size and complexity of Attack Graphs
greatly exceeds the human ability to understand and analyze. Ranks help in
viewing more important areas of the Attack Graph selectively. The admin-
istrator can adjust the number of states being viewed based on a cutoff on
ranks of those states. The administrator could just focus on portions of the
Attack Graph containing highly ranked error states and make local changes
to get rid of the highly ranked error states.

5 Examples/Applications

In this section, we show applications of ranking techniques to realistic systems.
In the example, we consider multi-stage cyber attacks against a network of com-
puters. We construct a Network Attack Graph for a computer network and rank
its states to analyze the network for security.

5.1 Ranking Network Attack Graphs

A Network Attack Model is constructed using security related attributes of the
attacker and the computer network. Below is a list of components from a network
used to construct a network model:

– H, a set of hosts connected to the network. Hosts are computers running
services, processing network requests and maintaining data. A host h ε H is
a tuple (id, svcs, sw, vuls) where id is a unique host identifier, svcs is a list
of services active on the host, sw is a list of other software running on the
host, and vuls is a list of host-specific vulnerable components.

– C, a connectivity relation expressing the network topology and inter-host
reachability. C is a ternary relation C ⊆ H × H × P, where P is a set of
integer port numbers. C(h1, h2, p) means that h2 is reachable from h1 on
port p.

– TR, a relation expressing trust between hosts. Trust is a binary relation TR
⊆ H × H. TR(h1, h2) means that a user on h1 can log in on h2 without
authentication.

– I, a model of the intruder. We assume the intruder does not have global
information about the network such as knowledge of all the possible attacks
on the network. The intruder is associated with a function plvl : H →
{none, user, root} which gives the level of privilege of the intruder on each
host.

– A, a set of individual actions that the intruder can perform during an attack.

A finite state Attack Model is constructed using the above information about
the computer network. A state of the model corresponds to a valuation of vari-
ables of each of the above components. The initial state corresponds to the case
in which the intruder has root privileges on his own machine and no other host.
Starting from the initial state, breadth first search is performed to find the set
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of reachable states and construct the Network Attack Model. In a particular
state, we find the set of enabled actions for the intruder. For each action, there
is a state transition from the current state to a state which reflects the changes
according to the effects of the chosen atomic action. Thus, we obtain a Network
Attack Model from the description of the network.

Given a Network Model obtained as above and a security property, model
checking is done to obtain a Network Attack Graph. The security property is
the negation of the intruder’s goal which could be administrative access on a
critical host, access to a database, service disruption etc. Network Attack Graphs
represent a collection of possible penetration scenarios in a computer network,
each culminating in a state where the intruder has successfully achieved his
goal.We use the PageRank algorithm of Section 3.1 to produce a Ranked Network
Attack Graph.

ipa

ip1

ip2

  Attacker

Fig. 2. Computer network A

5.2 Examples of Ranked Network Attack Graphs

We show screenshots of a few examples of Network Attack Graphs. States in the
graph have been ranked according to the ranking algorithm based on PageRank.
We set the damping factor to 0.85, which is the value Google uses. For each error
state, the intensity of color is proportional to the relative rank of that state in
the Attack Graph. The security metric based on the total rank of error states is a
quantitative guide for comparing Attack Graphs. A system administrator could
fix a particular security property, make changes to his network configuration and
compare the Attack Graphs obtained using this security metric. Thus, he can
determine the relative utility of different security measures. He could also fix
the system model and observe changes in the ranks of the Attack Graph based
on varying the security property from a weak to a strong one. For example,
consider the computer network shown in Figure 2 which has interconnected
computer hosts with some services and software vulnerabilities on each host. Let
the security property used by the system administrator be “ Intruder cannot get
root access on ip2”. Figure 3(a) shows the Attack Graph of the network with
respect to the above security property. The total rank of error states in the
Attack Graph is 0.24. Now, suppose the administrator stops the sshd service
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(a)

(b) (c)

Fig. 3. Comparison of Ranked Network Attack Graphs. (a) Attack Graph of the com-
puter network A (b) Attack Graph after stopping service sshd on ip2 (c) Attack Graph
with changed security property.

running on the host ip2. Figure 3(b) shows the Attack Graph corresponding to
the changed network configuration. The total rank of error states in the changed
Attack Graph is .053, which shows that the network becomes relatively more
secure. Now, suppose the administrator also changes the security property to
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ip2

ip4

ip1 ip3

ip5

aip

Target  Attacker

Fig. 4. Computer network B

“Intruder cannot get root access on ip1”. Figure 3(c) shows the Attack Graph
of the network with respect to the changed security property. The total rank of
error states in the Attack Graph is 0.31. This shows that host ip1 is more likely
to be attacked than host ip2 in the changed network configuration.

For realistic examples, the size and complexity of Attack Graphs greatly ex-
ceeds the human ability to visualize and understand [18]. Ranks provide a solu-
tion to this problem by showing the relevant regions of the Attack Graph to be
analyzed. Consider the computer network shown in Figure 4. Let the security
property used by the system administrator be “Intruder cannot get root access
on ip4”. Figure 5 shows the Attack Graph of the network with respect to the
above property. The Attack Graph is huge and hence difficult for a human to
analyze visually. Our ranking tool highlights the relevant regions of the Attack
Graph so that the system administrator can start looking to figure out the best
way of deploying security measures. Our visualization tool allows him to zoom-in
on portions of the graph with highly ranked states, e.g., the regions depicted in
Figure 5. Based on the incoming transitions of the highly ranked error states in
these two regions, the system administrator can now conclude that the attacker
reaches the highly ranked states mainly through an attack from the host ip2 to
the target host ip4 by exploiting the rsh login vulnerability. Hence, the admin-
istrator needs to put an intrusion detection component on the path between ip2
and ip4 or stop the rsh service between hosts ip2 and ip4. Note that these exam-
ples are very simple since they are used for illustration purposes only. Given the
recent advances in PageRank technology one can expect our approach to scale
to much larger systems.

We also implemented the alternative algorithm for ranking states of an At-
tack Graph based on random simulation described in Section 3.2. We compared
the ranks of states obtained using the two algorithms. Note that the modified
PageRank algorithm is parameterized by the damping factor d, and the random
simulation based ranking algorithm is parameterized by η. For all the examples
we considered, both algorithms give the same ordering of states based on their
ranks, when d = η = 0.85. However, the exact values of ranks differ slightly.
We observed that when both parameters are decreased simultaneously, the two
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Fig. 5. A large unreadable Attack Graph (left) and a zoom-in of two regions of the
Attack Graph with highly ranked states (right)
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algorithms still compute the same ordering of ranked states. It is remarkable
that two algorithms based on different intuition produce similar results.

6 Conclusions and Future Work

We have given two simple, scalable and useful methods for ranking Attack
Graphs. The ranks are a measure of importance of states in an Attack Graph.
They provide a metric of security of the system and are useful in making various
design decisions aiming at improving security of the system. Ranking helps in
overcoming the visual complexity of Attack Graphs by providing a way to view
more important areas of the Attack Graph selectively. The first algorithm is
similar to Google’s PageRank algorithm. The second algorithm computes ranks
of states based on the reachability probability of an attacker in a random sim-
ulation. Our technique does not assume any knowledge of a priori probabilities
for all events. If the probabilities are available, then we can use them for more
accurate modeling. Even if the exact probabilities are not available, modeling
the attacks randomly is expected to perform as good as PageRank performs on
the World Wide Web graph.

A direct extension of this work is to combine the ranks obtained using the
above algorithm with other criteria to rank states. Severity of damage occurring
at various error states, cost of preventing an error etc. are some other factors
which can be used to improve the ranks obtained. Another useful direction for
future work is to combine the ranks obtained with logical views of Attack Graph
to aid analysis. Noel and Jajodia [18] have given a framework for obtaining
hierarchical views of Attack Graphs. The views are obtained using automatic
aggregation on common attribute values for elements of the system or connect-
edness of the Attack Graph. Ranks over aggregated states can be used to get an
idea of the probability of attack or damage at various elements in the system.
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Appendix

In this section, we prove the existence of a unique probability distribution among
all the states after a long run for the Probabilistic Attack Model constructed by
us.

Theorem. A Probabilistic Attack Model constructed by us converges to a unique
stationary distribution.

Proof. The Probabilistic Attack Model can be viewed as a Markov Chain where
the probability on each edge is the transition probability. Hence, the rank of a
state is actually its limiting probability in Markov theory, which is simply defined
as the probability of reaching this state after a long time. Unfortunately, this
limiting probability may not always exist, and may not be unique for a general
state transition model. Here, we provide a proof that it exists and is also unique
for the Probabilistic Attack Model constructed by us and thus our computation
converges to the correct ranks.

To prove this, we need to prove that the Probabilistic Attack Model con-
structed by us is an ergodic Markov chain. If a Markov chain is ergodic, each
state will converge to a unique limiting probability. In this case we say that the
Markov chain has a unique stationary distribution. In order for the chain to be
ergodic, it must satisfy three properties: the chain must be irreducible, positive
recurrent and aperiodic. In an irreducible chain any state can be reached from
any other state in the graph with probability that is greater than 0. Note that
a state can return to itself through different paths, i.e., recurrence paths. The
number of steps on these recurrence paths is defined as the recurrence step (or
recurrence time). The positive recurrence property requires that for any state,
the mean recurrence step is finite. Finally, an aperiodic chain requires each state
to be aperiodic. A state is called aperiodic if the greatest common divisor of its
recurrence steps is 1. If the chain is proved to be ergodic, a well-known theorem
in the Markov theory states that the chain will converge to a unique stationary
distribution.

Recall that from any state (except the initial state), there is an edge pointing
back to the initial state. In our Probabilistic Attack Model, by definition, starting
from the initial state, any other state can be reached. On the other hand, each
edge has a probability that is greater than 0. This means that all states can
reach each other through the initial state with probability that is greater than 0.

Our Probabilistic Attack Model has a finite number of states. Since it is
irreducible, a state is always able to return to itself through the initial state
in a finite number of steps. A result in Markov theory shows that the mean
recurrence step of each state is finite. Thus, this chain is positive recurrent.

In order to prove our model is ergodic, it remains to prove the chain is aperi-
odic. We define a state to be dangling if there is no other outgoing edge from it
except for the edge that points back to the initial state. The aperiodicity proof
is divided into two cases in Figure 6.

In case 1, all the successive states j of the initial state are dangling. The
recurrence step for each state is 2, 4, 6, . . ., thus all the states are periodic and
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Fig. 6. Two Cases in the Probabilistic Attack Model

the chain is periodic. Note that this case is trivial and does not appear in practice.
However, to make this chain aperiodic is easy: a self loop can be added to the
initial state, with a tiny probability ε. Thus, we simply ignore this case.

In case 2, the initial state has at least one non-dangling successor: state a
whose successor b is a dangling state. State b can be shown to have a 3-step and
5-step recurrence. The 3-step recurrence is completed by moving from state b to
the initial state and back to b through a. The 5-step recurrence happens when
the systems goes from state b to the initial state, and then back to the initial
state through a, and finally back to b. The gcd(3, 5) = 1 therefore state b is
aperiodic. Since the chain is irreducible, all states reach each other. A theorem
in Markov theory shows that these states have the same periods. Thus, all the
states are aperiodic.

Since the chain is irreducible, positive recurrent and aperiodic, it is ergodic.
Hence, it has a unique stationary distribution that can be computed through
our modified PageRank algorithm. Q.E.D.
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