
Two Formal Analyses of Attack Graphs∗

S. Jha
Computer Sciences Department

University of Wisconsin Madison, WI 53706
E-mail: jha@cs.wisc.edu

O. Sheyner and J. Wing
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

E-mail: {sheyner,wing}@cs.cmu.edu

Abstract

An attack graph is a succinct representation of all paths
through a system that end in a state where an intruder has
successfully achieved his goal. Today Red Teams determine
the vulnerability of networked systems by drawing gigantic
attack graphs by hand. Constructing attack graphs by hand
is tedious, error-prone, and impractical for large systems.
By viewing an attack as a violation of a safety property,
we can use off-the-shelf model checking technology to pro-
duce attack graphs automatically: a successful path from
the intruder’s viewpoint is a counterexample produced by
the model checker. In this paper we present an algorithm
for generating attack graphs using model checking as a sub-
routine.

Security analysts use attack graphs for detection, defense
and forensics. In this paper we present a minimization anal-
ysis technique that allows analysts to decide which minimal
set of security measures would guarantee the safety of the
system. We provide a formal characterization of this prob-
lem: we prove that it is polynomially equivalent to the mini-
mum hitting set problem and we present a greedy algorithm
with provable bounds. We also present a reliability analy-
sis technique that allows analysts to perform a simple cost-
benefit trade-off depending on the likelihoods of attacks. By
interpreting attack graphs as Markov Decision Processes
we can use the value iteration algorithm to compute the
probabilities of intruder success for each attack the graph.

Keywords: Attack graph, model checking, minimization
analysis, reliability analysis, Markov Decision Processes,
network vulnerability, security.

∗S. Jha was supported by the Office of Naval Research under contracts
N00014-01-1-0796 and N00014-01-1-0708. O. Shyener and J. Wing were
supported by the Defense Advanced Research Projects Agency and the
Army Research Office (ARO) under contract no. DAAD19-01-1-0485.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the DOD, ARO, ONR or the
U.S. Government.

1 Motivation

As networks of hosts continue to grow, evaluating their
vulnerability to attacks becomes increasingly more impor-
tant to automate. When evaluating the security of a network,
it is not enough to consider the presence or absence of iso-
lated vulnerabilities. A large network builds upon multiple
platforms and diverse software packages and supports sev-
eral modes of connectivity. Inevitably, such a network will
contain security holes that have escaped notice of even the
most diligent system administrator.

To evaluate the vulnerability of a network of hosts, a se-
curity analyst must take into account the effects of inter-
actions of local vulnerabilities and find global vulnerabili-
ties introduced by interconnections. A typical process for
vulnerability analysis of a network is shown in Figure 1.
First, scanning tools determine vulnerabilities of individual
hosts. Using this local vulnerability information along with
other information about the network, such as connectivity
between hosts, the analyst produces an attack graph. Each
path in an attack graph is a series of exploits, which we
call atomic attacks, that leads to an undesirable state (e.g.,
a state where an intruder has obtained administrative access
to a critical host).

1.1 Attack Graphs and Intrusion Detection

Attack graphs can serve as a basis for detection, de-
fense, and forensic analysis. To motivate our study of attack
graphs and attack graph generation algorithms, we discuss
the potential applications of attack graphs to these areas of
security.

Detection
System administrators are increasingly deploying intrusion
detections systems (IDSs) to detect and combat attacks on
their network. Such systems depend on software sensor
modules that detect suspicious events and activity and issue
alerts. Setting up the sensors usually involves a trade-off

Figure 1. Vulnerability Analysis of a Network

between sensitivity to intrusions and the rate of false alarms
in the alert stream. When the sensors are set to report all
suspicious events, the sensors frequently issue alerts for be-
nign background events. This often results in administrators
turning off the IDS entirely. On the other hand, decreasing
sensor sensitivity reduces their ability to detect real attacks.

To deal with this problem, intrusion detection systems
usually employ heuristic algorithms to correlate alerts from
a large pool of heterogeneous sensors. Valdes and Skin-
ner [19] describe a probabilistic approach to alert correla-
tion. Successful correlation of multiple alerts increases the
chance that the suspicious activity indicated by the alerts is
in fact malicious.

Attack graphs can enhance both heuristic and probabilis-
tic correlation approaches. Given a graph describing all
likely attacks (i.e., sequences of attacker actions), an IDS
can match individual alerts to attack edges in the graph.
Matching successive alerts to individual paths in the attack
graphs dramatically increases the likelihood that the net-
work is under attack. This on-line vigilance allows the IDS
to predict attacker goals, aggregate alarms to reduce the vol-
ume of alert information to be analyzed, and reduce the false
alarms rates. Knowledge of attacker goals and likely next
steps helps guide defensive response.

Defense
A further benefit of attack graphs is that they can help ana-
lyze potential effectiveness of intrusion detections systems
offline. In Section 3 we will show how attack graphs can be
generated automatically from models of the network. We
will also show that we can incorporate both the security
policy and the intrusion detection system in the model and
generate attack graphs for specific network configurations.
Attack graphs enable an administrator to perform several
kinds of analysis to assess their security needs: marking
the paths in the attack graph that an IDS will detect; de-
termining where to position new IDS components for best
coverage; exploring trade-offs between different security
policies and between different software/hardware configu-
rations; and identifying the worst-case scenarios and priori-

tizing defense accordingly.

Forensics
After a break-in, forensic analysis is used to find probable
attacker actions and to assess damage. If legal action is de-
sired, analysts seek evidence that a sequence of sensor alerts
comprises a coherent attack plan, and is not merely a series
of isolated, benign events. This task becomes even harder
when the intruders obfuscate attack steps by slowing down
the pace of the attack and varying specific steps. It has been
suggested that a convincing argument as to the malicious in-
tent of intruder actions can be constructed by matching data
extracted from IDS logs to a formal reference model based
on attack graphs [17].

1.2 Our Contributions

We have seen that constructing attack graphs is a crucial
part of performing vulnerability analysis of a network of
hosts. Currently, Red Teams produce attack graphs by hand,
often drawing gigantic diagrams on floor-to-ceiling white-
boards. Doing this by hand is tedious, error-prone, and im-
practical for attack graphs larger than a hundred nodes. We
have demonstrated in earlier work that model checking can
be applied to automatically generate attack graphs [15]. In
this paper, we show that the attack graphs produced by our
method are exhaustive, i.e., covering all possible attacks,
and succinct, i.e., containing only relevant states (see Sec-
tion 3.2).

We also provide a formal and detailed explanation of our
model. Our definitions are based on a finite-state model
of the network whose state transitions are described using
standard pre- and post-conditions. Each state transition cor-
responds to a single atomic attack by the intruder. A state in
the model represents the state of the system between atomic
attacks. A typical transition from state s1 to state s2 cor-
responds to an atomic attack whose preconditions are sat-
isfied in s1 and whose effects hold in state s2. An attack
is a sequence of state transitions culminating in the intruder
achieving his goal. The entire attack graph is thus a repre-

sentation of all the possible ways in which the intruder can
succeed.

As already discussed, attack graphs can be used to per-
form a variety of analysis. Specifically, attack graphs can
be used to answer the following questions of interest to a
system administrator:
Question 1: What successful attacks are undetected by the
IDS?
Question 2: If all measures in a set M ′ are implemented,
does the network become safe (more secure)?
Question 3: Given a set of measures M , what is the small-
est subset of measures whose implementation makes the
network safe?

Answers to these questions, can help an analyst or network
administrator in choosing the best upgrade strategy. These
questions are addressed in Section 5.

When we are modeling a system operating in an uncer-
tain environment, certain transitions in the model represent
the system’s reaction to changes in the environment. We can
think of such transitions as being outside of the system’s
control – they occur when triggered by the environment.
When no empirical information is available about the rel-
ative likelihood of such environment-driven transitions, we
can model them only as nondeterministic “choices” made
by the environment. Moreover, for new vulnerabilities data
for estimating probabilities might not be available. How-
ever, sometimes empirical data make it possible to assign
probabilities to environment-driven transitions. We would
like to take advantage of such information to quantify the
probabilistic behavior of attack graphs. In this context, a
system administrator might be interested in the following
question:
Question 4: The deployment of which security measure(s)
will increase the likelihood of thwarting an attacker?
The answer to this question is provided in Section 6.1. The
system administrator can use the answer to question 4 to
perform a quantitative evaluation of various security fixes
(see example 1).

The main contributions of this paper over our earlier
work [15] are:

• This paper explores the semantics of our network
model more formally.

• In our earlier work [15] we proved that finding a min-
imum set of atomic attacks which must be removed to
thwart an intruder is NP -complete. In this paper, we
further explore the complexity of this problem. Sec-
tion 5.1 proves that the problem is polynomially equiv-
alent to the minimum hitting set problem where the
collection of sets is represented as a labeled directed
graph. This reduction provides us additional insight,
which enabled us to find a greedy algorithm with prov-

able bounds, which can be used to answer questions
1,2, and 3.

• This paper also presents an algorithm to compute the
reliability (which is defined as the likelihood of an in-
truder not succeeding) for a network. A desirable fea-
ture of our algorithm is that it allows for incomplete
information, i.e., probabilities of all transitions need
not be provided. To our knowledge, previous metrics
in the area of security require complete information.

Related work is provided in Section 2. Section 3 de-
scribes our model and our model checking based algorithm
to generate attack graphs. An example network is presented
in Section 4. Section 4 also describes our network model
in detail. This network is used throughout the paper for il-
lustrative purposes. In Section 5 we present analysis which
helps us answers questions 1,2, and 3. Section 6 describes
probabilistic attack graphs and our algorithm to compute re-
liability. Answer to question 4 is provided in that section.
The proof of correctness of our algorithm to compute re-
liability are based on Markov Decision Processes and pre-
sented in the companion technical report [9]. Finally, direc-
tions for future work and concluding remarks are presented
in Section 7.

2 Related Work

Phillips and Swiler [12] propose a concept of attack
graphs that is very similar to the one described here. How-
ever, they take an “attack-centric” view of the system. Since
we work with a general input language, in our model seem-
ingly benign system events (such as failure of a link and
user errors) and attacks occur simultaneously. Therefore,
our attack graphs are more general than the one proposed
by Phillips and Swiler. Based on these ideas a tool for gen-
erating attack graphs is presented in [18]. The tool con-
structs the attack graph by forward exploration starting from
the initial state. A symbolic model checker (like NuSMV)
works backward from the goal state to construct the attack
graph. A major advantage of the backward algorithm is that
vulnerabilities that are not relevant to the safety property (or
the goal of the intruder) are never explored. This can result
in significant savings in space. In fact, Swiler et al. [18] re-
fer to the advantages of the backward search in their paper.
Moreover, by using model checking we leverage off all the
sophisticated reduction techniques developed in that area.
The post-facto analysis suggested by Phillips and Swiler is
also different from the one presented in this paper. We plan
to incorporate their analysis into our tool.

Dacier [6] proposes the concept of privilege graphs,
where each node represents a set of privileges owned by the
user and arcs represent vulnerabilities. Privilege graphs are

then explored to construct attack state graphs, which repre-
sents different ways in which an intruder can reach a certain
goal, such as root access on a host. Based on the attack state
graphs a metric, called the mean effort to failure or METF,
is proposed. An experimental evaluation of their framework
is described by Orlato et al. [11]. At the surface our no-
tion of attack graphs seem similar to the one proposed by
Dacier. However, as is the case with Phillips and Swiler,
Dacier again takes an “attack-centric” view of the world.
As pointed out earlier, our attack graphs are more general.
From the experiments conducted by Orlato et al. it appears
that even for small examples the space required to construct
attack state graphs becomes prohibitive. Model checking
has made significant advances in representing large state
spaces. Therefore, by basing our algorithm on model check-
ing we leverage off those advances and can hope to repre-
sent large attack graphs. However, the analytical analysis
proposed by Dacier can also be performed on attack graphs
constructed by our tool. We also plan to conduct an experi-
mental evaluation similar to the one performed by Orlato et
al.

Ritchey and Amman [14] also used model checking for
vulnerability analysis of networks. They used the unmodi-
fied model checker SMV [16]. Therefore, they could only
obtain one counter-example or one attack corresponding
to a intruder’s goal. In contrast, we modified the model
checker NuSMV to produce complete attack graphs, which
represents all possible attacks. We also described analysis
that can be performed on these attack graphs. These analy-
sis techniques cannot be meaningfully performed on single
attacks.

3 Generating Attack Graphs using Model
Checking

First, we formally define attack graphs, the data struc-
ture used to represent all possible attacks on our networked
system. We restrict our attention to attack graphs represent-
ing violations of safety properties1.

Definition 1 Let AP be a set of atomic propositions. An at-
tack graph or AG is a tuple G = (S, τ, S0, Ss, L), where S

is a set of states, τ ⊆ S × S is a transition relation, S0 ⊆ S

is a set of initial states, Ss ⊆ S is a set of success states,
and L : S → 2AP is a labeling of states with a set of propo-
sitions true in that state. Intuitively, Ss denotes intruder’s
goals, e.g., obtaining root access on a critical host.

Unless stated otherwise, we assume that the transition
relation τ is total. We define an execution fragment as a
finite sequence of states s0s1...sn such that (si, si+1) ∈ τ

for all 0 ≤ i < n. An execution fragment with s0 ∈ S0 is
1We say more on liveness properties in Section 7.

an execution, and an execution whose final state is in Ss is
an attack, i.e., the execution corresponds to a sequence of
atomic attacks leading to the intruder’s goal state.

Next we turn our attention to algorithms for automatic
generation of attack graphs. Starting with a description of
a network model M and a security property p, the task is
to construct an attack graph representing all executions of
M that violate p—these are the successful attacks. For the
kinds of attack graph analysis suggested in Section 1, it is
essential that the graphs produced by the algorithms be ex-
haustive and succinct. An attack graph is exhaustive with
respect to a model M and correctness property p if it cov-
ers all possible attacks in M leading to a violation of p, and
succinct if it only contains those states of M from which the
system can get to a state violating p.

3.1 Reachability Analysis

If we restrict ourselves to safety properties, an attack
graph may be constructed by performing a simple state-
space search. Starting with the initial states of the model M ,
we use a graph traversal procedure (e.g., depth-first search)
to find all reachable success states where the safety property
p is violated. The attack graph is the union of all paths from
initial states to success states.

While this algorithm has the advantage of simplicity, it
handles only safety properties and may run into the state
explosion problem for non-trivial models. Model checking
has dealt with both of these issues with some success, so we
will consider algorithms based on that technology.

3.2 Model Checking Algorithm

Model checking is a technique for checking whether a
formal model M of a system satisfies a given property p.
In our work, we use the model checker NuSMV [10], for
which the model M is a finite labeled transition system
and p is a property expressed in Computation Tree Logic
(CTL). For now, we consider only safety properties, which
in CTL have the form AGf (i.e., p = AGf , where f is
a formula in propositional logic). If the model M satisfies
the property p, NuSMV reports “true.” If M does not satisfy
p, NuSMV produces a counter-example. A single counter-
example shows an execution that leads to a violation of the
property. In this section, we explain how to construct attack
graphs for safety properties using model checking.

Attack graphs depict ways in which the system can reach
an unsafe state (or, equivalently, a successful state for the
intruder). We can express the property that an unsafe state
cannot be reached as:

AG(¬unsafe)

When this property is false, there are unsafe states that are
reachable from the initial state. The precise meaning of

Input:
S – set of states
R ⊆ S × S – transition relation
S0 ⊆ S – set of initial states
L : S → 2AP – labeling of states with propositional formulas
p = AG(¬unsafe) (a safety property)

Output:
attack graph Gp = (Sunsafe , Rp, S

p
0 , Sp

s , L)
Algorithm: GenerateAttackGraph(S, R, S0, L, p)

(* Use model checking to find the set of states Sunsafe that
violate the safety property AG(¬unsafe). *)
Sunsafe = modelCheck (S, R, S0, L, p).

(* Restrict the transition relation R to states in the set Sunsafe *)
Rp = R ∩ (Sunsafe × Sunsafe).
S

p
0 = S0 ∩ Sunsafe .

Sp
s = {s|s ∈ Sunsafe ∧ s |= unsafe}.

return(Sunsafe , Rp, S
p
0 , Sp

s , L).

Figure 2. Algorithm for Generating Attack Graphs

unsafe depends on the application. For example, in the
network security example given in Section 4, the property
given below is used to express that the privilege level of the
intruder on the host with index 2 should always be less than
the root (administrative) privilege.

AG(network.adversary.privilege[2] < network.priv.root)

We briefly describe the algorithm for constructing attack
graphs for the property AG(¬unsafe). The first step is to
determine the set of states Sr that are reachable from the
initial state. Next, the algorithm computes the set of reach-
able states Sunsafe that have a path to an unsafe state. The
set of states Sunsafe is computed using an iterative algo-
rithm derived from a fix-point characterization of the AG
operator [4]. Let R be the transition relation of the model,
i.e., (s, s′) ∈ R if and only if there is a transition from
state s to s′. By restricting the domain and range of R

to Sunsafe we obtain a transition relation Rp that repre-
sents the edges of the attack graph. Therefore, the attack
graph is (Sunsafe , Rp, S

p
0 , Sp

s , L), where Sunsafe and Rp

represent the set of nodes and edges of the graph, respec-
tively, S

p
0 = S0 ∩ Sunsafe is the set of initial states, and

Sp
s = {s|s ∈ Sunsafe ∧ s |= unsafe} is the set of success

states. This algorithm is given in Figure 2.

In symbolic model checkers, such as NuSMV, the tran-
sition relation and sets of states are represented using
BDDs [3], a compact representation for boolean functions.
There are efficient BDD algorithms for all operations used
in the algorithm shown in Figure 2.

3.3 Attack Graph Properties

We can show that an attack graph G generated by the al-
gorithm in Figure 2 is exhaustive (Lemma 1(a)) and succinct
with respect to states and edges (Lemma 1(b) and 1(c)).
Proof of the following lemma is straightforward and follows
from the definitions.

Lemma 1 The following properties of the attack graph G

are true:
(a) exhaustive
An execution e of the input model (S, R, S0, L) violates the
property p = AG(¬unsafe) if and only if e is an attack in
the attack graph G = (Sunsafe , Rp, S

p
0 , Sp

s , L).
(b) succinct with respect to states
A state s of the input model (S, R, S0, L) is in the attack
graph G if and only if there is an attack in G that contains
s.
(c) succinct with respect to edges
An edge t = (s1, s2) of the input model (S, R, S0, L) is in
the attack graph G if and only if there is an attack in G that
includes t.

4 A Simple Intrusion Detection Example

Consider the example network shown in Figure 3. There
are two target hosts, ip1 and ip2, and a firewall separat-
ing them from the rest of the Internet. As shown, each
host is running two of three possible services (ftp, sshd, a
database). An intrusion detection system (IDS) monitors
the network traffic between the target hosts and the outside

Figure 3. Example Network

world. There are four possible atomic attacks, identified
numerically as follows: (0) sshd buffer overflow, (1) ftp
.rhosts, (2) remote login, and (3) local buffer overflow. If
an atomic attack is detectable, the intrusion detection sys-
tem will trigger an alarm; if an attack is stealthy, the IDS
misses it. The ftp .rhosts attack needs to find the target host
with two vulnerabilities: a writable home directory and an
executable command shell assigned to the ftp user name.
The local buffer overflow exploits a vulnerable version of
the xterm executable.

In this section, we construct a finite state model of the
example network so that each state transition corresponds to
a single atomic attack by the intruder. A state in the model
represents the state of the system between atomic attacks.
A typical transition from state s1 to state s2 corresponds to
an atomic attack whose preconditions are satisfied in s1 and
whose effects hold in state s2.

The intruder launches his attack starting from a single
computer, ipa, which lies outside the firewall. His eventual
goal is to disrupt the functioning of the database. For which,
the intruder needs root access on the database host ip2.

4.1 States of the Finite State Machine Model

The Network

We model the network as a set of facts, each represented
as a relational predicate. The state of the network specifies
services, host vulnerabilities, connectivity, and a remote lo-
gin trust relationship between hosts. There are six boolean
variables for each host, specifying whether any of the three
modeled services are running and whether any vulnerabili-
ties are present on that host.

variable meaning
sshh ssh service is running

on host h

ftph ftp service is running
on host h

datah database is running
on host h

wdirh ftp home directory is
writable on host h

fshellh ftp user has executable
shell on host h

xtermh xterm executable is
vulnerable to overflow on host h

Connectivity is expressed as a ternary relation R ⊆ Host ×
Host × Port, where R(h1, h2, p) means that host h2 is
reachable from host h1 on port p. The constants sp and
fp will refer to the specific ports for the ssh and ftp services,
respectively. Slightly abusing notation, we write R(h1, h2)
when there is a network route from h1 to h2. Similarly, we
model trust as a binary relation RshTrust ⊆ Host × Host ,
where RshTrust(h1, h2) indicates that a user may log in
from host h2 to host h1 without authentication (i.e., host
h1 “trusts” host h2).

The Intruder

The function plvlA: Hosts → {none, user, root} gives the
level of privilege that intruder A has on each host. There is
a total order on the privilege levels: none < user < root.

Several state variables specify which attack the intruder
will attempt next:

variable meaning

attack attack type
source source host
target target host
strain stealthy/detectable attack

Intrusion Detection System

Atomic attacks are classified as being either detectable or
stealthy with respect to the Intrusion Detection System
(IDS). If an attack is detectable, it will trigger an alarm
when executed on a host or network segment monitored by
the IDS; if an attack is stealthy, the IDS does not detect it.

We specify the IDS with a function ids: Host × Host
× Attack → {d, s, b}, where ids(h1, h2, a) = d if attack
a is detectable when executed with source host h1 and
target host h2; ids(h1, h2, a) = s if attack a is stealthy
when executed with source host h1 and target host h2;
and ids(h1, h2, a) = b if attack a has both detectable and
stealthy strains, and success in detecting the attack depends
on which strain is used. When h1 and h2 refer to the same
host, ids(h1, h2, a) specifies the intrusion detection system
component (if any) located on that host. When h1 and h2

refer to different hosts, ids(h1, h2, a) specifies the intrusion
detection system component (if any) monitoring the net-
work path between h1 and h2. In addition, a global boolean
variable specifies whether the IDS alarm has been triggered
by any previously executed atomic attack.

4.2 Initial States

Initially, there is no trust between any of the hosts; the
trust relation Tr is empty. The connectivity relation R is
shown in the following table. An entry in the table corre-
sponds to a pair of hosts (h1, h2). Each entry is a triple of
boolean values. The first value is ‘y’ if h1 and h2 are con-
nected by a physical link, the second value is ‘y’ if h1 can
connect to h2 on the ftp port, and the third value is ‘y’ if h1

can connect to h2 on the sshd port.

R ipa ip1 ip2

ipa y,n,n y,y,y y,y,n
ip1 y,n,n y,y,y y,y,n
ip2 y,n,n y,y,y y,y,n

We use the connectivity relation to reflect the firewall
rule sets as well as the existence of physical links. For the
table above, the firewall is open and does not place any re-
strictions on the flow of network traffic.

Initially, the intruder has root privileges on his own ma-
chine ipa and no privileges on the other hosts.

The paths between (ipa, ip1) and between (ipa, ip2) are
monitored by a single network-based IDS. The path be-
tween (ip1, ip2) is not monitored. There are no other host-
based intrusion detection components. The IDS detects the

remote login attack, and the detectable strains of the sshd
buffer overflow attack.

4.3 Transitions

Our model has nondeterministic state transitions. If the
current state of the network satisfies the preconditions of
more than one atomic attack rule, the intruder nondeter-
ministically “chooses” one of those attacks. The state then
changes according to the effects clause of the chosen at-
tack rule. The intruder repeats this process until his goal is
achieved.

We model four atomic attacks. Throughout the descrip-
tion, S is used to designate the source host and T the target
host. R(S, T, p) denotes that host T is reachable from host
S on port p.

Sshd Buffer Overflow

This remote-to-root attack immediately gives a remote user
a root shell on the target machine.

attack sshd-buffer-overflow is
intruder preconditions

[User-level privileges on host S]
plvlA(S) ≥ user
[No root-level privileges on host T]
plvlA(T) < root

network preconditions
[Host T is running sshd]
sshT

[Host T is reachable from S on port sp]
R(S, T, sp)

intruder effects
[Root-level privileges on host T]
plvlA(T) = root

network effects
[Host T is not running sshd]
¬sshT

end

Ftp .rhosts

Using an ftp vulnerability, the intruder creates an .rhosts
file in the ftp home directory, creating a remote login trust
relationship between his machine and the target machine.

attack ftp-rhosts is
intruder preconditions

[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T is running ftp]
ftpT

[Host T is reachable from S on port fp]
R(S, T, fp)
[Ftp directory writable on host T]
wdirT
[Ftp user has been assigned a valid shell on host T]
fshellT
[No rsh trust for some host X and T]
∃X.¬RshTrust(X, T)

intruder effects
none

network effects
[Rsh trust between all hosts and T]
∀X.RshTrust(X, T)

end

Remote Login

Using an existing remote login trust relationship between
two machines, the intruder logs in from one machine to an-
other, getting a user shell without supplying a password.
This operation is usually a legitimate action performed by
regular users, but from the intruder’s viewpoint, it is an
atomic attack.

attack rsh-login is
intruder preconditions

[User-level privileges on host S]
plvlA(S) = user
[No privileges on host T]
plvlA(T) = none

network preconditions
[Rsh trust between S and T]
RshTrust(S, T)
[Host T is reachable from S]
R(S, T)

intruder effects
[User-level privileges on host T]
plvlA(T) = user

network effects
none

end

Local Buffer Overflow

If the intruder has acquired a user shell on the target ma-
chine, the next step is to exploit a buffer overflow vulnera-
bility on a setuid root file to gain root access.

attack local-setuid-buffer-overflow is
intruder preconditions

[User-level privileges on host T]
plvlA(T) = user

network preconditions
[There is a vulnerable xterm executable]
xtermT

intruder effects
[Root-level privileges on host T]
plvlA(T) = root

network effects
none

end

It is easy to see that each atomic attack strictly increases
either the intruder’s privilege level on the target host or re-
mote login trust between hosts. This means that the attack
graph has no cycles.

From our finite model we can now automatically con-
struct attack graphs that demonstrate how the intruder can
violate various security properties. Suppose we want to
generate all attacks that demonstrate how the intruder can
gain root privilege on host ip2 and remain undetected by
the IDS. The CTL formula that expresses the safety prop-
erty that the intruder on host with id 2 always has privilege
level below root or is detected is expressed using the fol-
lowing CTL property:

AG(network.adversary.privilege[2] < network.priv.root |
network .detected)

Figure 4 shows the attack graph produced by our tool for
this property. Each node is labeled by an attack id num-
ber, which corresponds to the atomic attack to be attempted
next; a flag S/D indicates whether the attack is stealthy or
detectable by the intrusion detection system; and the num-
bers of the source and target hosts (ipa corresponds to host
number 0).

Any path in the graph from the root node to a leaf node
shows a sequence of atomic attacks that the intruder can em-
ploy to achieve his goal while remaining undetected. For in-
stance, the path highlighted by double-boxed nodes consists
of the following sequence of four atomic attacks: overflow
sshd buffer on host 1, overwrite .rhosts file on host 2 to es-
tablish rsh trust between hosts 1 and 2, log in using rsh from
host 1 to host 2, and finally, overflow a local buffer on host
2 to obtain root privileges.

We have also expanded the example described above by
adding two additional hosts, four additional atomic attacks,
several new vulnerabilities, and flexible firewall configura-
tions. For the larger example the attack graph has 5948
nodes and 68364 edges.

Figure 4. Attack Graph

Figure 5. Attack Graph Analysis

5 Minimization Analysis

Once we have an attack graph generated for a specific
network with respect to a given safety property, we can uti-
lize it for further analysis. For example, an analyst may be
faced with a choice between deploying additional network
attack detection tools or prevention techniques. An analyst
has a set of measures, such as deploying additional network
detection tools or upgrading the software, available to him.
This section provides answers to questions 1,2, and 3 posed
in Section 1.2.

Question 1: What successful attacks are undetected by the
IDS?
Answer:
To answer this question, we modify the model slightly, mak-
ing only a subset of atomic attacks available to the intruder.
For simplicity, we nondeterministically decide which sub-
set to consider initially, before any attack begins; once the
choice is made, the subset of available atomic attacks is
fixed during any given attack. We ran the model checker
on the modified model with the invariant property that says

the intruder never obtains root privilege on host ip2:

AG(network.adversary.privilege[2] < network.priv.root)

The post-processor marked the states where the intruder
has been detected by the IDS. The result is shown in Fig-
ure 5. The white rectangles indicate states where the at-
tacker had not yet been detected by the intrusion detection
system. The black rectangles are states where the intru-
sion detection system has sounded an alarm. Thus, white
leaf nodes are desirable for the attacker because his objec-
tive is achieved without detection. Black leaf nodes are less
desirable—the attacker achieves his objective, but the alarm
goes off.

The resolution of which atomic attacks are available to
the intruder happens in the circular nodes near the root of
the graph. The first transition out of the root (initial) state
picks the subset of attacks that the intruder will use. Each
child of the root node is itself the root of a disjoint subgraph
where the subset of atomic attacks chosen for that child is
used. Note that the number of such subgraphs descending
from the root node corresponds to the number of subsets of
atomic attacks with which the intruder can be successful—

the model checker determines that for any other possible
subset, there is no possible successful sequence of atomic
attacks.

The root of the graph in Figure 5 has two subgraphs,
corresponding to the two subsets of atomic attacks that will
allow the intruder to succeed. In the left subgraph the sshd
buffer overflow attack is not available to the intruder; it can
be readily seen that the intruder can still succeed, but can-
not do so while remaining undetected by the IDS. In the
right subgraph, all attacks are available. Thus, the entire
attack graph implies that all atomic attacks other than the
sshd attack are indispensable: the intruder cannot succeed
without them. The analyst can use this information to guide
decisions on which network defenses can be profitably up-
graded.

The white cluster in the middle of the figure is isomor-
phic to the attack graph presented in Figure 4; it shows at-
tacks in which the intruder can achieve his objective with-
out detection (i.e., all paths by which the intruder reaches a
white leaf in the graph).

We proceed to provide answers to questions 2 and 3.
However, first we define an attack graph whose edges are
labeled with atomic attacks, which is produced by our post-
processor. Such an attack graph is used to perform further
analysis to answer questions 2 and 3. Assume that we have
produced an attack graph corresponding to the following
safety property:

AG(¬unsafe)

Let A be the set of atomic attacks, and G =
(S, E, s0, ss, L) be the attack graph, where S is the set of
states, E ⊆ S × S is the set of edges, s0 ∈ S is the ini-
tial state, ss ∈ S is the success state for the intruder, and
L : E → A ∪ {ε} is a labeling function where L(e) = a

if an edge e = (s → s′) corresponds to an atomic attack
a, otherwise L(e) = ε. Edges labeled with ε represent sys-
tem transitions that do not correspond to an atomic attack.
Moreover, as demonstrated below additional ε edges can be
also introduced by our construction. Without loss of gener-
ality we can assume that there is a single initial and success
state. For example, consider an attack graph with multiple
initial states s1

0, · · · , s
j
0 and success states s1

s , · · · , s
u
s . We

can add a new initial state s0 and a new success state ss

with ε-labeled edges (s0, s
m
0) (1 ≤ m ≤ j) and (ss, s

t
s)

(1 ≤ t ≤ u). Suppose we are given a finite set of measures
M = {m1, · · · , mk} and a function covers : M → 2A.
An atomic attack a ∈ covers(mi) if adopting measure mi

removes the atomic attack a.
Question 2: If all measures in a set M ′ are implemented,
does the network become safe (more secure)?
Answer:
A network administrator wants to find out whether adopt-
ing measures from a set M ′ ⊆ M will make the network
safe. This question can be answered in linear time us-

ing the attack graph G. First, we define covers(M′) as
⋃

m∈M ′ covers(m). Next, we remove all edges e from G

such that L(e) ∈ covers(M ′). The network is safe iff the
success state ss is not reachable from the initial state s0.
This simple reachability question can be answer in time that
is linear in the size of the graph.

Question 3: Given a set of measures M , what is the small-
est subset of measures whose implementation makes the
network safe?
Answer:
A network administrator wishes to find a subset M′ ⊆ M

of smallest size, such that adopting the measures in the set
M ′ will make the network safe. Unfortunately, this prob-
lem is NP -complete, but we develop good approximation
algorithms. We proceed in two steps:

• Step 1 (Finding a small set of atomic attacks.)
In this step, we find a set of atomic attacks whose re-
moval makes the network safe. Checking every pos-
sible subset of attacks is exponential in the number of
attacks. In a related paper [15], we show that finding
the minimum set of atomic attacks which must be re-
moved to thwart an intruder is in fact NP-complete. We
also demonstrated how a minimal set can be found in
polynomial-time. In this paper, we further explore the
complexity of this problem. Section 5.1 proves that the
problem of finding a minimum set of attacks is polyno-
mially equivalent to the minimum hitting set problem,
where the collection of sets is represented as a labeled
directed graph. This reduction provides us additional
insight, which enabled us to find a greedy algorithm
with provable bounds.

• Step 2 (Finding a small set of measures)
Assume that we find a set of atomic attacks A′ whose
removal makes the network safe, or equivalently
thwarts the intruder. Recall that M = {m1, · · · , mk}
is the set of measures and covers : M → 2A is a func-
tion, where covers(mi) represents the set of atomic
attacks that are removed by adopting the measure mi.
With each attack a in the set A′, we associate a set of
measures M(a) which is {mi | a ∈ covers(mi)}. The
set of attacks A′ defines a collection CA′ of subsets of
M . We wish to find the smallest subset M′ ⊆M such
that for all a ∈ A′ there exists an mi ∈ M ′ such that
a ∈ covers(mi), or equivalently M ′∩M(a) 6= ∅. This
is known as the minimum hitting set problem, which is
NP -complete, but good approximation algorithms ex-
ist to solve this problem (see Section 5.2)

5.1 The Minimum Critical Attack Sets
and the Minimum Hitting Set Problem

This section addresses the first step in the answer to ques-
tion 3. Assume that we are given an attack graph G =
(S, E, s0, ss, L), where S is the set of states, E ⊆ S × S

is the set of edges, s0 ∈ S is the initial state, ss ∈ S is the
success state for the intruder, and L : E → A ∪ {ε} is a
labeling function.

Given a state s ∈ S, a set of attacks C is critical with
respect to s if and only if the intruder cannot reach his goal
from s when the attacks in C are removed from his arsenal.
Equivalently, C is critical with respect to s if and only if
every path from s to the success state ss has at least one
edge labeled with an attack a ∈ C.

A critical set corresponding to a state s is minimum (de-
noted by M(s)) if there is no critical set M ′(s) such that
|M ′(s)| < |M(s)|. In general, there can be multiple min-
imum sets corresponding to a state s. Of course, all mini-
mum critical sets must be of the same size.

A critical set of an attack graph G = (S, E, s0, ss, L)
is defined as a critical set corresponding to the initial
state s0. Therefore, the Minimum Critical Set of Attacks
(MCSA) problem is the problem of finding a minimum crit-
ical set of attacks M(s0). The decision version of the
problem is defined as follows: given an attack graph G =
(S, E, s0, ss, L) and a positive integer K, is there a critical
set of attacks A ⊆ A such that |A| ≤ K.

Assume that we are give an attack graph G =
(S, E, s0, ss, L). A path π is sequence of states q1, · · · , qn,
such that qi ∈ S and (qi, qi+1) ∈ E. A complete path starts
from the initial state s0 and ends in the success state ss.
The label of a path π = q1, · · · , qn (abusing notation, we
will denote it also as L(π)) is a subset of a set of attacks A

n−1
⋃

i=1

{L(qi, qi+1)} \ {ε} .

L(π) represents the set of atomic attacks used on the path
π. A set of attacks A ⊆ A is called realizable in the attack
graph G iff there exists a complete path π in G such that
L(π) = A. In other words, an intruder can use the set of
attacks A to start from the initial state and reach the success
state. The set of all realizable sets in an attack graph G is
denoted by Rel(G). The following lemma is easy to prove
and follows straight from the definitions.

Lemma 2 Assume that we are give an attack graph G =
(S, E, s0, ss, L). A set of attacks A is critical iff

∀A′ ∈ Rel(G).A′ ∩ A 6= ∅ .

In other words, all realizable sets have a non-empty inter-
section with a critical set A.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

tt tt

�
�/

S
Sw

Q
Q

Q
QQs?

�
�

��= ?

@@R
�

�	

XXXXXXXz ?
������9?

s1

ε

ε

s2

ε

ε

ε ε

s2

s
n

s
n

ε

Figure 6. Attack graph representing an expo-
nential number of realizable sets.

Definition 2 Hitting Set [8, Problem SP8]
Instance: Collection C of subsets of a finite set S, positive
integer K ≤ |S|.
Question: Is there a subset S ′ ⊆ S with |S′| ≤ K such that
S′ contains at least one element from each subset in C?

The discussion given in appendix A proves that the prob-
lem of finding critical sets in an attack graph is polynomially
equivalent to finding hitting sets for a collection, with one
caveat–the collection of sets C is represented as an attack
graph. An attack graph can be an exponentially succinct
representation of a collection of sets. Figure 6 shows an at-
tack graph of linear size whose set of realizable sets is the
power set of {s1, · · · , sn}. Therefore, the minimum criti-
cal set problem is polynomially equivalent to the hitting set
problem where the collection of sets C is represented as a
labeled directed graph.

5.2 A Greedy Algorithm

Next, we describe a greedy algorithm GREEDY-
HITTING-SET for the minimum hitting set problem. Let
(C, S, K) be an instance of the hitting set problem. Let S ′

and C ′ be initially the empty set. The greedy algorithm ex-
ecutes the following steps until C ′ = C.

• Pick an element s out of the set S \ S ′ that covers the
maximum number of sets in the collection C \ C ′. An
element s is said to cover a set S1 ⊆ S iff s ∈ S1.

• Let s be the element picked in the previous step and
C(s) be the collection of sets in C covered by s. Up-
date S′ and C ′ as follows:

S′ ← S′ ∪ {s}
C ′ ← C ′ ∪ C(s)

Let Hd be the d-th harmonic number
∑d

i=1
1
i
, and C(s)

be the number of sets in the collection C that are covered
by the element s.

Lemma 3 GREEDY-HITTING-SET is a polynomial-
time ρ(n)-approximation algorithm, where ρ(n) =
H(maxs∈S{|C(s)|}).

The proof of the lemma follows from the equivalence
between the minimum hitting set and the minimum cover
problem [2] and the proof of the approximation factor ρ(n)
for the greedy algorithm for the minimum cover prob-
lem [5]. Using the equivalence between the problems of
finding a minimum critical set and a minimum hitting,
set we can construct a greedy procedure (called GREEDY-
CRITICAL-SET) for finding a critical set for the attack
graph. Assume that we are given an attack graph G =
(S, E, s0, ss, L), where S is the set of states, E ⊆ S × S

is the set of edges, s0 ∈ S is the initial state, ss ∈ S is the
success state for the intruder, and L : E → A ∪ {ε} is a
labeling function. Moreover, assume that we can compute
in polynomial time the function µG : A → ℵ, where µG(a)
is the number of realizable sets in the attack graph G that
contain the attack a. Formally, µG(a) is equal to

|{A′|a ∈ A′ and A′ ∈ Rel(G)}| .

Initially, let A′ be the empty set and G′ = G. The greedy
algorithm GREEDY-CRITICAL-SET executes the following
steps until G′ is empty.

• Pick and element a from the setA\A′ that maximizes
µG′(a).

• Let a be the element picked in the previous step. Up-
date A′ and G′ as follows:

A′ ← A′ ∪ {a}
Remove all edges labeled with a from G′

Lemma 4 GREEDY-CRITICAL-SET is a polynomial-
time ρ(n)-approximation algorithm, where ρ(n) =
H(maxa∈A{µG(a)}).

Next, we explore conditions when the function µG can
be computed in polynomial time. Assume that the attack
graph G is a DAG. An argument for this was given in Sec-
tion 4.3. Moreover, assume that each atomic attack is used

only once on a path from the initial state s0 to the success
state ss. This is not a unreasonable assumption because the
attack graph edges are labeled with instantiations of attack
templates shown in Section 4.3, e.g., a local-setuid-buffer-
overflow attack on two different hosts are distinct in the at-
tack graph. Such attack graphs are called use once DAGs.
The following lemma is easy to prove.

Lemma 5 For an attack graph that is a use once DAG, the
function µG can be computed in time that is linear in size
of the attack graph.

6 Probabilistic Analysis of Attack Graphs

One way to incorporate probabilities into attack graphs
is to choose a subset of states and make transitions out of
those states probabilistic. Suppose that the graph has a state
s with only two outgoing transitions. In a regular attack
graph, the choice of which transition to take when the sys-
tem is in state s is nondeterministic. However, we may have
some empirical data that enables us to estimate that when-
ever the system is in state s, on average it will take one of
the transitions four times out of ten and the other transition
six remaining times. We can place probabilities 0.4 and 0.6
on the corresponding edges in the attack graph. Intuitively,
probability of the transition s → s′ represents the likeli-
hood that the atomic attack corresponding to the transition
will succeed. We call a state with known probabilities for
outgoing transitions probabilistic. When we have assigned
all known probabilities in this way, we are left with an attack
graph that has some probabilistic and some nondeterminis-
tic states in it. We call such mixed attack graphs proba-
bilistic attack graphs. We use probabilistic attack graphs to
evaluate the reliability of a network. Note that probabilities
of all the transitions might not be available because of lack
of data, e.g., a new type of atomic attack.

Since the attack graph includes only those states and
transitions that can lead to success states, it excludes some
transitions that exist in the complete model M . These ex-
cluded transitions can have non-zero probability, so that the
sum of probabilities of transitions from a probabilistic state
will be less than 1. To address this problem, we must model
the rest of M in some way. We add a “catch-all” escape
state se to the attack graph. A probabilistic state s in the
attack graph will have a transition to se if and only if in
M there is a transition from s to some state not in the at-
tack graph. The probability of going from s to se will be 1
minus the sum of the probabilities of going to other states.
There are no transitions out of se except a self-loop (which
preserves the totality of the transition relation τ).

In an attack graph containing the escape state se attacks
are allowed to terminate in se. We will call them escape at-
tacks, or attacks that were pre-empted by the intruder before
he reached his goal.

Definition 3 A probabilistic attack graph or PAG is a tuple
G = (Sn, Sq, se, S, τ, π, S0, Ss, L), where Sn is a set of
nondeterministic states, Sq is a set of probabilistic states,
se ∈ Sn is a nondeterministic escape state (se 6∈ Ss), S =
Sn ∪ Sq is the set of all states, τ ⊆ S × S is a transition
relation, π : Sq → S → < are transition probabilities,
S0 ⊆ S is a set of initial states, Ss ⊆ S is a set of success
states, and L : S → 2AP is a labeling of states with a set of
propositions true in that state.

A probabilistic attack graph (PAG) distinguishes be-
tween nondeterministic states (set Sn) and probabilistic
states (set Sq). Moreover, the sets of nondeterministic and
probabilistic states are disjoint (Sn ∩ Sq = ∅). The func-
tion π specifies probabilities of transitions from probabilis-
tic states, so that for all transitions s1 → s2 ∈ τ such
that s1 ∈ Sq , we have P (s1 → s2) = π(s1)(s2) > 0.
Thus, π(s) can be viewed as a probability distribution on
next states. Intuitively, when the system is in a nondeter-
ministic state sn, we have no information about the relative
probabilities of the possible next transitions. When the sys-
tem is in a probabilistic state sq , it will choose the next state
according to probability distribution π(sq).
Complete probability case. Assume that each transition
in the attack graph is assigned a probability, i.e., there are
no nondeterministic states. Let G = (S, τ, S0, Ss, L) be
the attack graph and P a function that assigns probabilities
to transitions. The probabilities can be loosely interpreted
as the probability of the atomic attack corresponding to the
transition succeeding. We are interested in finding the reli-
ability of the attack graph, i.e., the probability that the in-
truder will not succeed. We can view G as a Markov chain
with S as its state space and P (s1 → s2) as its transition
probability. Let U : S → <+ be the steady state probability
of the Markov chain (see [7] for definitions and technical
conditions). In this case, the reliability of the attack graph
G is given by the following expression:

1−
∑

s∈Ss

U(s)

In other words, the reliability is the probability that in the
“long run” the Markov chain will not be in a state in the
set Ss. We wish to perform similar analysis on probabilistic
attack graphs in the presence nondeterministic states.

6.1 Reliability

Assume that we are given a PAG G =
(Sn, Sq, se, S, τ, π, S0, Ss, L). Intuitively, we are in-
terested in finding out the probability that the intruder
will reach a success state starting from one of the initial
states. Recall that in the absence of nondeterministic
states we can compute this metric by using the steady

state probabilities of the Markov chain. In presence of
nondeterministic states the intruder will choose transitions
in order to maximize his probability of succeeding. For
example, if an intruder reaches a nondeterministic state s

with transitions to s1, · · · , sk, he will choose to transition
to state si (1 ≤ i ≤ n) which will maximize his probability
of reaching a success state. This idea can be “formalized”
using concepts from the theory of Markov Decision
Processes [1, 13].

Given a state s, the set of successors of s is denoted by
succ(s). Formally, succ(s) is equal to {s′|(s, s′) ∈ τ}.
First, we define a value function V : S → <+. For all
s ∈ Ss, V (s) = 1.0. For all states s ∈ S \ Ss the value
function is iterated according to the following equations un-
til convergence.

V (s) =

{

maxs′∈succ(s) V (s′) if s ∈ Sn \ Ss
∑

s′∈succ(s) P (s→ s′)V (s′) if s ∈ Sq \ Ss

Let V ? be the value function after convergence. Intu-
itively,

∑

s∈S0
V ?(s) is the probability for the intruder to

reach a success state if he “resolves” the nondeterminism
to maximize the probability of succeeding. Therefore, the
worst case reliability of the network is 1 −

∑

s∈S0
V ?(s).

This algorithm is known as value iteration. The justification
of the value iteration algorithm is presented in the compan-
ion technical report [9].

Example 1 We implemented the value iteration algorithm
in our attack graph post-processor and ran it on a slightly
modified version of the intrusion detection example from
Section 4. In the modified example, each attack has both de-
tectable and stealthy variants. The intruder chooses which
atomic attack to try next, and he has a certain probability
of picking a stealthy or a detectable variant. We assigned
imaginary probabilities of picking a stealthy attack variant
as follows: 0.2 for sshd buffer overflow, 0.5 for ftp .rhosts,
0.05 for the remote login, and 0.8 for local buffer overflow.
The intruder’s goal is to obtain root access on host ip2 while
remaining undetected. Accordingly, the states where this
goal has been achieved were assigned benefit value 1.0.

In this setup, the computed probability of intruder suc-
cess is 0.2, and his best strategy is to attempt sshd buffer
overflow on host ip1, and then conduct the rest of the attack
from that host. The only possibility of detection is the sshd
buffer overflow attack itself, since the IDS does not see the
activity between hosts ip1 and ip2.

Given this context, a system administrator can ask the
following question:
Question 4: The deployment of which security measure(s)
will increase the likelihood of thwarting an attacker?
Answer:
Installing an additional IDS component to monitor the net-
work traffic between hosts ip1 and ip2 reduces the probabil-
ity of the intruder remaining undetected to 0.025; installing

a host-based IDS on host ip2 reduces the probability to 0.16.
Other things being equal, this is an indication that the for-
mer remedy is more effective.

7 Summary of Contributions and Future
Work

Our foremost contribution is the automatic generation of
attack graphs. Our key insight is that an attack is equiva-
lent to a counterexample produced by off-the-shelf model
checkers; the attack/counterexample is a witness to a vi-
olation of a safety property. By a small, but critical en-
hancement to an existing model checker, we can easily pro-
duce attack graphs automatically; moreover, these graphs
are succinct and exhaustive. A by-product of this part of
our work is showing, by example, what level of abstraction
is appropriate for modeling attacks. We use simple state
machine specifications to model not just intruder behavior
(by a set of atomic attacks), but also normal system behav-
ior, system administrator recovery actions, and connectivity
(communication) between subsystems.

Our second most important contribution is support for
a range of formal analyses of attack graphs. Security ana-
lysts use attack graphs informally for attack detection, de-
fense, and forensics. In this paper, we explain how they
can now use our minimization analysis technique on attack
graphs to more precisely answer questions like “Which se-
curity measure should I deploy in order to thwart this set
of attacks?” and “Which set of security measures should I
deploy to guarantee the safety of my system?” We also ex-
plain (briefly in text and in detail in the technical report [9])
how to use probabilities to perform reliability analysis. By
annotating attack graphs with probabilities, we can interpret
them as Markov Decision Processes (MDP). Then, by using
MDP algorithms such as value iteration, security analysts
can more precisely answer questions like “Which attack
will incur the most damage to my system?” and “Will de-
ploying this intrusion detection system increase or decrease
the likelihood of thwarting this type of attack?”

On the theoretical front, we plan to exploit the full power
of model checking by exploring how to handle liveness
properties, not just safety properties. For example, a prop-
erty that states a user can always access a particular file
server would be violated if the server is disabled due to
a denial-of-service attack. On the practical front, we plan
to conduct larger case studies to illustrate the usefulness of
automatically generating attack graphs. We also intend to
build a tool that merges our work on attack graphs with ex-
isting intrusion detection technologies. The tool is intended
help security analysts evaluate and enhance the security of
a network.

References

[1] E. Altman. Constrained Markov Decision Processes. Chap-
man & Hall/CRC, 1999.

[2] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving
reductions among convex optimization problems. Journal of
Computational System Sciences (JCSS), 21:136–153, 1980.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Comput., C-35(8):677–691,
Aug. 1986.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. The MIT Press, 1991.

[6] M. Dacier. Towards Quantitative Evaluation of Computer
Security. PhD thesis, Institut National Polytechnique de
Toulouse, December 1994.

[7] R. Durrett. Probability: Theory and Examples. Duxbury
Press, 2nd edition, 1995.

[8] M. Garey and D. Johnson. Computers and Intractibility.
W.H. Freeman and Company, 1979.

[9] S. Jha, O. Sheyener, and J. M. Wing. Two formal analyses of
attack graphs. Technical Report CMU-CS-02-109, Carnegie
Mellon University, February 2002.

[10] NuSMV: a new symbolic model checker.
http://afrodite.itc.it:1024/ nusmv/.

[11] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experiment-
ing with quantitative evaluation tools for monitoring opera-
tional security. IEEE Transactions on Software Engineering,
25/5:633–650, Sept/Oct 1999.

[12] C. Phillips and L. Swiler. A graph-based system for network
vulnerability analysis. In ACM New Security Paradigms
Workshop, pages 71–79, 1998.

[13] M. Puterman. Markov Decision Processes-Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc., New
York, 1994.

[14] R. Ritchey and P. Ammann. Using model checking to ana-
lyze network vulnerabilities. In Proceedings of IEEE Sym-
posium on Security and Privacy, pages 156 –165, May 2001.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated generation and analysis of attack graphs. In Pro-
ceedings of IEEE Symposium on Security and Privacy, May
2002.

[16] SMV: a symbolic model checker. http://www-
2.cs.cmu.edu/ modelcheck/.

[17] P. Stephenson. Using formal methods for forensic analy-
sis of intrusion events - a preliminary examination. White
Paper, available at http://www.imfgroup.com/Document Li-
brary.html.

[18] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian.
Computer-attack graph generation tool. In Proceedings of
the DARPA Information Survivability Conference and Expo-
sition, June 12-14 2000.

[19] A. Valdes and K. Skinner. Probabilistic alert detection. In
Recent Advances in Intrusion Detection (RAID), 2001.

A Appendix to Section 5

Assume that we are given an attack graph G =
(S, E, s0, ss, L). Moreover, suppose one can compute the
set of realizable sets Rel(G). Lemma 2 proves that the
problem of finding whether the attack graph G has a critical
set of size≤ K is the hitting set problem with C = Rel(G),
S = A, and K.

Next suppose we have an instance (C, S, K) of the hit-
ting set problem. We will construct and attack graph G′ =
(S′, E′, s′0, s

′
s, L

′), where L′ : E′ → S∪{ε}, i.e., the set of
attacks used in the attack graph G′ is S. Moreover, the set
of realizable sets Rel(G′) of the graph G′ is the collection
C. A critical set of size ≤ K of the attack graph G′ is a
hitting set for the collection C. Next, we describe the con-
struction of G′. Let C = {C1, · · · , Cm} be the collection
of sets and S = {s1, · · · , sn} be the set. We make m copies
S1, · · · , Sm of the set S. The set of elements in Si will be
denoted by {si

1, · · · , s
i
n}. The set of states S ′ in the attack

graph G′ is

{s′0, s
′
s} ∪ S1 ∪ · · · ∪ Sm .

The initial state is s′0 and the final state is s′s. The set of
edges E′ and the labeling function L′ are defined as follows:

• There is an edge from s′0 to every state in the set
{s1

1, s
2
1, · · · , s

m
1 }, and label of the edge (s′0, s

1
i) is s1

if s1 ∈ Ci, otherwise it is ε.

• For all 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1, there is an edge
(si

j , s
i
j+1), and the label of edge (si

j , s
i
j+1) is sj+1 if

sj+1 ∈ Ci, otherwise it is ε.

• There is an edge from every state in the set
{s1

n, s2
n, · · · , sm

n } to the state s′s, and labels of all these
edges is ε.

The sizes of the sets S ′ and E′ in the attack graph G′ are
mn + 2 and 2m + mn respectively. It is easy to see that
Rel(G′) is equal to C, and S ′ ⊆ S is a critical set of the
attack graph G′ iff S′ is a hitting set for the collection C.
Since the size of G′ is polynomial in the size of the instance
of the hitting set problem and the hitting set problem is
NP -complete, the MCSA problem is NP -hard. Lemma 1
in [15] proves that MCSA is in NP . Therefore, MCSA is
NP -complete. The next example illustrates our construc-
tion.
Note: The discussion given above also proves that the prob-
lem of finding a minimum set of measures whose adoption
will make the network safe is also NP -complete. One can
simply take the set of measures M to be the set of attacks
A.

Example 2 We give a short example to illustrate the reduc-
tion. Consider a set S = {s1, s2, s3}. Suppose that the

collection C consists of the following subsets:

C1 = {s1, s2}

C2 = {s2, s3}

C3 = {s2}

The attack graph G′ corresponding to this problem is shown
in Figure 7. The set of attacks is {s1, s2, s3}. The set of
realizable sets Rel(G′) is exactly the collection C. The set
of attacks {s1, s2} is critical because every path from s′0 to
the success state s′s uses at least one edge with the label in
the set {s1, s2}. Moreover, {s1, s2} is a hitting set for the
collection C = {C1, C2, C3}.

x
x x x

xx x

x

�
�

��= ?
@

@
@R

? ? ?

Z
Z

ZZ~ ?

�
�

��=

s
′

0

s1

s1 ε

ε s2 s2

ε

ε s3

s
′

s

Figure 7. Attack graph corresponding to the
collection C.

