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Abstract

Atomic transactions are a widely-accepted technique for organizing activities in reliable distributed
systems. In most languages and systems based on transactions, atomicity is implemented through
atomic objects, which are typed data objects that provide their own synchronization and recovery. This
paper describes new linguistic mechanisms for constructing atomic objects from non-atomic components,
and it formulates proof techniques that allow programmers to verify the correctness of such
implementations.

1, Introduction

A distributed system consists of multiple computers (called nodes) that communicate through a network.

Programs written for distributed systems, such as airline reservations, electronic banking, or process

control, must be designed to cope with failures and concurrency. Concurrency arises because each

process executes simultaneously with those at other nodes as well as those at the same node, while

failures arise because distributed systems consist of many independently-failing components. Typical

failures include node crashes, network partitions, and lost messages.

A widely-accepted technique for preserving consistency in the presence of failures and concurrency is to

organize computations as sequential processes called transactions. Transactions are atomic, that is,

serializable and recoverable. Serializability [26] means that transactions appear to execute sequentially,

and recoverability means that a transaction either succeeds completely or has no effect. A transaction's

effects become permanent when it commits, its effects are discarded if it aborts, and a transaction that

has neither committed or aborted is active.

1This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976, monitored by
the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.
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In most languages and systems based on transactions, atomicity is implemented through atomic objects,

which are typed data objects that provide their own synchronization and recovery. Languages such as

Argus [19], Avalon [12], and Aeolus [32] provide a collection of primitive atomic data types, together with

constructs for programmers to define their own atomic types. The most straightforward way to define a

new atomic type is to use an existing atomic data type as a representation, but objects constructed in this

way often support inadequate levels of concurrency [31]. Instead, it is often necessary to implement new

atomic objects by carefully combining atomic and non-atomic components, and it is the responsibility of

the programmer to ensure that the implementation is indeed atomic at the "right" level of abstraction.

In this paper,

• We describe new linguistic mechanisms for constructing atomic objects from non-atomic
components. These mechanisms are currently being implemented as part of the Avalon
[12] project at Carnegie Mellon.

• We formulate proof techniques that allow programmers to verify the correctness of atomic
objects implemented using our mechanisms.

Although language and system constructs for implementing atomic objects have received considerable

attention in the distributed systems community, the problem of verifying the correctness of programs that

use those constructs has received surprisingly little attention. Techniques for reasoning about concurrent

programs are well-known [1, 13, 18, 25], but are not adequate for reasoning about atomicity. They

typically address issues such as mutual exclusion or the atomicity of individual operations; they do not

address the more difficult problems of ensuring the serializability of arbitrary sequences of operations, nor

do they address recoverability. Reasoning about atomicity is inherently more difficult than reasoning

about concurrency alone.

We view the development of new linguistic mechanisms and proof techniques as complementary tasks.

Verification techniques can serve not only as aids for reasoning about atomic objects, and hence about

transaction-based distributed systems, but also as the foundation of a methodology for their design and

implementation. This notion is analogous to Gries's contention that loop invariants and termination

functions facilitate the development of programs-in-the-small [9], and Liskov and Guttag's similar

contention that representation invariants and abstraction functions facilitate the development of programs-

in-the-large [20].

This paper is organized as follows. In Section 2, we present our model and basic definitions, and in

Section 3, we introduce and motivate the relevant language primitives provided by Avalon. In Section 4,

we describe our verification techniques, which are illustrated by an extended example in Section 5.

Section 6 concludes with a discussion and a brief overview of related work.

2. Model
The basic containers for data are called objects. Each object has a type, which defines a set of possible

values and a set of primitive operations that provide the only means to create and manipulate objects of

that type. For example, a file might provide Read and Write operations, and a FIFO queue might provide

Enq and Deq operations.



195

A computation is modeled by a history, which is a finite sequence of events. An invocation event is

written as x op(args *) A, where x is an object name, op an operation name, args* a sequence of

arguments, and A a transaction name. A response event is written as x term(res *) A, where term is a

termination condition, and res* a sequence of results. We use "Ok" for normal termination. A commit or

abort event is written x Commit A or x AbortA, and it indicates that the object x has learned that

transaction A has committed or aborted2. A response matches an eadier invocation if their object names

agree and their transaction names agree. An invocation is pending if it has no matching response. An

operation in a history is a pair consisting of matching invocation and response events. An operation Po

lies within Pl in H if the invocation event for Pl precedes that of Po in H, and the response event for Pl

follows that of Po-

A transaction subhistory, H I A (H at A), of a history H is the subsequence of events in H whose

transaction names are A. H I S and H I x are defined similarly, where S is a set of transactions and x is

an object. A history is complete if every invocation has a matching response. Let complete(H) denote the

longest complete subhistory of H. Histories H and G are equivalent if complete(H) I A = complete(G) I A

for all transactions A.

A history H is well-formed is it satisfies the following conditions for all transactions A:

1. The first event of H I A is an invocation.

2. Each invocation in H I A, except possibly the last, is immediately followed by a matching
response or by an abort event.

3. Each response in H I A is immediately preceded by a matching invocation, or by an abort
event.

4. If H I A includes a commit or abort event, it must be the last event.

A,well-formed history H is sequential if:

1. Transactions are not interleaved. I.e., if any event of transaction A precedes any event of
B, then all events of A precede all events of B.

2. All transactions, except possibly the last, have committed.

Each object has a sequential specification that defines a set of legal sequential histories for that object.

This set is defined indirectly by using conventional specification techniques, e.g., the axiomatic style of

Larch [10], that describe an object's values and pre- and postconditions on its operations. For example,

the sequential specification for a FIFO queue object includes all and only histories in which items are

enqueued and dequeued in FIFO order. A sequential history H involving multiple objects is legal if it is

legal at each object, i.e., each subhistory H I x belongs to the sequential specitication for x.

H is atomic if H I committed(H), the subhistory associated with committed transactions, is equivalent to

some legal sequential history. We focus here on "pessimistic" atomicity mechanisms, in which an active

transaction with no pending invocations is always allowed to commit. H is on-line atomic if every well-

2AlthoughAvalonpermitstransactionstobenested[24,27],thispaperconsidersonlysingle-leveltransactions.
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formed history H' constructed by appending commit events to H is atomic. Any sequential history

equivalent to H'I committed(H') is called a serialization of H. H is on-line atomic if every one of its

serializations is legal.

The only practical way to ensure atomicity in a decentralized distributed system is to have each object

perform its own synchronization and recovery. Nevertheless, H is not necessarily atomic just because H I

x is atomic for each object x. To ensure that all objects choose compatible serialization orders, it is

necessary to impose certain additional restrictions on the behavior of atomic objects. Atomic objects in

Avalon are subject to the restriction that transactions must appear to execute sequentially in the order

they commit, a property that Weihl [30] has called hybrid atomicity. Hybrid atomicity is a local property,

meaning that if each object is hybrid atomic, a system composed of hybrid atomic objects is itself hybrid

atomic. Thus, under this restriction, it suffices to consider only object subhistories.

To capture this restriction, we make the following adjustments to our model. When a transaction

commits, it is assigned a logical timestamp [17], which appears as an argument to that transaction's

commit events. These timestamps determine the transactions' serialization order. Commit timestamps

are subject to the following well-formedness constraint, which reflects the behavior of logical clocks: if B

executes a response event after A commits, then B must receive a later commit timestamp. Henceforth,

a history is atomic if its transactions are serializable in commit timestamp order, and it is on-line atomic if

the result of appending commit events with well-formed commit timestamps is atomic.

q Enq(x) A q Enq(x) A

q Enq(y) B q Enq(y) B

q Ok() B q Ok() B

q Ok() A q Ok() A

q Commit(1:30)A q Commit(1:15) B

q Commit(1:15) B q Deq0 C

q Deq0 C q Ok(y) C

q Ok(y) C

Figure 2-1: H 1 (left) is on-line atomic, but H2 (right) is not.

For example, consider the two histories H1 and H2 for a FIFO queue q shown in Figure 2-1. H1 is on.line

atomic. It has two serializations: one in which B precedes A, and one in which B precedes A and A

precedes C, and it is easily verified that both are legal. H2, however, is atomic but not on-line atomic,

since the history H'2 = H2 . q Commit(l:00) A • q Commit(l:30) C is not equivalent to any legal sequential

queue history (y is dequeued out of order).

The use of commit-time serialization distinguishes Avalon from other transaction-based languages, which

are typically based on some form of strict two-phase locking [5]. We chose to support commit-time

serialization because it permits more concurrency than two-phase locking [30], as well as better

availability for replicated data [11]. Because commit-time serialization is compatible with strict two-phase

locking, applications that use locking can still be implemented in Avalon.
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3. LanguageConstructs
Avalon is currently being implemented as extensions to C++ [29]. The basic language construct for

implementing atomicity in Avalon is the tid (transaction identifier) data type. Tids are a partially ordered

set of values. The two most important operations provided by tids are creation and comparison. The

creation operation, written:

tid t -- * (new tid);

creates a new tid value, and the comparison operation, written:

tl < t2;

returns information about the order in which its arguments were created. If the comparison evaluates to

true, then (1) every serialization that includes the creation of tl will also include the creation of t2, and (2)

the creation of tl precedes the creation of t2. If tl and t2 were created by distincttransactions TI and T2,

then a successful comparison implies that TI is committed and serialized before T2, while if tl and t2

were created by the same transaction, then tl was created first. If the comparison evaluates to false,

then the tids may have the reverse ordering, or their ordering may be unknown. Comparison induces a

partial order on tids that "strengthens" over time: if tl and t2 are created by concurrent active

transactions, they will remain incomparable until one or more of their creators commits. If a transaction

aborts, its tids will not become comparable to any new tids.

Atomic objects in Avalon provide Commit and Abort operations that are called by the system as

transactions commit or abort. Commit typically discards recovery information for the committing

transaction, and Abort typically discards the tentative changes made by the aborting transaction. Both

Commit and Abort have a tid argument, which is used as follows. If t is the argument to Commit, then any

tid t' satisfyingthe predicate:

isnesc (t',t)

was created by the committed transaction t.

The argument for Abort is defined analogously. Intuitively, Commit and Abort operations in Avalon are

expected to affect liveness, but not safety. For example, delaying a Commit or Abort operation may delay

other transactions (e.g., by failing to release locks) or reduce efficiency (e.g., by failing to discard

unneeded recovery information), but it should never cause a transaction to observe an erroneous states.

An atomic object in Avalon is defined by a C++ class that inherits from the Avalon built-in class atomic

(see [12]). Syntactically, a class is defined by a collection of members, which are the components of the

object's representation, and a collection of operation implementations. With occasional minor variations,

implementations of operations of atomic objects in Avalon have the following form:

rid t = *(new rid);
when (TEST)

pinning ()
BODY;

3We donotaddresslivenesspropertiesinthispaper,thoughcertainonesarecleadyofgreatinterest.We relyontheextensive
workontemporallogic,e.g.,[23|,forreasoningaboutliveness.
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The new statement generates a new tid which Is used to "tag" the current operation. The when

statement is a conditional critical region: the statement enclosed by the when is executed when TEST

evaluates to true. TZST is typically an expression comparing the operation's newly created tid to other

tids embedded in the object's representation. When TeST evaluates to true, the operation can be

executed without violating atomicity. To ensure proper crash recovery, as distinct from transaction

recovery, an object may be modified only within statements of the form: pinning() BODY. The

pinning statement is included here for completeness; we do not address crash recovery in this paper.

BODYcomputes a result and updates the object's state.

4. Verification

This section outlines a verification methodology for implementations of atomic objects.

An implementation is a set of histories in which events of two objects, a representation (rep) object r of

type Rep and an abstract object a of type Abs, are interleaved in a constrained way: for each history H in

the Implementation, (1) the subhistodes H I r and H I a satisfy the usual well-formedness conditions; and

(2) for each transaction A, each representation operation in H I A lies within an abstract operation.

Informally, an abstract operation is implemented by the sequence of rep operations that occur within it.

Our correctness criterion for the implementation of an atomic object a is as follows: The object is atomic if

for every history in its implementation, H I a is atomic. We typicallydo not require H I r to be atomic.

To show the correctness of an atomic object implementation, we must generalize techniques from the

sequential domain. Let Rep be the implementation object's set of values, Abs the set of values of the

(sequential) data type being implemented, and oP the sequential object's set of operations. The subset of

Rep values that are legal values is characterized by a predicate called the rep invariant, t. Rep --_ bool.

The meaning of a legal representation is given by an abstraction function, A: Rep --> 2°P', detined only for

values that satisfy the invadant. Unlike abstraction functions for sequential objects [15] that map the rep

value to a single abstract value, our abstraction functions map the rap value to a set of sequential

histodesof abstract operations.

Our basic verificationtechnique is to show Inductively that the following properties are invarlant. Let r be

an object state after accepting the history H, and let Ser(H) denote the set of serializations of H.

1. V S in A(r), S is a legal sequential history, and

2. Ser(H) _ A(r).

These two properties ensure that every serialization of H is a legal sequential history, and hence that H is

on-line atomic. Note that if we were to replace the second property with the stronger requirement that

Ser(H), A(r), then we could not vedfy certain correct implementations that keep track of equivalence

classes of serializations. In the inductive step of our proof technique, we show the invarlance of these

two properties across a history's events, e.g., as encoded as statements in program text.



199

5, An Example: A Highly Concurrent FIFO Queue

In this section, we illustrate our verification technique by applying it to a highly concurrent atomic FIFO

queue implementation. Our implementation is interesting for two reasons. First, it supports more

concurrency than commutativity-based concurrency control schemes such as two-phase locking. For

example, it permits concurrent Enq operations, even though Enq's do not commute. Second, it supports

more concurrency than any locking-basedprotocol,becauseit takes advantageof stateinformation.For

example,it permitsconcurrentEnqandDeqoperationswhilethe queueis non-empty,

5.1. The Representation

InformationaboutEnqandDeq invocationsis recordedinthefollowingdata structures:

struct enq...rec {
item* what; // item enqueued

tid enqr; // who enqueued it

enq_rec (tid t, item* x) // constructor
{enqr = t; what = x; };

};
struct deq_rec {

item* what; // item dequeued

tid enqr; // who enqueued it

tid deqr; // who dequeued it

deq_rec(tid d, rid e, item* x) // constructor
{deqr = d;

enqr = e;
what = x;

};
};

The enqr componentis a tid generatedby the enqueuingtransaction,deqr is a tid generatedby the

dequeuingtransaction,what is a pointerto the enqueued item, and the last componentdefines a

constructor operation for initializing the struct.

The queue is represented as follows:

class queue: public atomic (

deq_stack deqd; // Stack of dequeued items

enq_heap enqd; // Heap of enqueued items
public :

queue() ; // Create empty queue

void enq(item*); // Enqueue an item

item* deq(); // Dequeue an item
void commit (rid); // Called on commit

void abort (tid); // Called on abort

};

The enqd component is a partially ordered queue (or heap) of enq_reds, ordered by their enqr fields. The

deqd component is a stack of deqreds used to undo aborted Deq operations.
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5.2. The Operations

If Bisan activetransaction,thenwesayA iscommittedwithrespectto B ifA iscommitted,orifA andB
are the sametransaction.EnqandDeqmustsatisfythe following(informallystated)synchronization
constraintsto ensureatomicity.TransactionA maydequeueanitemif (1) themostrecenttransactionto

executea Deqis committedwithrespectto A, and(2) thereexistsa uniqueoldestelementinthequeue
whoseenqueuingtransactionis committedwithrespectto A. A may enqueuean itemif the lastitem
dequeuedwasenqueuedbya transactioncommittedwithrespectto A.

Giventheseconditions,EnqandDeqare implementedas follows:
void queue: :enq(item* x) {

tid who = * (new rid); // Caller's rid

when (deqd.empty() [[ deqd.top().enqr < who)

pinning () // Making update

enqd. insert (enq_rec (who, x) ) ; // Record enqueue
}

item* queue ::deq () (

tid who = * (new tid); // Caller's tid

when ((deqd.empty() [[ deqd.top().deqr < who) &&

enqd.top_exists () && enqd.top() .enqr < who)

pinning (){ // Making update

enq_rec e = enqd.remove (); // Move from enqueued heap...

deqd.push (deq_rec (who, e.enqr, e.what) ); // to dequeued stack.
return e.what;

}
}

Enqentersits criticalregionwhenthe itemmostrecentlydequeuedwas enqueuedby a transaction
committed with respect to A. The enqueuer's tid and the new item are inserted in enqdo Deq enters its

critical region when the most recent dequeuing transaction has committed with respect to the caller, and

enqd has a unique oldest item. It removes the item from enqdand records it in deqd.

In addition to Enq and Deq operations, the queue provides Commit and Abort operations that are applied

to the queue as transactions commit or abort:

void queue ::commit (rid who) (

when(true) // Always ok to commit.

pinning() // Making update.

// Discard any deq records.

if (.Ideqd.empty() && deqd.top().deqr < who) deqd.reset();
}

void queue ::abort (tid who) {

when(true) // Always ok to abort.

pinning() { // Making update.

while (.Ideqd.empty()) { // Undo aborted dequeues.

deq_rec d = deqd.top();

if (isDesc (d.deqr, who) ) {// Dequeued by aborting transaction?

enqd.insert (enq_rec (d.enqr, d.what) ); // Put it back . ..
d = deqd.pop();} // and discard deq record.

else break; // No more dequeues to undo.
}
enqd. discard (who) ; // Undo aborted enqueues.
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}

}

The commit operation discards deq records for committed transactions, and the abort operation discards

enq and deq records for aborted operations.

5.3. Representation Invarlant, Abstraction Function, and Proof Sketch

We start with a lemma about sequential queue histories. Let Q be a sequential queue history (not

necessarily legal). Define the auxiliary functions ENQ(Q) and DEQ(Q) to yield the sequences of items

enqueued and dequeued in Q:

DEQ(A) = emp ENQ(A) = emp
DEQ(Q • Deq(x)) = DEQ(Q) • x ENQ(Q • Enq(x)) = ENQ(Q) • x
DEQ(Q • Enq(x)) = DEQ(Q) ENQ(Q • Deq(x)) = ENQ(Q)

Here, "Enq(x)" and "Deq(x)" are shorthand for Enq and Deq operations, "." denotes concatenation,

"emp" the empty sequence of items, and ',A" the empty history.

When reasoning about serializations, we need a way to recognize when it is legal to insert an operation in

the middle of a legal sequential history.

Lemma 1: Let Q = Q_ • Q2 be a legal sequential queue history, and let p be a queue operation.
The sequential history Q' = Q1 * P • Q2 is legal if DEQ(Q') is a prefix of ENQ(Q').

This lemma indirectly characterizes the conditions under which queue operations may execute

concurrently; an analogous lemma would be needed for any other data type to be verified.

5.3.1. Representation Invarlant

The queue operations preserve the following representation invariant.4 For all rep values r:.

1. No item is present in both the deqd and enqd components:

('ff d: deq_rec) (V e: enq_rec) (d e r.deqd ^ e E r.enqd ==>e.what _ d.what)

2. Items are ordered in deqd by their enqueuing and dequeuing tids:

(V dl, d2: deq.rec) dl <d d2 ==>(dl .enqr < d2.enqr ^ dl .deqr < d2.deqr)

where <d is the total ordering on deq_reds imposed by the deqd stack.

3. Any dequeued item must previously have been enqueued:

(V d: deq_rec) d E r.deqd =:_d.enqr < d.deqr.

Our proof technique requires that we show the representation invariant is preserved across the

implementation of each abstract operation. It is conjoined to the pre- and postconditions of each of the

operations' specifications.

4Forbrevity,weassumeitemsinthequeuearedistinct,an assumptionthatcouldeasilybe relaxedbytaggingeachiteminthe
queuewitha timestamp.
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5.3.2. Abstraction Function

Let P be a set of tids. P is a prefix set if, for all tids t and t', if t E P ^ t' < t, then t' E P.

Lemma 2: If H is an on-line atomic history for a set of tids and S is a serialization of H, then the
tids whose creation operations appear in S form a prefix set.

Define the auxiliary function OPS(r, P) to yield the partially ordered set of operations tagged by rids in P.
The elements of OPS(r, P) are given by:

{Enq(x) I (:1e:enq.rec _ r.enqd) e.what - x ^ e.enqr E P v
(3 d:deq_rec E r.deqd) d.what = x ^ d.enqr E P } LJ

{Deq(y) I (3 d:deq_rec _ r.deqd) d.what = y ^ d.deqr e P}

Each operation is "tagged" with a tid (e.enqr, d.enqr, or d.deqr). These tids induce a partial order on the

elements of OPS(r, P).

Let S be a partially ordered set of operations, and S' a sequence of operations. S' is a Iinearization of S if

elements(S) = elements(S') and order(S)c:: order(S').

A'(r, P) = {Q I Q is a Iineadzation of OPS(r, P)}

The abstraction function A(r) is defined as the union of A'(r, P) over all prefix sets P. Note that A(r)

typically Includes more histories than Ser(H).

5.3.3. Proof Sketch

The queue implementation is verified by showing inductively that every sequential history in Ser(H) lies in

A(r) and that every sequential history in A(r) is legal. For brevity, we give an informal summary of our

arguments here; the formal proofs for the Enq and Deq operations are in the next section.

Suppose the object completes an operation Enq(x) with tid t, carrying the accepted history H to H', and

the representation r to r'. It is immediate from Lemma 2 that Ser(H') _. A(r'). To show that every history

in A(r') is legal, let Q' E A(r'). If Q' fails to satisfy the prefix property of Lemma 1, there must exist y in

DEQ(Q') such that x precedes y in ENQ(Q'), implying that the Enq of x is serialized before the Enq of y.

Let t' be the enqueuing tid for the item at the top of the deqd stack, and let t" be the enqueuing tid for y.

The when condition for Enq ensures that t'< t, and the rap invariant ensures that t"< t" hence that t"< t,

which is Impossible if the Enq of x is serialized first.

SimUady, suppose the object completes an operation Deq(x) with tid t, carrying the representation r to r'.

Let Q = QI " Q2 _ A(r) and Q' = Q1 • Deq(x) • Q2 _ A(r'). The rap invadant and the first conjunct of the

when condition for Deq ensure that x is not an element of DEQ(Q), and the second conjunct then ensures

that x is the first element of ENQ(Q) - DEQ(Q). Together, they imply that DEQ(Q') = DEQ(Q) • x is a

prefix of ENQ(Q') = ENQ(Q), hence that Q is legal by Lemma 1.

If a commit or abort event carries the accepted history H to H" and the corresponding commit or abort

operation cardes r to r', we must show that (1) A(r') c: A(r), and (2) that no history in A(r) - A(r') is in

Ser(H'). Property 1 ensures that every sequential history in A(r_ is legal, and Properly 2 ensures that no

valid serializations are "thrown away." For Commit, we check that every discarded history is missing an
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operation of a committed transaction, and for Abort, we check that every discarded history includes an

operation of an aborted transaction; either condition ensures that the discarded history is not an element

of Ser(H').

Naturally, this verification relies on properties of sequential queues. To verify an implementation of

another data type, one would have to rely on a different set of properties, but the arguments would follow

a similar pattem. The basic synchronization conditions are captured by a type-specific analog to Lemma

1, characterizing the conditions under which an operation can be inserted in the middle of a sequential

history. The rep invariant and abstraction function define how the set of possible serializations is encoded

in the representation, and an inductive argument is used to show that no operation, commit, or abort

event can violate atomicity.

5.4. Proof of Correctness for Enqueue and Dequeue

We will show that if the prefix property (1) holds of all serializations h e A(r) at the Invocation of the

enqueue operation, it holds of all serializations H'e A(r') at the point of retum. In the following, for H

A(r), H' e A(r'), let H = H 1 • H2 and H'= H 1 • op • H2 such that '# p e H 1 _(who < tid(p)) ^ 'ff p e H2

_(tid(p) < who), where op is the enqueue or dequeue operation, as the case may be.

5.4.1. Enqueue

We decorate the enqueue operation with two assertions, one after the when condition, and one at the

point of return.

void queue : :enq (item* x) {
rid who = * (new tid); // Caller's tid.
when (deqd.empty() II deqd.top() .enqr < who)

WHEN: {fly y e elements(DEO(h)) _ tid(Enq(y)) < who}
t

pinning () // Making update.
enqd. insert (enq_rec (who,x) ); // Record enq.

POST: {DEQ(h') = DEQ(h)}
}

Proof: Case 1: The queue is empty. Trivial since the antecedent of WHEN is false.

Case 2: The queue is nonempty. Then let y be an item dequeued in H, which implies that the
tid of the enqueue operation of y is ordered before who by the WHEN assertion. The enqueue
operation must be in H 1since (1) the tids of all enqueue operations of dequeued items are all
ordered before that of deqd.top0.enqr (by the rep invariant), which is ordered before who (by
the when condition); and (2) who is not ordered before any operation in H 1 (by the definition of

H = H I • H2). Since the enqueue operations of all dequeued items are in H 1,

DEQ(H) prefix ENQ(H1) (*)

At the point of return, let e = Enq(x)/Ok 0. From POST we have that:

DEQ(H) = DEQ(H), which by (*)
DEQ(H') prefix ENQ(H1)

=> DEQ(H) prefix ENQ(H 1 • e • H2)
==>DEQ(H) prefix of ENQ(H).



204

5.4.2. Dequeue

Here is the annotated Deq operation:

item* queue : : deq () {
rid who = * (new tid); // Caller's tid.

when ((deqd.empty() II deqd.top().deqr < who} && // Check for conflict

enqd.top_exists () && enqd.top (}.enqr < who}

{WHEN: V Deq operations d in h (tid(d) < who =¢ d in H1)}

pinning () { // Making update.

enq_=ec e = enqd.remove();// Transfer from enqueued heap...
deqd.push (deq rec (who,e.enqr, e.what) ); // to dequeued stack.
return e.what;

}

{POST: DEQ(h') = DEQ(h) • x ^ ENQ(h') = ENQ(H1) • ENQ(H2)}
}

and the proof:

Proof: From the first conjunct of the when condition and the second clause of the rep invadant,
we know that DEQ(H) = DEQ(HI). The second conjunct Implies that there exists some x =
first(ENQ(H) - DEQ(H)), the first item in the sequence of enqueued items that have not yet
been dequeued. The third conjunct implies that this item, x, is in Hr Thus, by properties on
sequences, there exists some x = flrst(ENQ(H1) - DEQ(H1)).

At the point of return, let d = Deq0/Ok(x). POST implies that

DEQ(H I • d) prefix ENQ(H I * d)
=> DEQ(H') prefix ENQ(H1 * d)

==>DEQ(H') prefix ENQ(H I • d • H2)
=¢,DEQ(H') prefix ENQ(H').

,6. Discussion and Related Work

Atomicity has long been recognized as a basic correctness property within the database community [2].

More recently, several research projects have chosen atomicity as a useful foundation for general-

purpose distributed systems, including Avalon [12], Argus [19], Aeolus [32], and TABS [28]s. Of these

projects, however, only Avalon and Argus provide linguistic support for programmers to design and

implement user-defined atomic data types, which Weihl and Uskov [31] argue is necessary for building

large, realistic systems. To our knowledge, Avalon is the only language project to address the issue of

verifying implementations of atomic objects.

Part of the Avalon design philosophy is that verification is facilitated by making constructs for

synchronization and recovery as explicit as possible. For example, the tid data type makes the set of

sedalizations directly observable to programs, and our example verification relies heavily on the

properties of this buiit-in data type. Similarly, explicit user-defined commit and abort operations provide

direct control over transaction recovery. By contrast, Argus relies on the programmer to encode

SEXODUS[6] andDixonand Shrivastava'slanguage[4], likeAvalon,extendC++ to supportrecoverabgity,butneithergives
programmerscontroloversedalizability.
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information about the set of serializations in "atomic variants," treating commit and abort processing as a

side-effect of normal operations. For a more detailed evaluation of the implicit approach in Argus, see

Greif et al. [8].

The axiomatic approach for program verification is particularly well-suited for "syntax-directed" verification

of sequential and concurrent programs. Axiomatic proof techniques originated with Hoare's axioms

[14] for sequential program statements and were later extended for abstract data types by introducing

abstraction functions [15], representation invariants, and data type induction rules. The axiomatic

approach was also extended to shared-memory models of concurrent programs [25], and to message-

passing models of distributed programs [1, 16]. One of the principal conclusions of our work is that such

"pure" syntax-directed axiomatic methods seem poorly suited for reasoning about atomicity. In the

sequential and concurrent domains, an object's state can be given by a single value, and each new

operation simply transforms one value to another as prescribed by the appropriate axiom. Auxiliary

variables are used to keep track of history information and the states (e.g., program counters) of

concurrent processes. In the transactional domain, however, an atomic object's state must be given by a

set of possible serializations, and each new operation is inserted somewhere "in the middle" of certain

serializations (see Lemma 1). This distinction between physical and logical ordering is easily expressed

in terms of reordering histories, but seems awkward to express axiomatically, i.e., using assertions

expressed in terms of program text alone. Of course, the proofs in this paper could be axiomatized

simply by encoding the set of serializations as auxiliary data, but we have found the resulting proofs

complex and unnatural.

Best and RandeU [3], Weihl [30], and Lynch and Merdtt [22] have proposed formal models for transactions

and atomic objects. Best and Randell use occurrence graphs to define the notion of atomicity, to

characterize interference freedom, and to model error recovery. Their model does not exploit the

semantics of data, focusing instead on event dependencies. Weihl's model is similar to ours: atomic

objects are defined in terms of state machines and computations are modeled as histories. Lynch and

Merritt model nested transactions and atomic objects in terms of I/0 automata, which have been used to

prove correctness of general algorithms for synchronization and recovery [7, 21]. None of these models

were intended for reasoning about individual programs:

Our technique lies between "pure" syntax-directed axiomatic approaches and model-oriented operational

ones. Because we wish to reason about specific programs, not abstract algorithms, our approach relies

on annotating program text with assertions. Our assertion language, however, refers to operations,

histories, and sets of histories directly, making it richer and more expressive than the usual first-order

logic-based assertion languages. We have found our approach more natural for reasoning about

transaction-based distributed systems where serializability and recoverability cannot be treated as

independent properties.
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