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Abstract

We propose a metric to determine whether one version
of a system is relatively more secure than another with
respect to the system’sattack surface. Intuitively, the
more exposed the attack surface, the more likely the sys-
tem could be successfully attacked, and hence the more
insecure it is. We define an attack surface in terms of the
system’sactions that are externally visible to its users
and the system’sresourcesthat each action accesses or
modifies. To apply our metric in practice, rather than
consider all possible system resources, we narrow our
focus on a “relevant” subset of resource types, which we
call attack classes; these reflect the types of system re-
sources that are more likely to be targets of attack. We
assign payoffs to attack classes to represent likelihoods
of attack; resources in an attack class with a high pay-
off value are more likely to be targets or enablers of an
attack than resources in an attack class with a low pay-
off value. We outline a method to identify attack classes
and to measure a system’s attack surface. We demon-
strate and validate our method by measuring the relative
attack surface of four different versions of the Linux op-
erating system.

1 Introduction

In recent years, there has been an alarming increase in
the number of successful attacks on systems due to an
increase in the number of vulnerabilities found and ex-
ploited by attackers. Industry has responded to these in-
cidents by increasing the effort to make systems more
secure and less vulnerable. In the future, the amounts of
money, time, and effort spent by industry will continue
to increase proportionally to the increased expectations
and demands of their customers for more trustworthy
systems. Our work is motivated by the questions faced
by industry today: How has industry’s effort made to
make a system more secure paid off? Is the most recent

release of a system more secure than the earlier ones?
How can we quantify the results?

In this paper we propose a metric to compare the relative
security of two versions of the same system. Rather than
measure the absolute security of a system with respect to
some yardstick, we measure its relative security: Given
two versions, A and B, of a system we measure the secu-
rity of A relative to B with respect to the system’sattack
surface. Intuitively, by decreasing the exposure of the
system’s attack surface, e.g., by eliminating system fea-
tures, we make it more secure.

1.1 A New Metric

Today we commonly use two measurements to deter-
mine the security of a system: at the code level, we count
the number of bugs found (or fixed from one version to
the next), and at the system level, we count the number
of times a system version is mentioned in CERT advi-
sories [24], Microsoft Security Bulletins [29], MITRE
Common Vulnerabilities and Exposures (CVEs) [31]
etc. We argue in Section 7 why both measurements,
while useful, are less than satisfactory. In this paper,
we propose a new security metric based on the notion
of attack surface. It is a metric that strikes at thedesign
levelof a system: above the level of code, but below the
level of the entire system.

The system actionsexternally visible to the system’s
users together with thesystem resourcesaccessed or
modified by each action constitute the system’sattack
surface. Intuitively, the more actions available to a user
or the more resources accessible through these actions,
the more exposed the attack surface. The more exposed
the attack surface, the more likely the system could be
successfully attacked, and hence the more insecure it is.
We can reduce the attack surface to decrease the likeli-
hood of attack and make a system more secure.

Attacks carried out over the years, however, show that



certain system resources are more likely to be opportu-
nities, i.e., targets or enablers, of attack than others. For
example, services running as the privileged userroot
in UNIX are more likely to be targets of attack than ser-
vices running as non-root users. Files with full control
(e.g., rwxrwxrwx in Unix) are more likely to be at-
tacked than files with less generous permissions. Sym-
bolic links are highly likely to be used as enablers in
attacks. In Windows, applications, such as Internet Ex-
plorer and Outlook Express, with VBScript, JScript, or
ActiveX controls enabled are more likely to be enablers
of attack than if such scripting engines and controls were
disabled. Our method of measuring a system’s attack
surface recognizes that not all system resources should
be treated equally. We identify the system resources that
are opportunities of attack by a given set of properties
associated with the resources, and categorize them into
attack classes. These properties reflect theattackability
of a type of resource, i.e., some types of resources are
more likely to be attacked than other types.

Given a set of attack classes, and given two versions of
a system, we measure whether one is more secure rel-
ative to the other by comparing them with respect to
the attack classes. There are different possible ways
of doing this comparison. For example, for each ver-
sion, we might count the number of running instances of
each attack class (e.g., the number of services running as
root and the number of open sockets), and compare each
version’s respective numbers for each attack class. We
might further refine these counts by weighing instances
of some classes more than instances of others, where
weights represent the likelihoods of attack. We could
use apayoff functionto assign these likelihoods, e.g., to
assign higher payoff to services running asroot than
those running as non-root.

Using our method, it is meaningful to compare two sim-
ilar systems (e.g., two versions of Red Hat, or Red Hat
and Debian) rather than two completely unrelated sys-
tems (e.g., Linux and Windows) because the unrelated
systems would have different sets of attack classes. We
emphasize this point in Section 7 when we compare our
work on Linux to previous similar work on Windows
[11].

1.2 Contributions and Roadmap

Our contributions in this paper are three-fold:

• In terms of a state machine model of the system, we
present formal definitions of attack, attack surface,

and attack class. Our definitions are new, and in
particular more precise than found in earlier work
[11].

• We outline a general method to measure the attack
surface of any system. We explain what inputs the
user must provide to use our method in practice.

• We demonstrate our method on the Linux operat-
ing system. We identify 14 attack classes and mea-
sure the attack surface of four different versions of
Linux. Our results are consistent with the perceived
security level of these four versions.

The rest of this paper is organized as follows. In Section
2, we introduce our state machine model and point out
the key differences from other similar models. In Sec-
tion 3, we present the formal definitions of attack, attack
class, and attack surface. We explain our method of at-
tack surface measurement in Section 4. We demonstrate
the use of our method for the Linux operating system in
Section 5. We discuss the pros and cons of our approach
in Section 6 and compare it to related work in Section 7.
We conclude in Section 8.

2 State Machine Model

We use a state machine to model the system, the threat
(adversary) trying to attack the system, the administrator
of the system, and the users in the system.

2.1 Informal Overview

The use of state machines is not new in security litera-
ture. For example, state machines are used for intrusion
detection ([7] and [12]), and to model security policies
([2] and [17]). Our state machine, however, differs from
standard state machines found in the literature as fol-
lows:

• We explicitly represent an access matrix in the state
of the state machine, thereby allowing us to repre-
sent the set of principals (e.g., User and Adminis-
trator) explicitly.

• We represent the system itself as a separate entity
in our model and not as a principal.

• We distinguish both the threat and the system
administrator as system principals different from
other system users.



These differences allow us to partition the set of actions
of a state machine into pairwise-disjoint sets of actions.
By tagging the actions with the executor of an action
(i.e., a principal or the system) in a given execution se-
quence of actions, we can easily and succinctly define
the notion ofattack.

2.2 Formal Definition

A state machine M =〈S, I,A, T 〉 is a four-tuple where
S is the set of states, I⊆ S is the set of initial states, A is
the set of actions, and T is the transition relation.

We assume a set of potentially existing resources,
Resource, partitioned into disjoint typed sets. The set of
states,S, in a state machine ranges over the type2State,
where the typeStateitself is defined as follows:

State = Env × Store×Access Matrix
Env = Name → Resource
Store = Resource → V alue
Access Matrix = Principal ×Resource×Rights

Given a state〈e, s, am〉 ∈ S, the environmente is a
mapping of names to typed resources and the stores is
a mapping of typed resources to their typed values. The
access matrixam is a triple similar to Lampson’s ac-
cess matrix [13], where our principals are equivalent to
Lampson’s domains and our resources are equivalent to
Lampson’s objects. To be concrete in this paper we de-
fine Principal = {Threat, Administrator, User}. The
principal Threat is the adversary who attacks the sys-
tem with some goal, Goal, in mind. We assume that we
can represent the Goal of the Threat as a predicate over
the resources in the system. The Administrator tries to
protect the system and tries to prevent the Threat from
achieving its Goal. The User tries to get some useful
work done. For simplicity, we assume only one user in
the system, but our model is general enough to handle
multiple users. Access rights definitions are specific to
the system being modeled. For instance, on the UNIX
operating system,Rights= {r, w, x}. Representation of
the access matrix as a separate entity in the state makes
specifying the pre- and post-conditions of actions con-
venient. Finally, to distinguish between actions taken by
a principal and those performed by the system, in our
model we represent the system itself by a special entity
System.

The action setA consists of the actions of the System,
the Threat, the Administrator, and the User. Each action
is specified by its pre- and post-conditions and is tagged

to identify the executor of the action.A = AS ] AT

] AA ] AU , whereAS is the action set of the System;
AT , the action set of the Threat;AA, the action set of
the Administrator; andAU , the action set of the User.]
stands for disjoint union.

The transition relationT is defined asT ⊆ S × A × S.
For any actiona ∈ A, if a.pre anda.post are the pre-
and post-conditions ofa, we define the set of transition
triples involving the actiona to bea.T = {〈x, a, x′〉 :
S ×A× S | a.pre(x) ⇒ a.post(x, x′)}. T is the union
of all such sets,a.T , for each actiona ∈ A. For an
actiona ∈ A, we define a function,Res: predicate→
Resource, such that for each resource,r, appearing in the
predicate,p, r ∈ Res(p)1. We define the corresponding
function for an action,Res: action→Resourceto collect
all resources appearing in the pre- and post-conditions
of the specification of actiona. Formally, Res(a) =
Res(a.pre) ∪Res(a.post).

The System, the Threat, the Administrator, or the User
can cause the state machine M to change its state by
executing their respective actions. Astate transition,
〈x, a, x′〉, is the execution of actiona in statex resulting
in the new statex′. A change of state of M involves the
following observable behaviors: (1) addition, deletion
or modification of a resource, and (2) modification of
the entries of the access matrix. The addition or deletion
of a resource changes a state’s environment, store, and
access matrix. The modification of an existing resource
changes a state’s store and possibly its access matrix.

3 Definitions and Examples

We use our state machine model to define formally no-
tions of attack, attack surface, and attack class.

3.1 Attack

Let M = 〈S, I,A, T 〉 be the state machine represent-
ing the system under attack and Goal the state predicate
characterizing the adversary’s goal to be achieved in at-
tacking the system.

1This function can be inductively defined over the syntax of the
predicate language, which we intentionally do not fix in this paper.
First-order logic or temporal logic would both be natural choices for a
predicate language.



Definition 1 An attackis a finite sequence of action ex-
ecutionsa1, .., ai, .., an such that:

• ∀1 ≤ i ≤ n . ai ∈ A;

• a1 ∈ AT ;

• ∃1 < i ≤ n . ai ∈ AS ; and

• Goal is satisfied in the state reached by M after ex-
ecution ofan.

An attack includes actions from the action sets of the
System, the Threat, the Administrator, and the User.
Since an attack is initiated by the Threat, the sequence
starts with an action of the Threat. The sequence in-
cludes at least one action of the System to model the
exploitation of some system vulnerability by the Threat
in the attack. Finally, the adversary’s goal should hold at
the end of the attack.

To illustrate our formalism, let us first consider the spec-
ification of two actions: SENDSTRINGT and PRO-
CESSSTRINGS . Recall that a system state is a triple,
〈e, s, am〉, of an environment, store, and access matrix;
in particular, when we writee (am) below, we mean
the environment (access matrix) component of the state
〈e, s, am〉. For each action specification, we use a bar
over a variable name,̄x, to denote the resource itself,
i.e., e(x); an unprimed variable name,x, to denote the
value of the resource, i.e.,s(e(x)), and a primed vari-
able name,x′, to denote its value in the post-state, i.e.
s′(e′(x)). We specify state changes explicitly: a re-
source named by a variable that remains unprimed in the
post-state is assumed not to change.

Below, we assume the typechannelhas functionsen-
queue: channel× string→ channelanddequeue: chan-
nel→ string to write data to and read data from the chan-
nel; it also has the functionempty: channel→ boolean
that returns true if the channel is empty; false, other-
wise. The typeprocesshas a functiondisplay: process
× string→ unit to print a string on the user’s terminal
and a functionx load: process× string → executable
to extract a payload from an input string, returning a re-
source of typeexecutable. The typestringhas a function
length: string→ int that returns the length of the string.
We associate a functioneval: executable→ unit with
every executable in the system; when invoked it results
in the evaluation of the executable. Note that for an ex-
ecutable,E, the predicateE.pre⇒ E.postcaptures the
effect of evaluatingE.

action SEND STRINGT (C: channel, I: string)
pre 〈Threat, C̄, rw〉 ∈ am
postC ′ = enqueue(C, I)

action PROCESSSTRINGS(C: channel,
P: process)

pre ¬ empty(C)
post∃I . I = dequeue(C)∧

(length(I) ≤ 512 ⇒ display(P, I)) ∧
(length(I) > 512 ⇒

∃E.(E = x load(P, I) ⇒
E.pre ⇒ E.post))

The effect of executing SENDSTRINGT is to enqueue
a string onto a channel. The effect of executing PRO-
CESSSTRINGS is to display a string if its length is
≤ 512 and execute the string’s extracted payload, oth-
erwise.

Now we give a hypothetical attack, where the Threat ex-
ploits a buffer overrun in a processP running in the sys-
tem by sending through the communication channelC
a stringX whose length exceeds 512. (We give another
example describing a real-life attack in the appendix. It
also illustrates an attack with a User action.)

Informally, the adversary’s goal is to execute some ar-
bitrary code,E: executable, in the system; formally, we
represent this Goal as the predicateE.pre ⇒ E.post.
The attack on the System consists of the following se-
quence of two action executions, where time runs down
the page. We italicize the state predicates before and af-
ter the attack.

{∃C̄ : channel ∈ e ∧ ∃Ē : executable ∈ e ∧
∃P̄ : process ∈ e ∧ ∃X̄ : string ∈ e ∧

〈Threat, C̄, rw〉 ∈ am ∧
empty(C) ∧ length(X) > 512}

SEND STRINGT (C, X)
PROCESSSTRINGS(C, P)

{∃E : executable . E.pre ⇒ E.post}

Since the length of the stringX sent to
SEND STRINGT is greater than 512, the last con-
junct of the post-condition of PROCESSSTRINGS

holds; thus Goal is achieved at the end of this sample
attack.

For a given attack, the target will appear as one of the re-
sources of one of the system actions of the attack. In the
example above,Res(PROCESSSTRINGS) = {I, C, E,
P}, and the processP is the target of attack. In addition,
the specification of (at least) one of the system actions



in the attack reflects the vulnerability of the System ex-
ploited by the Threat. In the example, the post-condition
of PROCESSSTRINGS reflects the vulnerability of the
system, i.e., if the length of the input stringI is greater
than 512, the processP executes arbitrary code inI sent
by the Threat. The intended (ideal) behavior for PRO-
CESSSTRINGS is to display the input stringI, no mat-
ter what its length.

3.2 Attack Surface

Definition 2 Theattack surfaceof the System is the pair,
〈AS ,

⋃
a∈AS

Res(a)〉, where the first component is the set

of system actions and the second is the collective set of
resources,Res(a), for each system action,a ∈ AS .

Note that each system actiona ∈ AS can potentially
be part of an attack and hence contributes to the attack
surface. Even though a system action may not have ap-
peared in any attack seen to date, it can be part of a fu-
ture attack, exploiting vulnerabilities not yet discovered
or fixed.

Similarly, by our definition, every system resource can
potentially be part of an attack surface. In reality, how-
ever, not all system resources have the same likelihood
of being a target or enabler of an attack. We use attack
classes to capture this intuition.

3.3 Attack Class

To motivate our definition of attack class, consider the
general resource typeservice. In practice, not all ser-
vices have the same “attackability,” i.e., likelihood of
attack. We might want to distinguish between services
running asroot and services running asnon-root .
Or, while we might have a general resource typefile, we
might want to distinguish among files that allow full con-
trol, those that allow only read/write access, and those
that allow only read access; and we may not care about
the remaining types of files. These kinds of distinctions
can vary across different kinds of systems; for exam-
ple, in a medical databases we might try to gain access
to patient records, but in a nuclear control system, we
might try to gain access to the sensor and actuator pro-
cesses. We want our attack surface metric to be applica-
ble across this broad range of systems.

In order to characterize these distinctions formally, we
use “properties of interest” that are relevant to a given

system. In practice, these properties take into consid-
eration the aspects of resources the Threat finds easy to
exploit (e.g., weak access control on files). To be con-
crete, we assume that we are given a set of properties,
each expressed as a predicate over resource types.

A set of properties,Prop, extends a given set of types,
Type, by introducing new types, each a subtype of some
type inType. This extended type system defines a type
hierarchy, where types are related by a subtype rela-
tion (e.g., see Liskov and Wing’s behavioral notion of
subtype [14]). For example,nobodyaccountis a sub-
type of useraccountbecause an account of typeno-
bodyaccounthas all the properties ofuseraccountwith
the further distinguishing property that itsuser id is
nobody . For typesS andT , we writeS ≤ T if S is a
subtype ofT . The subtype relation characterizes when
properties of a resource of a type,T , are preserved by
any ofT ’s subtypes. Operationally, ifS ≤ T then any-
where we expect a resource of typeT we can substitute
a resource of typeS. In general, a type hierarchy is a
forest of directed acyclic graphs, i.e., a type might have
more than one parent.

Assume we have a type hierarchy relation,Induce, that
takes as input a set of properties,Prop, and a set of types,
Type, and yields both a new set of types,SType, and a
subtype relation,≤, such that:

• SType⊃ Type. That is,Induceextends a given set
of types with new ones.

• ≤ is a subtype relation on types inSType.

• ∀S ∈ SType\Type∃T ∈ Type. S ≤ T . That is,
each new type is a subtype of some existing type.

• ∀p ∈ Prop, ∃S ∈ SType\Type such that∀x :
S . p(x). That is, each property plays a role in
defining some new type.

• ∀S ∈ SType\Type, ∃p ∈ Prop such that∀x :
S . p(x). That is, each new type derives from some
property inProp.

The relationInduceprojected on its first type in its do-
main (Prop) and mapped onto the first type in its range
(SType) is total and onto. Note that a property can
be used to define more than one new type and a new
type can be derived from more than one property. If
Induce(〈Prop, Type〉, 〈SType,≤〉) we say the set of prop-
ertiesProp inducesa type hierarchy onType, producing
a subtype relation,≤, on types inSType.



Definition 3 Given a set of properties, Prop, and a set of
resource types, Type, let TypeHierarchy be the subtype
hierarchy induced by Prop on Type, i.e., Induce(〈Prop,
Type〉, 〈TypeHierarchy, ≤〉). The attack classesof a
system are all the types in TypeHierarchy that are leaf
nodes, i.e., have no subtypes of their own.

Note that by defining an attack class to be a type with
no child node in the type hierarchy, we ensure that all
attack classes are disjoint, and thus any count based on
the numbers of elements in a class will not double count
resources. (We could give a less restrictive definition
of attack class, but then any straightforward counting
method, e.g., based on the number of instances per class,
should make sure instances are not double counted.)

The set of properties specified by the user captures how
likely resources of a given type will be attacked. For ex-
ample, two general resource types in the Linux operat-
ing system areserviceanduseraccount. We can use the
predicateservicerunning as root: service→ boolean
to categorize the services into two attack classes:ser-
vice running as root and servicerunning as non-root.
We can use the predicatesuser id: user account× id→
booleanand group id: user account× id → boolean
to categorize the user accounts into the attack classes
useraccountwith user id=root or group id=root, no-
bodyaccount, andall other accounts. (Our type hier-
archy for Linux presented in Section 5 is more elab-
orate.) In the Windows (as in Linux) operating sys-
tem, one general resource type ischannel. We can use
the predicatechannelprotocol: channel× protocol→
booleanto categorize the resources of type channel into
the attack classessocket, RPCendpoint, namedpipe
andall other channels.

4 Attack Surface Measurement Method

In this section we outline a general method that can be
used to identify the attack classes of a system and mea-
sure its attack surface. We base our method on our for-
mal model and definitions described in earlier sections;
we present it in a way so that it can be applied to any
system.

4.1 Attack Surface Measurement

The attack surface of a system consists of the set of sys-
tem actionsAS and the collective set of resources of

each actiona ∈ AS . A naive but impractical way of
measuring the attack surface is to enumerate the set of
system actions of a given system and count the number
of resources in each of the action’s resource set. We de-
scribe below a more practical, yet meaningful way to
measure the attack surface based on the attack classes of
the system. Then, given two versions, A and B, of a sys-
tem we compare their relative attack surface exposure
with respect to the attack classes.

4.2 Method

Consider a system with a fixed set,AS , of system
actions, each specified in terms of pre- and post-
conditions. In practice, a system’s API serves as the set
of system actions.

Step 1. Identify the resources that are potential targets
of attack as

⋃
a∈AS

Res(a) from the given set of sys-

tem actionsAS . Let Typebe the set of types of all
these resources.

Step 2. Given a set,Prop, of properties of interest over
the resources, induce a type hierarchy over the set,
Type, of resource types identified in Step 1. Every
leaf node in this type hierarchy is an attack class of
the system. LetAttackClassbe the set of attack
classes.

Step 3. Define a payoff functionF: Attack Class→
[0, 1] to assign payoffs to each attack class iden-
tified in Step 2.

Step 4. Choose somek attack classes from the attack
classes identified in Step 2. (We discuss why we
include this step below.)

Step 5. Compare the two versions of the system, A and
B, with respect to thesek attack classes to obtain
their relative attack surface exposure.

Some notes on these steps in our method:

In Step 2, we need to rely on our knowledge of the sys-
tem to state the properties of interest. They will differ
from system to system and they may change over time
based on our experience with a system as it evolves over
time.

In Step 3, payoffs represent the likelihoods of attack. An
attack class with a high payoff indicates that resources of



that class are more likely to be attacked than resources
of an attack class with a lower payoff. One naive way of
assigning payoffs is to count the number of times a re-
source appears in the pre- and post-conditions of system
actions; we would assign higher payoffs to the resources
having higher counts. Another way of assigning pay-
offs is based on a system’s reported history and we give
higher payoffs to attack classes that appear in a greater
number of vulnerability bulletins. A more sophisticated
approach for defining a payoff function is to quantify the
“damage” the adversary can effect if resources in a given
attack class are compromised, e.g., in terms of cost to re-
pair the system.

In Step 4, we acknowledge that measuring an attack sur-
face in practice need not involve all the attack classes of
the system. We might choose the topk attack classes of
a system based on the payoffs assigned in Step 3. Or,
more pragmatically (as we will see in Section 5), we
might simply choose thek attack classes for which we
have an automated means of counting their sizes.

In Step 5, there are many ways to use the attack classes to
do the comparison. One simple way is to count the num-
ber of instances of each attack class in both versions and
compare the numbers. The higher the count for a given
attack class, the more the attack surface exposure is for
that class. Another way is to incorporate the payoffs
identified in Step 3 as weights in these counts; e.g., we
could count the weighted sum of all instances in each at-
tack class with the same immediate supertype, and com-
pare the versions with respect to the supertype, rather
than its individual attack class subtypes. In other words,
the attack surface contribution of a resource typeT with
attack classesS1, S2, .., Sk as its subtypes is given by
k∑

i=1

n(Si)×wi, wheren(Si) is the number of instance of

the attack classSi andwi is the payoff assigned toSi in
Step 3. A more sophisticated comparison might take into
account the interactions between various attack classes,
e.g., we can compare the number of sockets opened by
services running asroot and ignore the other sockets
in the system.

4.3 Reducing the Attack Surface

Our formal model and measurement method suggest
ways in which we can reduce the exposure of an attack
surface:

• Reduce the number of system actions.

• Remove a known or potential system vulnerability
by strengthening the pre- and post-conditions of a
system actiona ∈ AS , e.g., in a way that prevents
the Goal of the Threat from ever being achieved.

• Eliminate an entire attack class.

• Reduce the number of instances of an attack class.

5 Linux Example

In this section, we describe the results of measuring the
attack surface of four versions of the Linux operating
system.

Step 1 of our method requires that we identify all re-
sources of the system that are potential targets of attacks.
Since it is impractical to enumerate the set of system ac-
tions for Linux, and then identify all possible resources
each action might access or modify, we derived the set
of resource types indirectly. We considered all resources
that appear in the MITRE CVEs [31] as potential targets
of attack and identified their types accordingly.

In Step 2, we defined a set of properties over the resource
types identified in Step 1, and induced a type hierarchy
over the extended set of resource types. Every leaf node
in this type hierarchy is an attack class, resulting in 14
attack classes for Linux. Fig 1 depicts the type hierar-
chy and the 14 Linux attack classes. For example, in
our type hierarchy,nobodyaccount≤ useraccount≤
all resourceandsymboliclink ≤ all resource. We use
descriptive names for the types and subtypes to be sug-
gestive of the properties we used to induce the hierarchy.

In Step 3, we used the history of attacks on Linux based
on CVEs to assign payoffs to the attack classes identified
in Step 2. We did not assign explicit numeric payoff val-
ues because we did not plan to use the numeric values in
Steps 4 and 5. Instead, we assumed a higher payoff for
an attack class if the resources of that attack class appear
a greater number of times in the CVEs. Note that count-
ing the number of times a system appears in the CVEs is
different from counting the number of times each attack
class of the system appears in the CVEs. For example,
consider two versions, A and B, of a system having ten
attack classes and each appearing in 50 CVEs. Let two
of the attack classes of version A appear in 25 CVEs
each, ten of the attack classes of version B appear in 5
CVEs each, and the first two attack classes have lower
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Figure 1: Linux Attack Classes: Attack Classes are represented by rectangular boxes.

payoffs compared to the remaining eight. Both A and B
appear in same number of CVEs, but the attack surface
exposure of B is more than that of A with respect to the
ten attack classes.

In Step 4, we chose 11 attack classes for attack sur-
face measurement out of the 14 identified in Step 2. We
did not include three attack classes in our measurement
since it was not possible to count the number of instances
of each of them for all four versions of Linux. In Sec-
tion 5.2, we explain in more detail why we omitted these
three attack classes.

In Step 5, we counted the number of instances of each of
the 11 attack classes for four versions of the Linux oper-
ating system and compared the numbers to get a relative
measure of their attack surface.

5.1 Attack Classes

We identified the resources appearing in the publicly
known vulnerabilities reported in the CVEs and CVE
candidates list of MITRE [31]. We obtained further in-
formation about the vulnerabilities from the CERT Ad-
visories [24], Debian Security Advisories [28], and Red
Hat Security Advisories [33] referenced in the CVEs .
We categorized the types of these resources into 14 at-
tack classes. We describe below each attack class and
give an example (CVE) of a vulnerability of a resource
in that attack class.

5.1.1 Linux Attack Classes

openTCP/UDP socket: The services running on the
system open TCP/UDP sockets and listen for client re-
quests on them. Multiple sockets can be opened by a
service and multiple services can share the same socket.
This attack class is a subtype of the resource typechan-
nel. CVE-2001-0309 describes an attack involving open
sockets— since theinetd daemon does not properly
close sockets for internal services such asdaytime and
echo , an attacker can cause a denial-of-service attack
by opening a series of connections to these services.

open remoteprocedurecall(RPC) endpoint: Re-
motely accessible handlers for RPCs are registered in
the system by RPC servers. This attack class is a sub-
type of the resource typechannel. A remote attacker can
exploit an integer overflow vulnerability in theSunRPC
xdr array function described in CVE-2002-0391 to
execute arbitrary code on the system.

servicerunning as root: This attack class is a subtype
of the resource typeservice. Examples of services run-
ning as root arecrond and telnetd . CVE-1999-
0192 describes a buffer overflow in thetelnetd dae-
mon which a remote attacker can exploit to gainroot
privilege on the system.

servicerunning as non-root: This attack class is a sub-
type of the resource typeservice. Examples of services
running as non-root areportpmap andrpc.statd .
CVE-2000-0666 describes a format string vulnerability
in the servicerpc.statd which a remote attacker can



exploit to execute arbitrary code on the system.

setuid(setgid)root program: Setuid root programs are
owned byroot and execute in the context ofroot in-
stead of the user who invokes them. This attack class is
a subtype of the resource typeexecutable. CVE-2000-
0949 describes a heap overflow in the setuid root pro-
gramtraceroute which local users can exploit to ex-
ecute arbitrary commands on the system.

enabledlocal user account: This attack class is a sub-
type of the resource typeuseraccount. Many of the
attacks on Linux systems can be carried out only by
local users. CVE-1999-0130 describes an exploit in
which local users can gainroot privilege by starting
Sendmail in daemon mode.

user id=root or group id=root account: This attack
class is a subtype of the resource typeuseraccount
such that theuser id or group id of the user
account is root (0) . These accounts are poten-
tial targets of attack because of their enhanced privilege.
CVE-2002-0875 describes a vulnerability in the daemon
fam which unprivileged users can exploit to discover a
list of files accessible to theroot group.

unpasswordedaccount: This attack class is a sub-
type of the resource typeuseraccountsuch that the
password of the user account is set toblank .
CAN-1999-0502 describes the presence of a unix ac-
count with default, null, blank or a missing password
as a vulnerability of the system.

nobodyaccount:Nobody is a special user account cre-
ated in the system. This attack class is a subtype of the
resource typeuseraccountsuch that theuser id is
set tonobody . CAN-2002-0424 describes a vulnerabil-
ity in efingerd running asnobody which local users
can exploit to gainnobody privilege by modifying their
own .efingerd file and runningfinger .

weakfile permission: This attack class is a subtype of
the resource typefile such that the access matrix entries
of the file grant access rights to every user in the system.
CVE-2001-1322 describes a vulnerability inxinted
(runs with a defaultumask 0) which allows local users
to read or modify files created by the programs running
underxinted and not setting their safeumask.

script enabled:This attack class is a subtype of the re-
source typeapplication such that the applications are
enabled to execute scripts. Examples of such applica-
tions are browsers and e-mail clients. CVE-2001-0745
describes a vulnerability inNetscape which a remote

attacker can exploit to obtain sensitive user information
via Javascript .

symboliclink: This attack class consists of all re-
sources of typesymboliclink. When a program run-
ning asroot creates files in/tmp without checking
for symlink , an attacker can create a symbolic link in
/tmp before the program starts and hence can write to
sensitive files. CVE-2000-0728 describes a vulnerability
in the xpdf PDF viewer which local users can exploit
to overwrite arbitrary files via symlink attack.

httpd module:This attack class consists of all resources
of typehttpd module. CAN-2003-0789 describes a vul-
nerability involving handling of CGI redirect in the
mod cgid module inapache which an attacker can
exploit to view sensitive information.

dynamicwebpage: This attack class is a subtype of
the resources typewebpage. CVE-1999-0058 describes
a buffer overflow vulnerability in thephp program
php.cgi which allowsshell access to a remote at-
tacker.

5.1.2 Attack Class Validation

We obtained 14 attack classes for Linux by identifying
the resources that appear in MITRE CVEs. These 14
attack classes should be complete enough to cover vul-
nerabilities maintained in any other Linux vulnerability
database. Thus, toward a partial validation of our 14 at-
tack classes, we recasted some of the reported vulnera-
bilities of Linux available at the Bugtraq database [21] in
terms of our attack classes. If our 14 attack classes are
complete enough, then any vulnerability mentioned in
Bugtraq should be covered by one of our attack classes.

For example, the vulnerability entry in the Bugtraq
database with bugtraqid 7769 [22] describes a format
string vulnerability, stack overflow, and file corruption
in themod gzip module running in debug mode. The
target of the attack involving the vulnerability is the re-
sourcemod gzip and it is an instance of our Linux at-
tack classhttpd module.

As another example, Bugtraqid 8732 [23] describes
ASN.1 parsing vulnerabilities inOpenSSL which a re-
mote attacker can exploit to cause a denial-of-service or
to execute arbitrary code on the system. The resources
that are the targets of this attack are the applications such
as ssh that use OpenSSL.ssh is an instance of our
Linux attack classservicerunning as root.



5.2 Attack Surface Measurements

We present the results of measuring the attack surface of
following four versions of the Linux operating system.

• Debian is a Debian GNU/Linux 3.0r1 distribution
obtained from Debian’s website [27].

• RH Defaultis a Red Hat 9.0 Linux distribution ob-
tained from Red Hat’s website [32].

• RH Facilities is a customized Red Hat 9.0 Linux
distribution installed by the Computing Facilities of
CMU School of Computer Science [25].

• RH Usedis an instance ofRH Facilitiesafter use
by a graduate student for three months.

We took measurements forDebian, RH Default, andRH
Facilities the very day each system was installed. We
did not modify any of these three systems in any manner
after installation. We took measurements forRH Used
after three months of its installation. As described in
Step 5 of Section 5, we counted the number of instances
of each attack class in our measurement. The results of
our measurements are shown in Table 1.

For theweakfile permissionattack class, we counted
the number of file system objects with world-writable
permission. We did not install any web server on the
system runningDebianandRH Defaultsince the sys-
tem runningRH Facilities did not have a web server
installed. Hence we did not count the numbers of
instances of the attack classeshttpd module and dy-
namicwebpage. We did not count the number of in-
stances of the attack classsymboliclink since it is im-
practical to determine whether the programs running as
root check forsymlinks before opening temporary
files.

Our metric and method give us different ways to com-
pare the security of different versions of a system:

• Default comparison: We compare the attack sur-
faces ofDebianandRH Defaultto measure the rel-
ative security of different flavors (versions) of the
system.

• Customized usage-based comparison: We compare
the attack surfaces ofRH Defaultand RH Facili-
ties to observe the change in the security level of a
system based on its customization.

• Time-based comparison: We compare the attack
surfaces ofRH Facilities and RH Usedto moni-
tor the security level of a system as it changes over
time.

5.2.1 Debian vs. RH Default

As shown in Table 1,RH Defaulthas higher counts in
each of five attack classes,Debianhas a higher count in
one attack class, and both have the same counts in each
of five attack classes. Hence the attack surface expo-
sure of Red Hat is greater than that of Debian. Debian is
perceived to be a more secure operating system and this
is reflected in our measurement. We believe that even
though the code base is the same for the two systems,
design choices play an important role in making a sys-
tem more or less secure.

5.2.2 RH Default vs. RH Facilities

As shown in Table 1,RH Facilities has higher counts
in each of seven attack classes,RH Defaulthas higher
counts in one attack class, and both have the same counts
in each of three attack classes. The attack surface expo-
sure of the facilities distribution is more than that of the
default distribution.

The facilities distribution is customized to make it more
useful compared to the default distribution. For exam-
ple, it has theAFS file system installed. It has ser-
vices such aslclaadmd, opshell, kopshell
and terad installed for remote management and net-
work backup. Installing these features increases the
counts for the attack classesopenTCP/UDPsocket, ser-
vice running as root, enabledlocal useraccount, etc.
Our results show that the attack surface exposure has in-
creased with customization, thereby making the system
less secure.

5.2.3 RH Facilities vs. RH Used

As shown in Table 1,RH Usedhas higher counts in
each of four attack classes and both have the same
counts in each of seven attack classes. The used
version’s attack surface exposure is greater than the
initially installed version. The three-month use of
the system increased the counts of the attack classes
openTCP/UDPsocket, servicerunning as root, en-
abled local useraccount, and weakfile permission.



Attack Class Debian RH Default RH Facilities RH Used

openTCP/UDPsocket 15 12 40 41
openremoteprocedurecall(RPC)endpoint 3 3 3 3
servicerunning as root 21 26 29 30
servicerunning as non-root 3 6 8 8
setuid(setgid)root program 54 54 72 72
enabledlocal useraccount 21 25 33 34
user id=root or group id=root account 0 4 3 3
unpasswordedaccount 0 0 2 2
nobodyaccount 1 1 1 1
weakfile permission 7 7 21 37
script enabled 1 2 2 2
symboliclink * * * *
httpd module - - - -
dynamicwebpage - - - -

Table 1: Attack surface measurement results

Our results show that the attack surface exposure has in-
creased over time making the system less secure.

6 Discussion

In this section, first we make some qualifying remarks
on our metric and Linux measurement results, and then
we describe the advantages of our approach.

6.1 Caveats

We have some general caveats in using our attack surface
metric in determining the relative security of different
versions of a system.

• Our method measures the security of arunning in-
stance of a system. We are not measuring the sys-
tem artifact (e.g., as manifest by its code), but rather
a specific running version of it. Unlike a count of
the number bugs in the code, it is a dynamic, not
static measure.

• Our method measures the security of a system in a
given configuration. A system typically has many
settings; any combination of those settings yields a
specific configuration.

Thus, it is important to realize that system’s security
level will change as its configuration changes over time.

For example, initially a feature may be turned off but
over time, the user might enable it, potentially increasing
its attack surface, making it just as insecure as a system
that initially has that feature turned on.

We also have caveats with respect to our specific results
for Linux.

First, we chose 11 out of 14 attack classes in our at-
tack surface measurement and our results should be in-
terpreted in the context of these 11 attack classes. Sup-
pose version A is more secure compared to a version
B with respect to the 11 attack classes. If we were to
include the remaining three attack classes in the mea-
surement, version A may not be more secure, e.g., there
may be higher counts for these classes for A than for B.
Moreover if the payoffs for these three classes are higher
than for the 11 we counted, and we weighed our counts
by payoff, then A would look significantly worse than
B.

Second, CMU School of Computer Science Computing
facilities has replaced many standard services such
as telnetd and rshd with local versions that use
Kerberos for authentication and encryption in the
distribution RH Facilities. These local versions are
perceived to be more secure than the standard ver-
sions. Although we did not consider these security
enhancements in our measurement, here is how we
would: To account for the higher security level of Ker-
berized services, we would introduce a new predicate
kerberossupport: service→ booleanto allow us to dis-
tinguish whether a service usesKerberos . We could
use this predicate along with the previously defined



predicateservicerunning as root: service→ boolean
to define four distinct subtypes (attack classes) of the
type service: kerberizedservicerunning as root,
non-kerberizedservicerunning as root, ker-
berizedservicerunning as non-root, and non-
kerberizedservicerunning as non-root. We would
then assign lower payoffs to the attack classes whose
services useKerberos .

6.2 Advantages

The use of attack surface as a security metric and our
method of measuring the attack surface have the follow-
ing advantages.

First, our metric is a relative measure of security. It is
difficult to identify a yardstick for measuring a system’s
absolute security. Instead, we find it more practical and
more useful to compare the security of two versions of
a system with respect to a given set of attack classes.
Our metric can be used to determine whether a new re-
lease of a system is more secure than an earlier version.
By measuring the attack surfaces of different versions,
system designers could potentially reduce the number of
security patches that are released after the deployment
of a new version in the field.

Second, our metric can be used to track the security level
of the system over time by measuring the attack surface
at regular intervals. We can observe the change in secu-
rity level as different resources are turned on and off as
required.

Finally, our method of measuring the attack surface
leverages our knowledge of and experience with the sys-
tem. Use of specific domain knowledge plays an im-
portant role in Steps 2-5 outlined in Section 4.2. Our
method gives us the flexibility to refine upon our choice
of properties that induce our type hierarchy, our as-
signment of payoffs, and our comparison method. We
would make these refinements because of newly ac-
quired knowledge and experience, changes in the threat
model, or changes in technology.

7 Related Work

The use of attack surface as a security metric for any sys-
tem is a novel idea. Michael Howard of Microsoft first
introduced it informally for the Windows operating sys-

tem. We compare our generalization of this metric and
its application to Linux in Section 7.1 and then compare
this metric to other security metrics in Section 7.2.

7.1 Attack Surface Metric

Our work is inspired by Howard’s Relative Attack Sur-
face Quotient (RASQ) measurements for the Windows
operating system [10] further elaborated by Pincus and
Wing [11]. Howard, Pincus and Wing give a list of
twenty attack classes for the Microsoft Windows oper-
ating system and compare seven versions of Windows
[11]. The contributions of this paper as compared to the
earlier work done for Windows [10, 11] are three-fold:

• We define the notion of attack, attack surface, and
attack class more formally and in terms of a dif-
ferent state machine model. The significant dif-
ferences in ourstate machine modelare in mak-
ing the access matrix explicit and in distinguishing
the system as an entity different from its principals.
The significant contributions in ourdefinitionsare
in further dividing types of resources into attack
classes by introducing a type hierarchy and distin-
guishing among the attack classes based on their
attackability.

• In Section 4, we present amethodfor applying
our metric so that others can use the notion of at-
tack surface for any system. The method requires
identifying resources that are potential targets of at-
tacks and identifying interesting properties of the
resources to characterize their attackability. We
also allow users to specify a payoff function for at-
tack classes, to help determine what attack classes
to use for comparing two versions of a system.

• We apply our method and metric toLinux. The con-
crete contributions are in identifying the 14 attack
classes for Linux and in measuring the attack sur-
face of four different versions of Linux.

We compare the attack classes of Windows and Linux in
Table 2. There exists a one-to-one mapping between ten
attack classes of Windows and Linux. The remaining
ten attack classes of Windows have no corresponding
equivalents in Linux. Similarly the remaining four at-
tack classes of Linux have no corresponding equivalents
in Windows.



Attack Class Windows Linux

1 Open sockets openTCP/UDPsocket
2 Open RPC endpoints openremoteprocedurecall(RPC)endpoint
3 Services running as SYSTEM servicerunning as root
4 Enabled accounts enabledlocal useraccount
5 Enabled accounts in admin groupuser id=root or group id=root account
6 Guest account enabled unpasswordedaccount
7 Weak ACLs in FS weakfile permission
8 JScript enabled script enabled
9 Active Web handlers httpd module
10 Dynamic web pages dynamicwebpage

Table 2: Comparison of Windows and Linux Attack Classes

7.2 Other Security Metrics

Many have done work in the area of detection of bugs
at the code level [8, 9, 19, 20]. Using bug counts as
a security metric has the following disadvantages: (1)
the bug detection process may miss some bugs and may
raise false positives, and (2) equal importance is given
to all bugs, even though some bugs are easier to exploit
than others.

Many organizations, such as CERT [24] and MITRE
[31], and websites, such as SecurityFocus [21], track
vulnerabilities found in various systems. Counting the
number of times a system appears in these bulletins is
not an ideal metric because it ignores the specific sys-
tem configuration that gave rise to the vulnerability, and
it does not capture a system’s future attackability.

Our approach lies in between these two approaches: It is
at a higher level abstraction than the code level, implic-
itly giving importance to bugs based on ease of exploit.
It is at a lower level of abstraction than the entire system,
linking vulnerabilities to specific system configurations.

Browne et al. [5] give a mathematical model to reflect
the rate at which incidents involving exploits of vulnera-
bility are reported to the CERT. Beattie et al. [3] give
a model for finding the appropriate time for applying
security patches to a system for optimal uptime. Both
of these studies focus on vulnerabilities with respect to
their discovery, exploitation and remediation over time,
rather than a single system’s collective points of vulner-
ability.

There has been some work done in the area of quantita-
tive modeling of the security of a system. Brocklehurst
et al. [4, 15] measure the operational security of a sys-

tem by estimating the effort spent by an attacker to cause
a security breach in the system and the reward associ-
ated with the breach. Alves-Foss et al. [1] use the Sys-
tem Vulnerability Index—obtained by evaluating factors
such as system characteristics, potentially neglectful acts
and potentially malevolent acts—as a measure of com-
puter system vulnerability. Voas et al. [18] propose the
minimum-time-to-intrusion (MTTI) metric based on the
predicted period of time before any simulated intrusion
can take place. MTTI is a relative metric that allows the
users to compare different versions of the same system.
Ortalo et al. [16] model the system as a privilege graph
[6] exhibiting its vulnerabilities and estimate the effort
spent by the attacker to attack the system successfully,
exploiting these vulnerabilities. The estimated effort is a
measure of the operational security of the system. These
works focus on the vulnerabilities of a system as a mea-
sure of its security, where as we use the notion of the
attackability of various resources of the system as a mea-
sure of its security.

8 Conclusions

Our state machine model is general enough to model the
behavior of the system, the threat, the administrator and
the users on the system. Our attack surface measurement
method can be applied to any system. Our application of
our metric and method to Linux give results that con-
firm perceived beliefs about the relative security of four
versions of the Linux operating system.

Measurement of security, both quantitatively or qualita-
tively, has been a long-standing challenge to the commu-
nity. We view our work as a first step towards a meaning-
ful and practical metric for security measurement (e.g.,



see CRA Grand Challenge # 3 [26]). We believe that the
best way to begin is to start counting what is countable
and then use the resulting numbers in a qualitative man-
ner. We believe that our understanding over time would
lead us to more meaningful and useful quantitative met-
rics for security measurement.
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Microsoft Security Bulletin MS02-005

To show the generality of our formal model and spec-
ification approach, we describe an attack sequence ex-
ploiting a Windows vulnerability. It is one of the vulner-
abilities described in the February 11, 2002 Microsoft
Security Bulletin MS02-005 [30]. The processing of
an HTML document having an embedded object by the
MSHTML parser involves a buffer overrun. The adver-
sary can exploit this vulnerability to execute arbitrary
code in the security context of the user.

In the specifications of the actions below, we assume the
typewebserverhas a functionmakedoc: webserver×
embobj→ webpageto create a web page with an em-
bedded object and a functionadd page: webserver×
webpage→ webserverto add a page to the web server.
The typewebpagehas a functionget obj: webpage→
embobj which returns the object embedded in the web
page. The typeembobj has a functionlength: embobj
→ int that returns the length of the embedded object.
The type browser has a functiondload: browser×
webserver→ webpageto download a web page from
a web server. It also has a functionget securityzone:
browser× webserver→ securityzoneto get the secu-
rity zone to which the web server is mapped on the sys-
tem. The typesecurityzonehas a functionr activex:
securityzone→ boolean that returns true if the user
has enabled the option to run ActiveX controls in the
security zone; false, otherwise. The typeparserhas a
function display: parser× embobj → unit to display
the embedded object and a functionx load: parser×
embobj → executableto extract the payload from the
embedded object.

action CREATE DOCUMENTT (W: web server,
X: emb obj)

pre true
postW ′ = add page(W,make doc(W,X))

action DOWNLOADU (W: web server,
B: browser): D: webpage

pre true
postD = dload(B,W ) ∧ D̄ ∈ e′

action PARSES(M: parser, P: webpage,
Z: securityzone)

pre true
post∃X . X = get obj(P ) ∧ r activex(Z) ⇒

[(length(X) ≤ 512 ⇒ display(M,X)) ∧
(length(X) > 512 ⇒

∃E . (E = x load(M,X) ⇒
E.pre ⇒ E.post))]

The effect of executing CREATEDOCUMENTT is to
create a web page with an embedded object on the web
server. The effect of DOWNLOADU is to download a
web page from a web server. The effect of PARSES is
to display the embedded object in the web page being
parsed if the length of the embedded object is≤ 512
and execute the object’s extracted payload, otherwise.

Now we give an example of attack on the System ex-
ploiting the buffer overrun. We assume that the user has
mapped the web serverWS to security zoneZ on the
system, and has enabled the option to run ActiveX con-
trols in zoneZ. Informally, the adversary’s goal is to
execute some arbitrary code,E: executable, in the sys-
tem; formally, we represent this Goal as the predicate
E.pre ⇒ E.post. The attack on the System consists of
the sequence of three action executions.

{∃WS : web server ∈ e ∧ ∃IE : browser ∈ e ∧
∃MSHTML : parser ∈ e ∧

∃Z : security zone ∈ e ∧ ∃X : emb obj ∈ e ∧
length(X) > 512 ∧

Z = get security zone(IE,WS) ∧
r activex(Z)}

CREATE DOCUMENTT (WS, X)
D = DOWNLOADU (WS, IE)
PARSES(MSHTML, D, Z)

{∃E : executable . E.pre ⇒ E.post}

Since the length of the object, X, embedded in the web
page is greater than 512, the second conjunct of the post-
condition of PARSES holds; thus Goal of the adversary
is achieved at the end of the attack.


