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Abstract

Survivability is the ability of a system to maintain a set of
essential services despite the presence of abnormal events
such as faults and intrusions. Ensuring system survivabil-
ity has increased in importance as critical infrastructures
have become heavily dependent on computers. In this paper
we present a systematic method for performing survivabil-
ity analysis of networks. A system architect injects fault and
intrusion events into a given specification of a network and
then visualizes the effects of the injected events in the form
of scenario graphs. In our method, we automatically gen-
erate scenario graphs using model checking. Our method
enables further global analysis, such as reliability analysis,
where mathematical techniques used in different domains
are combined in a systematic manner. We illustrate our
ideas on an abstract model of the United States Payment
System.

1 Introduction

Increasingly our critical infrastructures are becoming
heavily dependent on computers. We see examples of such
infrastructures in all domains, including medical, power,
telecommunications and finance. Whereas automation pro-
vides society with the advantages of efficient communica-
tion and information sharing, the pervasive, continuous use
of computers exposes our critical infrastructures to a wider
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variety and higher likelihoodof failures and intrusions. Dis-
ruption of services caused by such undesired events can
have catastrophic effects, including loss of human life. Sur-
vivability is the ability of a system to maintain essential
services in the presence of undesired events. These events
include malicious attacks and intrusions, and otherwise be-
nign, but unanticipated failures [6].

In this paper we address the issue of survivability in the
context of a highly distributed network of nodes. We are
particularly interested in the global behavior of an asyn-
chronous network of concurrently computing nodes and in
the properties that hold of the entire network. In general,
survivability is a property of the entire network and not just
a property of a single node. Our goal is to find techniques
for analyzing networks of nodes for survivability using the
specifications of the individual nodes, interconnections be-
tween nodes, and of faults and intrusions to which the sys-
tem is susceptible.

We believe that survivability analysis is fundamentally
different from analysis techniques found in other areas (e.g.,
verification and analysis for fault tolerance, and reliability
analysis). First, survivability analysis takes a service view
of the system, i.e., the analysis focuses on certain key ser-
vices provided by the system. Second, survivabilityanalysis
deals with multiple dimensions of the system with respect
to a service, i.e., analysis simultaneously deals with fault
tolerance, functional correctness, and reliability issues. In
an abstract sense, survivability takes a holistic view of the
system and hence is interested in a conglomerate of prop-
erties rather than an isolated one. To achieve this goal, the
analytical approach described in this paper combines many
different kind of analysis techniques. There are two im-
portant issues that any technique for analyzing survivabil-
ity must address. Faults and intrusions should be allowed
to be present simultaneously. There are many attacks that
only materialize because of the interplay between faults and
intrusions. For ease of analysis, the independence assump-
tion (assuming that two abnormal events are independent) is
prevalent in the fault-tolerant and reliability literature. We
cannot make this assumption in analyzing systems for sur-
vivability. For example, if a server crashes, then it is easier
for a malicious intruder to spoof the crashed server. There-
fore, the chance that an intruder will succeed in spoofing a
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server depends on the event that the server crashes. In our
method we allow users to express such dependencies. Intro-
ducing dependence between events gives rise to phenomena
such as correlated attacks and cascading effects, where lo-
cal attacks might not succeed, but when these attacks occur
in tandem or succession can have a severe effect on the sys-
tem. Distributed denial-of-service attacks is an example of
a correlated attack (see CERT advisory CA-2000-0). Our
framework addresses both issues.

Our main goal is to provide valuable information to
the system architect during the design phase, and enable
him/her to make important decisions at an early phase in
the software life-cycle. Using our method a designer can
visualize the global effect of local faults and intrusions. We
provide the user with this information through a data struc-
ture called scenario graphs, which we automatically gen-
erated using model checking. By assigning probabilities to
faults and intrusions of local nodes an architect can compute
the reliability of the entire network. Using our method, the
architect can also easily identify critical nodes in the net-
work, i.e., where their failure would have a severe effect on
the reliability of the network.

We use model checking for a very specific purpose in our
method. Model checking is a technique for proving proper-
ties (expressed in a logic called the Computation Tree Logic
or CTL) about specifications of reactive systems. We do not
provide details of model checking here. Interested readers
can refer to [4] for background material on model checking.
The lack of knowledge about model checking will not im-
pair the reader’s understanding about the entire method. In
this paper we use the model checker NuSMV [1].

The next section gives a general overview of our method.
We describe a small example based on the United States
Payment System in Section 3. We use this system as a run-
ning example throughout the remainder of the paper. Sec-
tion 4 provides additional details related to each step in our
method. Section 5 briefly describes a prototype tool Tr-
ishul that we are implementing based on our method, and
describes some case studies that we have performed. Sec-
tions 6 and 7 discuss related work and conclusions respec-
tively.

2 The General Methodology

In this section, we provide a brief overview of the gen-
eral method proposed in this paper. We provide a detailed
description of each step in Section 4.

2.1 Modeling the Network

First, we derive a finite state model from the specification
of a network’s architecture. We assume that nodes are de-
scribed using a stimulus-response or state machine model.

We model a network as a set of concurrently executing fi-
nite state machines. Each node has a set of input channels
and a set of output channels. We associate finite queues
with the input and output channels. When an input arrives
at a channel, it is appended to the associated queue. Sim-
ilarly, when a system processes an output, it appends it to
the relevant queue. A node can be in one of a finite set
of states. In any given state, a node receives inputs from
queues associated with a set of input channels, transitions
to a state depending on the data it receives, and then out-
puts data on queues associated with a set of output chan-
nels. A network is a set of nodes and a set of interconnec-
tions or couplings. An interconnection is simply a pairing
of an input channel to an output channel. The general tech-
niques presented here can be applied to any specification
language capable of modeling these basic primitives of dis-
tributed systems. In our work, we use the input language of
the model checker NuSMV to specify our example network;
using this model checker makes it convenient for us at later
steps in our method when for additional global analysis, we
need to derive information from NuSMV’s output.

2.2 Injecting Faults and Intrusions

By our model of the network, we need not make a dis-
tinction between nodes and links when considering failures.
That is, a link is simply a node that passes data between two
other nodes. Both links and nodes may be faulty or be under
attack.

For each node, the architect needs to decide the behavior
of the node when a failure occurs. The exact behavior of
a faulty or compromised node depends on the specific ex-
ample. In practice, the nature of faults and intrusions that
are injected into a node depends on the security policies and
technologies deployed at that node. The specific details de-
pend on the system being modeled.

For each module in the NuSMV specification that models
a node, we introduce a special variable called fault that
indicates whether a node is in the normal mode of operation,
faulty, or compromised by an intruder. This special variable
can have as many symbolic values as the user desires. For
instance, the following definition in NuSMV states that there
are three modes of operation for a node.

fault: f normal, failed, intruded g

The user specifies the actual behavior of the node in each
mode of operation. Transitions between various modes can
be specified by the user or be completely non-deterministic.
For example, a node can transition from the normal mode
of operation to one of the abnormal modes (fault or
intruded in our example) at any time. Figure 1 illus-
trates transitions between various modes of operation.
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Normal Behavior
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Intruded Behavior

(fault=normal)

(fault=failed)

(fault=intruded)

non-deterministic
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user-specified

user-specified
or

non-deterministic

user-specified
or

non-deterministic

Figure 1. Transitions between different modes

2.3 Expressing Survivability Properties

Survivability properties in our methodology are ex-
pressed in the temporal logic Computation Tree Logic
(CTL). We selected the Computation Tree Logic (CTL) be-
cause the tool we use accepts specifications in that logic.
Our method would also work with other temporal logics
(such as Linear Time Logic or LTL [13]). In this paper,
we focus on two classes of survivability properties: fault
detection and transactional. The first class of properties
expresses whether the network under scrutiny can enter a
faulty state. The second class of properties are related to
the specific system services.

2.4 Generating Scenario Graphs

We first perform model checking to verify properties
about the network. If a certain property turns out to be false,
then we output a scenario graph. For example, if the prop-
erty expresses that the network can enter a certain faulty
state starting from the initial state, the model checker will
output a scenario graph that encapsulates network behaviors
that start in an initial state and lead to a faulty final state. A
scenario graph is a compact representation of all the traces
that are counterexamples of a given property. For exam-
ple, suppose we want to check whether during the operation
of a network a certain event (e.g., buffer overflow) never
happens. If the property is not true (i.e., buffer flow can
happen), the scenario graph encapsulates all sequences of
states and transitions that lead the network to a state where
a buffer flow occurs. We had to modify the model checker
NuSMV to produce scenario graphs since this information
is computed internally and not stored. We are still building
tools to display the graphs to a system architect in a visu-
ally pleasing manner. In the operational security literature,
scenario graphs are similar to attack state graphs [11].

2.5 Additional Analysis

Once we have a scenario graph, we can perform further
analysis. In this paper we describe two kinds: symbolic
analysis and reliability analysis.

Symbolic analysis
In this step the designer assigns symbolic probabilities, such
as high and low, to events of interest (generally faults
and intrusions of nodes and links). Since we do not as-
sume independence of events, we use a formalism based
on Bayesian networks [12] to specify the probabilities of
the events. Each event has a set of events on which it de-
pends. The probabilityof an event occurring depends on the
past history of the set of events on which it depends. This
point will become clear when we provide an example later
in the paper. We combine this table of symbolic probabil-
ities with the scenario graph, which the designer can then
query. For example, the designer can ask for all scenarios
that have at least one event with high likelihood of oc-
currence. Our tool then produces only those scenarios that
satisfy the query.

Reliability analysis
Here, the designer provides numeric probabilities instead
of symbolic ones. Again, we incorporate these probabilities
into the scenario graph to obtain a state machine structure
that has both non-deterministic and probabilistic transitions.
We give an algorithm for computing system reliability on
such a structure in Section 4. Later sections will provide
more detail on each of these analysis.

3 Example

We consider a simplified model of the United States Pay-
ment System, depicted in Figure 2. To illustrate the archi-
tecture, we describe what happens when a bank customer
deposits a check. For a detailed description of the system
and this scenario see [9]. Assume that customer A gives
a check worth 50 dollars to customer B. Let Bank(A) and
Bank(B) denote A’s and B’s banks respectively. The follow-
ing steps occur for the check to clear:

1. B deposits the check in his bank. If A and B have the
same bank, the check is cleared in-house.

2. Bank(B) processes the check and bundles other checks
received on the same day and sends it to the branch
of Federal Reserve Bank nearest to it. To be concrete,
let us assume that the Federal Reserve Bank nearest to
Bank(B) is the Los Angeles (LA) branch.

3. The LA branch of Federal Reserve Bank sends the
check written by A to the Federal Reserve Bank near-
est A’s bank, say the New York (NY) Federal Reserve
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Bank. The LA Federal Reserve Bank sends a bundle
of checks, including A’s check, to the NY Federal Re-
serve Bank.

4. The NY Federal Reserve Bank processes the checks
and sends the checks to the relevant banks. Bank(A)
receives A’s check. NY Federal Reserve Bank debits
Bank(A)’s account and credits the LA Federal Reserve
Bank. The LA Federal Reserve Bank credits Bank(B)’s
account.

5. Bank(A) processes the check and debits customer A’s
account.

As illustrated in Figure 2, there is one more level be-
tween small banks and the Federal Reserve Banks. Institu-
tions at this middle level are called money centers. If two
banks are connected to the same money center, then transac-
tions between them are handled by the money center; there
is no need to go through the Federal Reserve Banks. For
example, suppose a check with source address Bank-A and
destination address Bank-C is issued. Bank-A and Bank-
C are not connected through a money center, so the check
is then sent to the money center MC-1. Assuming that the
federal reserve bank FRB-2 is nearest to the money center
MC-1, the check is transferred to the federal reserve bank
FRB-2. Assuming that Bank-C is in the jurisdiction of the
federal reserve bank FRB-3, the check is sent to the fed-
eral reserve bank FRB-3, and then makes it way to Bank C
through the money center MC-3. We show the path of the
check using dot-dashed lines.

4 Detailed Description

This section provides details about each step in our
method. We give high-level descriptions of each technique
and algorithm.

4.1 Modeling the Network

We model each node and link in the network as a finite
state machine. The distributed network is a composition of
state machines. We assume that suitable abstraction tech-
niques have been applied to the real network to make it fi-
nite state.

In our banking example, nodes corresponding to the
banks, the money centers, the federal reserve banks, and
the links. Each node in the banking infrastructure cor-
responds to a MODULE description in NuSMV and mes-
sage passing is simulated by parameter passing. We also
assume the existence of a user who issues checks. The
source and destination address of the checks are decided
non-deterministically, i.e., the source address can be banks
A, B, or C, and similarly for the destination. For simplicity,

we assume that only one check is active at any time, and the
exact amount of the check is irrelevant.

4.2 Injecting Faults and Intrusions

Next we inject faults and intrusions in our model. Each
node has a special state variable (called fault) associated
with it. This state variable indicates the mode of operation
of the node. For example, fault=normal and fault=intruded
means that the node is in the normal and intruded mode, i.e.,
compromised by an intruder. We also specify the behavior
of the node under each mode of operation.

In our example, we allow only the links between the
banks and the money centers to fail and only the banks to
be intruded. When a link fails, it blocks all messages and
consequently no message ever reaches the recipient. We as-
sume that a link can fail at any time; thus in our specification
of a link, we allow a non-deterministic transition to the state
where fault is equal to failed. We also assume that
banks can sense a failed link and route the checks accord-
ingly. Under the normal mode of operation, a bank receives
a check (non-deterministically issued by the user) with its
source address. Depending on the destination address of the
issued check, the bank either clears it locally or routes it to
the appropriate money center. For example, if a check with
source address A and destination address B is issued, then
it is sent to the money center MC-1 and then sent to bank B.
On the other hand, a check with source address A and des-
tination address C has to clear through the federal reserve
banks (see Figure 2). If a bank is intruded, then checks are
routed arbitrarily by the intruder (without paying attention
to the destination address of the check). A bank can at any
time non-deterministically transition from the normal mode
(fault = normal) to the intruded state (fault=intruded). Once
the bank is intruded it stays in that state forever.

The precise behavior of a faulty or an intruded node de-
pends on the example, but two types of behaviors under fail-
ure conditions are common. In the case of a stuck-at fault
the node becomes stuck, i.e., it accepts no input on its chan-
nel and consequently produces no output. A node with a
byzantine fault exhibits a completely non-deterministic be-
havior, i.e., accepts any inputs and produces arbitrary or
non-deterministic outputs. Byzantine fault can also be used
to model an intruded node.

4.3 Expressing Survivability Properties

In this section, we model survivabilityproperties in CTL.
Although CTL is a rich logic and allows us to express a va-
riety of properties, we focus on two classes of survivability
properties. The first class is fault detection properties and
the second is transaction properties.

Fault Detection Properties
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Figure 2. United States Payment System

Suppose we want to express the property that it is not pos-
sible for a node N to reach a certain faulty state if the net-
work starts from one of the initial states. Let fault represent
the atomic property that node N is in a faulty state. We can
then express the desired property in CTL as follows:

AG(:fault)

which says that for all states reachable from the set of initial
states it is true that we never reach a state where fault is
true. The negation of the property is:

EF(fault)

which is true if there exists a state reachable from the ini-
tial state where the atomic proposition fault is true; in other
words if the network starts in one of the initial states it is
possible to reach a state where we have a fault. Suppose
the desired property given above is not true in the speci-
fied model. Most model checkers will produce a counter-
example, i.e., a trace or a scenario through the network that
leads the nodeN to a faulty state. The atomic property fault

can be as complex as we desire. It could mean that a certain
critical node has entered an undesirable state (e.g., a critical
valve is open in a nuclear power plant). In certain situations
it could also mean that a certain unauthorized operation oc-
curred on a critical node. For example, if a node represents a
computer with a critical resource, it could represent the fact
that somebody without the appropriate authority has logged
onto the computer. The precise nature of a faulty state de-
pends on the example at hand.

Transaction Properties

Many network systems are built for distributed applications.
In this case we want to make sure that if a node N issues a
transaction, then the transaction eventually finishes execut-
ing. Let the atomic proposition start express that node N
started a transaction, and �nished express the fact the trans-
action is finished. The temporal logic formula given below
expresses that for all states where a transaction starts and
all paths starting from that state there exists a state where
the transaction always finishes, or in other words a transac-
tion issued always eventually finishes.

AG(start ! AF(�nished ))

For the banking example, we verify that a check issued is
always eventually cleared. This can be expressed in CTL as

AG(checkIssued ! AF(checkCleared))

We can also analyze the effect of a certain node (say N )
being compromised by an intruder on the network. As-
sume that we have modeled the effect of an intrusion on
node N (see discussion on injecting faults and intrusions).
Now we can check whether the desired properties are true
in the modified network. If the transaction property turns
out to be true, the network is resistant to an intruder com-
promising the node N . This type of analysis will be very
useful in determining vulnerable or critical nodes of a net-
work with respect to a certain service. Using this analysis, if
a node is found to be vulnerable or critical for a given trans-
action to complete, then one can deploy sophisticated intru-
sion detection algorithms for that node or bolster the secu-
rity infrastructure around it. Thus our analysis can identify
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the critical nodes in a networked architecture and provide
guidelines on how to make a network more survivable and
robust with respect to the mission or service of the system.

4.4 Generating Scenario Graphs

This section describes how we automatically construct
scenario graphs. These graphs depict ways in which a net-
work can enter a faulty state or ways in which a transaction
can fail to finish. Scenario graphs encapsulate the effect of
failures on the global behavior of the network.

Fault scenario graph
Recall that we can express the property of the absence of a
faulty reachable state as:

AG(:fault)

Suppose the formula given above is not true. This means
that there are states that are reachable from the initial state
that are faulty. A fault scenario graph encapsulates all the
scenarios or traces that drive the initial state of the network
to a faulty state. If the architect models intrusions, the sce-
nario graph is a compact representation of all the threat sce-
narios of the network, i.e., a set of sequences of intruder
actions that lead the network to an unsafe state.

We briefly describe the construction of a fault scenario
graph. Assume that we are trying to verify using model
checking whether the specification of the network satis-
fies AG(:fault). Usually, the first step in model check-
ing is to determine the set of states Sr that are reachable
from the initial state. After having determined the set of
reachable states, one determines the set of reachable states
Sfault that have a path to a faulty state. The set of states
Sfault are computed using fix-point equations [4]. Let R
be the transition relation of the network, i.e., (s; s0) 2 R

iff there is a transition from state s to s0 in the network.
By restricting the domain and range of R to Sfault one ob-
tains a transition relation Rf which encapsulates the edges
of the fault scenario graph. Therefore, the fault scenario
graph is G = (Sfault ; Rf), where Sfault and Rf represent
the nodes and edges of the graph respectively. In sym-
bolic model checkers, like NuSMV, the transition relation
and sets of states are represented using binary decision dia-
grams (BDDs) [3]. All the operations described above can
be easily performed using BDDs. The BDD for the transi-
tion relation Rf is a succinct representation of the edges of
the fault scenario graph.

Transaction success/fail scenario graph
In the case of transactions we are interested in verifying that
every transaction started always eventually finishes. Recall
that we can express this property in CTL as:

AG(start ! AF(�nished ))

Since we allow several nodes to fail or be intruded
in the network, in our experience we find that most of
the time the property fails to hold. Thus more interest-
ingly, during the model checking procedure, we derive two
graphs: a transaction success scenario graph and a trans-
action fail scenario graph. The success scenario graph en-
capsulates all the traces in which the transaction finishes.
The fail scenario graph captures all the traces or scenar-
ios in which the transaction fails to finish. These sce-
nario graphs are constructed using a procedure similar to
the one presented for the fault scenario graphs. In our
banking example, issuing a check corresponds to a trans-
action. The scenario graph shown in Figure 3 shows the
effect of link failures on a check issued with source address
Bank-A and destination address Bank-C (this is labeled as
issueCheck(Bank-A,Bank-C) in the figure). The action of
sending a check from location L1 to L2 is denoted as send-
Check(L1,L2). Predicates up(Link-A-2) and down(Link-A-
2) indicate whether Link-A-2 is up or down. Recall that we
allow links to fail non-deterministically. Therefore, an ac-
tion sendCheck(Bank-A,MC-2) is performed only if Link-
A-2 is up, i.e., up(Link-A-2) is the pre-condition for per-
forming the action sendCheck(Bank-A,MC-2). If a pre-
condition is not shown, it is assumed to be true. Note that
the failure of the link can also be construed as an intruder
taking over the link and shutting it down using a denial-of-
service attack. From the graph it is easy to see that a check
clears if links Link-A-2 and Link-C-3 are up, or Link-A-2
is down and links Link-A-1 and Link-C-3 are up. We mod-
ified the model checker NuSMV to produce such scenario
graphs automatically.

4.5 Additional Analysis

This subsection describes two types of further analysis
that can be performed on scenario graphs, once they have
been generated.

Symbolic Analysis
We first explain this analysis using the banking example and
then provide a formal explanation. Assume that A1 and
A1 correspond to Link-A-1 being up and down, respec-
tively. In general E will denote the complement of event
E. Analogously, A2 and C3 denote the events correspond-
ing to links Link-A-2 and Link-C-3 being up. Assume that
event A2 is dependent on A1 and there are no other de-
pendencies. We assume probabilities are symbolic, e.g.,
high, normal, and low. In order to perform compu-
tation with symbolic probabilities we need abstract func-
tions corresponding to 1 � x and x ? y. Basically, we are
using symbolic probabilities as an abstract domain for the
real numbers. A multiplication table for symbolic proba-
bilities is shown in Figure 4. Notice that the result of the
abstract multiplication operation can be non-deterministic
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issueCheck(Bank-A,Bank-C)

sendCheck(Bank-A,MC-2)

sendCheck(MC-2,FRB-1)

sendCheck(FRB-1,FRB-3)

sendCheck(FRB-3,MC-3)

sendCheck(MC-3,Bank-C)

debitAccount

sendCheck(Bank-A,MC-1)

sendCheck(MC-1,FRB-2)

sendCheck(FRB-2,FRB-3)

down(Link-A-2) &
up(Link-A-1)

up(Link-C-3)

up(Link-A-2)
normal

normal

normal=high * normal

Figure 3. A simple scenario graph

? high normal low
high high high high,normal
normal high high, normal normal, low
low high, normal normal, low low

Figure 4. Abstract multiplication table
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(see high multiplied by low), which is common in ab-
stract interpretation. Abstract complementation operation
(denoted by 1� x) is shown in the equations given below:

1� high = low

1� normal = normal

1� low = high

Assume that probabilities P (A1) and P (C3) are both
normal, where P (A1) and P (C3) are probabilities of
links Link-A-1 and Link-C-3 being up. Probability of event
A2 depends on the event A1 and is given in the following
table.

Condition P (A2)
A1 normal
�A1 low

The first row represents the probability of event A2 (or
Link-A-2 being up) given that A1 is true (or Link-A-1 is
up). Similarly, the second row represents the probability of
event A2 when Link-A-1 is down. By incorporating these
probabilities in the scenario graph we obtain a annotated
scenario graph, i.e., graphs where some edges are annotated
with symbolic expressions composed of high, low, and
medium. The symbolic probability of the link Link-A-2
being down and Link-A-1 being up is:

P ( �A2 ^A1) = P ( �A2jA1)P (A1)

= (1� low) ? normal

= high ? normal

= high

These annotations are shown in Figure 3. Now suppose the
designer is only interested in traces in the scenario graph
that have at least one event with probability high. We
can express this property as the following regular expres-
sion R over the alphabet of symbolic probabilities (in this
case high, normal, and low):

(�� fhighg)� � high � ��

We then convert the regular expression R into a determin-
istic finite automata or DFA D(R), and then we compose
the D(R) with the annotated scenario graph. Finally, we
perform a reachability analysis on the composed scenario
graph to eliminate states that do not have a path to the fi-
nal state of D(R). In our example, we would eliminate
states that do not have a path to the final state which has
at least one event that has probability high. Such a path
is shown using dotted lines in Figure 3. Using the tech-
nique we just outlined, users obtain a specific view of the
scenario graph in which they interested. Or, a designer can

enumerate threat scenarios that have a high likelihood of
occurrence.

We now provide a formal description of the algorithm
that we just outlined. Let L be the set of symbolic prob-
abilities. We assume that there are two functions minus :
L ! 2L and mult : (L � L) ! 2L. Recall that 2L de-
notes the power set of L. We assume that the function mult
is commutative. We write minus(l) and mult(l; l0) as 1 � l

and l ? l0 respectively. Intuitively speaking minus and mult
are abstract counterparts of the operations 1 � x and mul-
tiplication for real numbers. First, we expand the scenario
graph G by keeping the history of events with each state.
We need to keep the history of events because in general
the probabilityof an event is dependent on the occurrence of
previous events. We write each state in the expanded struc-
ture, where we keep track of the history, as (s; h), where s
is the state of the scenario graph and h is the history. Con-
sider a transition (s; h) ! (s0; h0) in the scenario graph G
and let E((s; h) ! (s0; h0)) be the set of events that occur
on the transition (s; h) ! (s0; h0). Let E be all the events
of interest. In our banking example, E corresponds to link
failures and bank intrusions and E((s; h) ! (s0; h0)) are
the failures and intrusions that occur on the transition. The
transition (s; h) ! (s0; h0) is labeled by the following sub-
set of 2L
0
@ Y
e2E((s;h)!(s0;h0))

P (ejh)

1
A
0
@ Y
e2E�E(s!s0)

1� P (ejh)

1
A

The probability of an event e given history h (denoted by
P (ejh)) can be found from the table the user provides. In
the product given above we use the abstract multiplication
operation for the set of symbolic values L. Therefore, in
the annotated scenario graph each edge is labeled with an
element of the power set 2L. Hence the annotated scenario
graph can be regarded as a non-deterministic automata over
the alphabet L. Let LG be the regular language correspond-
ing to the annotated scenario graph. Next, the user pro-
vides a regular expression R over the alphabet L. Let LR
be the regular language corresponding to the regular expres-
sion L(R). We are interested in the intersection of LG and
L(R), which provides the scenarios of interest. Notice that
the intersection of the two languages can be computed us-
ing the composition of the annotated scenario graph and the
automata corresponding the regular language R.

Reliability Analysis
In this step, numeric probabilities are assigned to the vari-
ous events. In our example, symbolic probabilities high,
medium, and low can be set to 0:75, 0:5, and 0:25. The
probabilities of various events are provided by the user in
a tabular form as shown earlier. Again, we incorporate
these probabilities into the scenario graph. Since we might
assign probabilities only to some events (typically faults
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and intrusions) and not others, we obtain a structure that
has a combination of purely non-deterministic and proba-
bilistic transitions. In our banking example, assume a de-
signer assigns probabilities only to the events correspond-
ing to intrusions of banks and link failures. The user, of
course, still non-deterministically issues checks. Intuitively,
non-deterministic transitions are moves of the environment
or the user, and probabilistic transitions correspond to the
moves of the adversary. These structures are called con-
current probabilistic systems in the distributed algorithms
literature [10].

We now explain the algorithm to compute reliability by
first considering a property about transactions. Assume that
we are interested in the following property:

AG(start ! AF(finished))

Let G be the transaction success scenario graph correspond-
ing to the property. For every state s in the scenario graph
G, we assign a value V (s). We refer to V as the value
function. In the initial step, V (s) = 1 for all the states that
satisfy the property finished, and for all other states s we
assume that V (s) = 0. A state s is called probabilistic if
transitions from that state are probabilistic. A state is called
non-deterministic if it is not probabilistic. For all states s
that satisfy finished the value V (s) is always 1, for all other
states the value function is updated as follows: If s is non-
deterministic then we update the value function V (s) using
the following equation:

V (s) = min
s02succ(s)

V (s0)

If s is probabilistic we update the value function using the
following equation:

V (s) =
X

s02succ(s)
p(s; s0)V (s0)

In the equations given above, succ(s) is the set of successors
of state s and p(s; s0) is the probability of a transition from
state s to s0. Intuitively speaking, a non-deterministic move
is made to minimize the reliability, i.e., we are computing
the worst case reliability. The value of a probabilistic state
is the expected value of the value of its successors. Start-
ing from the initial state, the value function V is updated
according to the equations given above until convergence.
If V ? is the value function obtained after convergence and
s0 is the initial state of the scenario graph, then V ?(s0) is
the worst case reliability metric corresponding to the given
property. If non-deterministic moves are equated with the
system’s environment making a decision, then the algorithm
just described is similar to policy iteration used for opti-
mal control of Markov Decision Processes (MDPs) [2]. The

proof of convergence is also similar to the one given in the
context of MDPs.

Consider the scenario graph shown in Figure 3. If the
symbolic probabilities high, medium, and low are set to
0:75, 0:5, and 0:25 respectively, then the reliability using
the algorithm given above is 5

16 .

5 Status

We are building a tool Trishul based on the ideas pre-
sented in this paper. We implemented all the basic algo-
rithms. We are finishing the visualization component and a
customized editor.

We have finished two major case studies: a model of a
banking system and a bond trading floor. Our model of the
banking system is much more complicated than the simpli-
fied example presented in this paper. For example, we han-
dle protocols such as Fedwire and SWIFT (used for transfer
of funds and transmitting financial messages respectively)
that we did not show here1. We have also modeled and an-
alyzed the architecture of a bond trading floor of a major
investment company in New York. The model of the bond
trading floor is about 10,000 lines of NuSMV code and has
about 100 state variables. Unfortunately, due to the pro-
priety nature of the case study we cannot reveal additional
details. We are in the process of “sanitizing” the model so
that the case study can be published at a later date. Not
surprisingly, we gained valuable experience during the case
study. The most cumbersome part of the modeling process
was the fault/intrusion injection phase because the nature of
the faults/intrusions that were injected were heavily depen-
dent on the security policies and technologies deployed at
that node. We plan to automate the fault/intrusion injection
process in the near future.

6 Related Work

Survivability is a fairly new discipline, and viewed by
many as distinct from the traditional areas of security and
fault-tolerance [6]. The Software Engineering Institute uses
a method for analyzing the survivability of network archi-
tectures (called SNA) and conducted a case study on a sys-
tem for medical information management [7]. The SNA
methodology is informal and meant to provide general rec-
ommendations of “best practices” to an organization on how
to make their systems more secure or more reliable. In con-
trast, our method is formal and leverages off automatic ver-
ification techniques such as model checking. Other papers
on survivability can be found in the Proceedings of the In-
formation Survivability Workshop.

1We thank Joe Ahearn of CSFB for clarifying the details of these two
protocols.
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Research on operational security [11] is closest to the
work we presented. The attack state graph used in [11] is
similar to scenario graphs we use. However, since we use
symbolic model checking to generate scenario graphs, rep-
resented using Binary Decision Diagrams (BDDs), we can
handle extremely large graphs. Moreover, in our method a
scenario graph corresponds to a particular service in con-
trast to the global view taken in [11]. We are currently in-
vestigating how to incorporate their concepts and analysis
techniques into our method.

Allowing individual nodes to fail is similar to inject-
ing faults into the specification of the network architecture.
Fault injection is a well-known technique in the fault toler-
ance community. We allow the designer to specify any kind
of fault, and thus we can consider a wider class of faults.
Moreover, we allow different classes of failure events, such
as faults and intrusions, to be correlated. The idea of com-
puting reliability is not new. There is a vast literature on
verifying probabilistic systems and our algorithm for com-
puting reliability draws on this previous work [5]. The nov-
elty of our work is that it combines a number of techniques
in a systematic way and thus provides a holistic view of the
specification of the system. This view on systems is at the
core of analyzing and achieving survivability of distributed
systems.

7 Conclusion

Survivability has become increasingly important with
society’s increased dependence of critical infrastructures on
computers. In this paper we presented a systematic method-
ology for analyzing the survivability of networked systems.
We use scenario graphs to help a system architect visual-
ize the effect of faults and intrusions on the entire network,
and we use both symbolic and numeric probabilities to rea-
son about its reliability. The novelty of our work is in the
systematic combination of a variety of mathematical tech-
niques: model checking, Bayesian analysis, and probabilis-
tic systems. In combination, we provide a multi-faceted
view of the network with respect to a desired service.

There are several directions for future work. First, we
plan to finish the prototype tool that supports our method.
We are working on several case studies, including protocols
used in an electronic commerce system. Since for real sys-
tems, scenario graphs can be very large, we plan to improve
the display and query capabilities of our tool so architects
can more easily manipulate its output. Finally, we are inves-
tigating how best to integrate operational security analysis
tools such as COPS [8] into our method.
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