Science of Computer Programming 2 (1982) 53-68 53
North-Holland Publishing Company

SOME NOTES ON PUTTING FORMAL SPECIFICATIONS TO
PRODUCTIVE USE

John GUTTAG
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, U.S.A.

Jim HORNING
Xerox Palo Alto Research Centers, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.

Jeannette WING
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, U.S.A.

Communicated by M. Sintzoff
Received February 1982
Revised June 1982

Abstract. These notes are personal reflections, stemming from attempts to understand the sources
of problems and successes in the application of work on formal specifications. Our intent is to
provoke thought about the nature and value of work in the area; not to provide a set of well-tested
results. Rather than focusing on yet another specification language, we have tried to take a broad
view of the role of formal specifications in the program development process.

1. Introduction

To treat programming scientifically, it must be possible to specify the required
properties of programs precisely. Over the last few years much has been published
about specifications in general, and formal specifications in particular. Most of these
papers have presented or evaluated particular specification languages or classes of
specification languages. Here we try to take a somewhat broader view of the role
of formal specifications in the program development process.

These notes are personal reflections, stemming from attempts to understand the
sources of problems we encountered in the application of our earlier work on
formal specifications. Our intent is to provoke thought about the nature and value
of work in the area, perhaps to open a dialog, but not to provide a set of well-tested
results.

Formality is certainly not an end in itself. The importance of formal specifications
must ultimately rest in their utility — in whether or not they are used to improve
the quality of software or the cost of producing and maintaining software. To date,
informal or semi-formal techniques have been far more widely used than have
formal ones. Undoubtedly, they have been of significant help.

0167-6423/82/0000-0000/$02.75 © 1982 North-Holland

54 J. Guttag, J. Horning, J. Wing

As our understanding of the theoretical and linguistic aspects of formal
specifications improved, we began to try to use them in developing interesting
software. We ran into problems doing this, and were eventually forced to conclude
that for the most part our use of formal specifications had not helped us either to
produce better software or to produce software more efficiently. The difficulty was
not that we encountered things that were intrinsically difficult to specify, but that

(a) We found it difficult to establish a useful correspondence between our elegant
formal systems and the untidy realities of writing and maintaining programs.

(b) We were unable to maintain a consistent attitude about what constituted a
‘good’ specification. This confusion about how to evaluate both what we were doing
and the results of what we were doing often kept us working in circles.

(c) We found ourselves getting bogged down by the clerical details involved in
managing, reasoning about, and maintaining the consistency of large specifications.

Despite all of this, we remain optimistic about the future utility of formal
specifications of programs. There are many problems, but none of them seems
intractable. We believe that eventually formal specifications will supplant informal
ones as the tool of choice in many areas.

2. Some vocabulary

One symptom of our problems was our use of the same words to mean a number
of different things. So we begin by introducing some terminology.

2.1. Definitions

A (formal) specification language consists of two sets, Syn and Sem, and a
relation, Sat, between them. The first set is called its syntactic domain ; the second,
its semantic domain ; the relation is called satisfies.

For a specification language, if Sat(syn, sem), then syn is a specification of sem,
and sem is a specificand of syn.

The specificand set of a specification is the set of all its specificands.

A specification is satisfiable (or consistent) if its specificand set is non-empty.

Somewhat less formally:

- A specification language provides a notation (its syntactic domain), a universe
of objects (its semantic domain), and a precise rule defining which objects satisfy
each specification.

A specification is a sentence of a specification language. It denotes a subset of
the semantic domain, called its specificand set.

A specificand is an object satisfying a specification.

The satisfies relation provides the semantics of the specification language. Note
that different specification languages may have identical syntactic and/or semantic
domains, but different satisfies relations.

Putting specifications to productive use 55

BNF is an example of a simple specification language, with a set of grammars
as its syntactic domain and a set of strings as its semantic domain. Every string is
a specificand of each grammar that generates it. Every specificand set is a formal
language.

2.2. Semantic domains for program specification

The choice of a specification language’s semantic domain is a matter of some
interest. ‘Abstract data type specification languages’, for example, have been used
to specify algebras [5, 26], theories [3], and programs [7]; programs have been
used to specify functions from input to output [19], computations [22], predicate
transformers [4], and even machine language instructions. In this paper, we confine
our attention to specification languages whose specificands are programs or systems
of programs. I.e., each specificand is software that implements its specification.

Quite a bit can be said about the power and limitations of a specification language
without any consideration of its syntactic domain, simply by considering possible
functional decompositions of its satisfies relation. Henceforth, we will associate
with each specification language a homomorphism, A, which we call a semantic
abstraction function, that maps elements of the semantic domain into equivalence
classes. The semantic abstraction function will be chosen so that there exists an
induced relation, ASat, which we call an abstract satisfies relation, such that,

Vspec € Syn, prog € Sem [Sat(spec, prog) = ASat(spec, A(prog))].

We will call range(A) the intermediate domain of the specification language.
Programs that A maps to the same equivalence class in the intermediate domain
cannot be distinguished by specifications written in its associated language.

Different semantic abstraction functions make it possible to impose different
kinds of constraints on programs. It can be useful to have several specification
languages with different semantic abstraction functions for a single semantic domain.
This encourages complementary specifications of different aspects of a program.

2.3. Some distinctions

We find it helpful to classify specifications — and the languages in which they are
written — in a variety of ways. The point of this section is not that these distinctions
introduce sharp dichotomies, nor that they provide a complete taxonomy. Rather,
it is that each of them has important consequences on the development, use, and
evaluation of specifications.

Class of constraint. A specification language’s semantic abstraction function limits
the class of constraints that it can impose on programs. Suitably chosen, it can
simplify both the language and specifications written in the language. We distinguish
two broad classes of semantic abstraction functions (hence, of program specification
languages and of specifications): those that abstract preserving each program’s
behavior, and those that abstract preserving each program’s structure.

56 J. Guttag, J. Horning, J. Wing

Specifications written in behavioral specification languages indicate constraints
only on the observable behavior of their specificands. The required functionality
(mapping from inputs to outputs) of any specificand is an important behavioral
constraint. However, behavioral specifications may also constrain other aspects of
behavior, e.g., response time, space efficiency, or reliability.

Specifications written in structural specification languages indicate constraints on
the internal composition of specificands. Divide-and-conquer is a fundamental
method of programming, and the specification of decomposition is sufficiently well
understood that several programming languages incorporate structural
specifications [2, 13]. The combination of a rigorous structural specification of a
system with informal behavioral specifications of its components is quite common
[24,10].

It is easy to confuse a specification of structure (of specificands) with the structure
of a specification. Any large specification will need some structure of its own, as
an aid to dealing with the specification itself. This does not necessarily correspond
to any structure in the specificands. The overriding goal in decomposing a
specification is clarity, whereas there are many other important constraints on the
decomposition of a program.

Viewpoint. Useful programs are not closed systems. An unobservable program is
of no interest. Behavioral specifications rely on the notion of observability. What
is considered observable forms the boundary (or interface) of the specificand.

A programming language is a convenient semantic domain partly because it
provides a standard definition of what may be observed (e.g., values of non-local
variables, input/output, exceptional conditions). Constraints on programs can be
stated in programming language terms. We call such specifications language-
oriented.

By contrast, clear expression of some important kinds of constraints on a system
may require a viewpoint outside the programming language. For example, the
significant behavior may involve external devices whose behavior is controlled or
interpreted by humans, and may best be described in terms of abstractions derived
from the application domain. Finding good abstractions for these descriptions is
an important research area [21, 7]. We call specifications based on such abstractions
application-oriented.

Environment. For any boundary, there is a duality between a system and the
‘environment’ that provides its inputs and (presumably) consumes its outputs [9].
The role of system and environment can be reversed by exchanging the roles of
inputs and outputs. When the environment is itself a system amenable to formal
specification, it is possible to exploit this duality. Assumptions about the environ-
ment may simplify the statement of the constraints on the system; e.g., itis frequently
simpler to specify a pre-condition on the execution of a procedure than to specify
its behavior for arbitrary inputs. To ensure validity, such assumptions must become
part of the specifications of that environment.

Putting specifications to productive use 57

Specification size. Specifications, like programs, come in a great range of sizes.
The processes of writing, reading, and checking large specifications differ in impor-
tant ways from those for small ones. Languages and methods that were adequate
for our small specifications failed to scale up well when we attempted larger
specifications. It is not fruitful to try to define a precise dividing line between large
and small, but when the text of a specification exceeds a few pages, problems of
scale begin to dominate.

There is no necessary connection between the size of a specification and the size
of its specificands. A specification can have specificands of very different sizes, and
a single program can satisfy specifications of very different sizes. In our experience,
however, there has been a definite correlation between the size of a specification
and the specificand we have implemented.

System, local, and organizational specifications. Three combinations of attributes
are so common that we have found it convenient to name them. We call application-
oriented behavioral specifications of (typically large) collections of programs system
specifications. They express constraints on a system in terms of what can be observed
by its users.

We call language-oriented behavioral specifications of single program units local
specifications. They are typically small, and are the kind of formal specification
that appears most often in the literature, e.g., specifications of stacks, sets, and
factorial functions. They express constraints on a program in programming language
terms. For example, if the programming language allows for exceptional termination
of a procedure, procedure specifications should include conditions for both normal
and exceptional termination.

System and local specifications are both behavioral, and it is tempting not to
distinguish between them. However, their differences are probably more important
than their similarities. v

One key difference is the process of formalizing observable behavior. What is
required by users of a system is not necessarily more complex than what is required
by callers of a procedure. But the burden of formalizing the observable state of a
programming language falls on the specification language designer, while the burden
of formalizing the observable state of a system generally falls on its specifier.

Formalizing the aspects of system behavior that are to be constrained is often
hard. Much of the complexity of Sufrin’s text editor specification occurs here [20].
Sometimes, however, it is not so difficult: Some successful design methodologies
are based on the observation that a few application-oriented abstractions suffice
for the description of large classes of useful systems with very stylized observable
behavior, e.g., doing all I/O to highly-structured files [10]. Finding and formalizing
these abstractions is one of the best ways of converting ‘complex’ specification
problems into ‘simple’ ones.

A second important difference is size. Useful systems often have more different
(and more complex) kinds of behavior to be specified than individual program units

58 : J. Guttag, J. Horning, J. Wing

do. Hence, system specifications tend to be much larger than local specifications.
The obvious analogy is valid: The process of constructing system specifications is
related to the process of constructing local specifications, as the process of construct-
ing systems is related to the process of constructing program units.

Finally, we call the combination of a structural specification with a behavioral
specification of each of the system’s components an organizational specification. It
should be possible to demonstrate that an organizational specification implements
a system specification — even before completing the design of the components — by
showing that the system will satisfy its specification if each component satisfies its
specification.

3. Some questions

Several questions have helped us to focus on key issues connected with different
uses of specifications: What is accomplished by constructing them? What benefits
result from their existence? When should they be written? By whom should they
be written? By whom should they be read? By which properties should they be
evaluated?

In trying to answer these questions it became apparent to us that there is not a
single set of ‘right’ answers. In this section, we will discuss a range of answers
relevant to the various kinds of specifications discussed above.

3.1. Whatis accbmplished by constructing them?

We have often profited more from the process of constructing a specification
than from the use of the completed result. The process of formal specification
encourages prompt attention to inconsistencies and incompleteness and ambiguities
in understanding. Each of our efforts in program specification has clarified our
understanding of the specificand set — whether the attempt came before or after
the construction of the program. In many cases, such improved understanding has
been the major result of the specification effort.

The construction of system specifications focuses attention on what is required
of the system’s behavior. It serves as a mechanism for generating questions that
should be answered by the client, rather than the implementers [7]. If questions
are posed early in the system life cycle, they are more likely to be answered by
the client or the system designer, rather than by lower-level programmers. The
construction of local specifications systematically focuses attention on implementa-
tion decisions that remain to be made. The construction of structural specifications
focuses attention on the decomposition of a system into subsystems. The construc-
tion of organizational specifications focuses attention on the suitability of such
decompositions.

Putting specifications to productive use 59

3.2.What benefits result from their existence?

Once written, specifications can serve many different purposes during the software
life cycle. They provide a tangible record of the understandings that were acquired
during their construction - a record that can be helpful to clients, designers,
implementers, maintainers, and users.

System and local specifications state an agreement between providers and users
of a service. A good system specification can provide guidance for system implemen-
ters, reduce disputes between vendors and clients, and perhaps serve as the basis
for a legal contract. Local specifications make it possible to separate consideration
of the implementation and the use of a program unit. They provide the ‘logical
firewalls’ that permit divide-and-conquer to succeed. '

A structural specification provides a decomposition of a system into units that
can be specified, designed, implemented, tested, and evaluated separately. An
- organizational specification can play the part played by a model in other fields of
engineering design. It can both guide and document the design process. The
precision with which the components are specified will affect the success of attempts
to deal with them independently, and the likelihood of their combination meeting
the requirements of the system as a whole. A good organizational specification can
enable meaningful pre-implementation evaluation of the design, and provide unam-
biguous guidance to implementers.

3.3. When should they be written?

It is generally useful to start writing specifications as soon as the decisions they
record have been made. Intentionally delayed decisions can be recorded as para-
meters in the specification; they should not be confused with accidental incomplete-
ness or ambiguity. Since specifications only become irrelevant when the program
has ceased to be useful, it is a mistake a treat the process of writing specifications
as separate ‘phase’ of a software project that terminates before the project itself.
Specifications should evolve as the program itself evolves.

The first version of the system specification should generally precede the design
of the system itself. Structural specifications should be developed as the designers
partition the system into subsystems; later they can be converted to organizational
specifications, by writing local specifications for their components. Local
specifications for general-purpose components should be written before they are
placed in a library.

We have had some experience with the ex post facto construction of specifications
of existing programs. In addition to providing a document that can be useful to
maintainers of the software, such an exercise can lead to useful generalizations.
Concepts developed for a particular system (and lessons learned through its con-
struction and use) are often more general than the system itself. To communicate
and reuse such concepts, it helps to abstract and specify their essential characteristics.

60 J. Guttag, J. Horning, J. Wing

3.4. By whom should they be written?

We do not expect good specifications to be written by unskilled persons. The
real question is: What skills are needed to write various kinds of specifications?

System specifications could be written by specialists who communicate with
implementers on one side and clients on the other. Alternatively, they could be
written collaboratively: It is unrealistic to expect the software developers to have
enough expertise to check the specification against the intended application domain,
let alone carry out the abstraction process. On the other hand, it is plain wishful
thinking to assume that experts in an application domain will provide us with a
theory that would have all the properties necessary.... The most abstract
specification must, therefore, be constructed in co-operation between a programmer
and application expert (client).” [21]

It seems clear that structural and organizational specifications should be written
by system designers. Local specifications may be written by system designers (for
systems designed top-down) or by implementers (for bottom-up programs, such as
library routines). Both groups may benefit from specialist assistance, but they
shouldn’t try to delegate the responsibility for this task.

3.5. By whom should they be read?

Since more people will read them than write them, we expect that the readers
of (at least some kinds of) specifications will be less well trained than their authors.
Nevertheless, some skill is required for any formalism to be intelligible.

It is crucial that a system specification capture the client’s requirements. Unfortu-
nately, those who best understand the problem may be ill-equipped to read and
understand such specifications. A specification specialist may have to serve as guide
and interpreter. It is equally important that the system’s designers, implementers,
and maintainers understand this specification, but we believe that they are more
likely to have the training required to do so.

Local, structural, and organizational specifications are read by designers,
implementers, and maintainers, but are not intended for clients and users.

3.6. By which properties should they be evaluated?

It is important to keep in mind the difference between evaluating a specification
and evaluating some or all of its specificands. We ourselves have not always been
as careful about this as we should have been. When we were evaluating small
specifications it didn’t. much matter. The most interesting property of a small
specification is often its specificand set. For larger specifications, however, there
are other properties that are too important to ignore. The distinction between
specification and specificand is especially important when discussing properties that
make sense in both domains. A simple example is the difference between an
ambiguous grammar and an ambiguous sentence.

Putting specifications to productive use 61

Specification properties. It is desirable for any specification to be syntactically
well-formed, and consistent. Specifications need not be ‘complete’ in the logical
sense, but they should not conceal oversights. More amorphous, but equally impor-
tant, problem-independent qualities such as lucidity, modularity, precision, and
concision, are much harder to deal with; as is the problem-specific quality of “‘saying
what the client requires”.

Properties of specificand sets. Much of the evaluation of particular specificands
takes place after they are implemented. However, given a specification, it may be
useful to evaluate the properties of its specificand set, or of some or all of its
members, based on the information in the specification itself. Are there any small
programs in the set? What bounds can be placed on the efficiency of specificands?
For a given class of ‘small’ changes in the specification, are there specificands that
can satisfy the changes with correspondingly ‘small’ changes?

In [7] we suggested a way of testing the correspondence between system
specifications and the client’s intentions. It is based on stating interesting problem-
specific conjectures, and attempting to prove them as theorems that follow from
the specification. We do not have nearly enough experience with this method to
draw any firm conclusion (except that it is naive to rely on our own accuracy as
theorem-provers), but we are guardedly optimistic.

Evaluation. In evaluating specifications, specifiers are limited by the lack of
precise definitions for most of the interesting problem-independent properties [23].
They fall back on intuition, programming experience, and informal arguments. We
are currently trying to develop formal definitions for a variety of interesting
problem-independent properties of behavioral specifications. We hope to clarify
properties of useful specifications and provide some helpful rules of thumb for
specifiers. We are looking at both those evaluation criteria that appear in the
literature on formal specifications, e.g., implementation bias [11] and well-
definedness [12], and also at more informal guidelines for program design [17, 15].

4. Tools

It is a poor workman who blames his tools, but it is a foolish workman who does
not appreciate good tools. The task of specification will remain a significant intellec-
tual challenge, even with the best tools we can foresee. However, our current
primitive tools are a significant bottleneck in the application of formal specifications
to program development. We place tools in two general categories: mental tools
and ‘metal’ tools. Over the last few years we have been concerned primarily with
the development of our mental tools.

Mental tools include specification languages, methods (global strategies), tech-
niques (local tactics and tricks), and, most importantly, experience. The value of
experience is brought home strongly whenever we teach someone to write formal
specifications. The specification language we use can be taught in a day, but we

62 I. Guttag, J. Horning, J. Wing

find that it takes weeks for even a good student to become competent, and months
to attain proficiency. The difficulty of learning to write good specifications is
comparable to the difficulty of learning to write elegant programs. It has been a
serious limitation in spreading the usage of formal specifications.

Recently we have turned our attention to the development of software (a relatively
new kind of metal) tools that we hope will help with this problem. We expect this
work to augment our mental tools in several ways. Firstly, developing tools to help
with a task is complementary to studying the mental processes used in carrying it
out. The design of various programming languages, for example, has both influen-
ced, and been influenced by, the study of programming methodology.

~Secondly, if we are successful in constructing software tools that encourage people
to approach the tasks of writing and using formal specifications in the ways we find
to be most effective, they will help to teach them our mental tools. We hope not
only to impose some structure on the way they approach these tasks, but also to
provide a mechanism to pass on much of the knowledge we have gained through
experience.

Thirdly, a good set of software tools will allow specifiers to concentrate their
energy and ingenuity where it is most necessary. Both expert and novice users can
be spared the trouble of performing the substantial amount of routine work involved
in writing, checking, and reading specifications.

There are dangers inherent in building and using such tools. A technique may
achieve unwarranted permanence by being enshrined in a body of code; bad tools
can lock us into unfortunate ways of doing things. Considering the limited body
of experience with formal specifications, it is inevitable that early tools will incorpor-
ate some bad ideas. However, we need to accumulate experience using various
tools to enable us to distinguish the truly helpful from the merely plausible. '

4.1. Specification languages as mental tools

A reasonable specification may constrain many different aspects of its
specificands. Even a ‘simple’ sort procedure might be required to satisfy a large
number of rather different constraints: termination in O(N log N) time, bound of
‘O(N) working storage, establishment of a permutation of its parameter in ascending
order by key, idempotence, stability, maintenance of the permutation invariant
outside atomic swap operations, no more than O(N) page faults with fixed working
set, etc. :

A single formal specification (written in a ‘universal’ specification language)
incorporating precise versions of so many kinds of constraints is unlikely to be
either brief or easy to understand. It seems more reasonable to use several languages
with a common semantic domain (the programming language), and intermediate
domains appropriate to the different kinds of specification. Then a program or
system satisfies a collection of specifications in these languages if it satisfies each
of them. Equivalently, the specificand set of the collection is the intersection of
their specificand sets.

Putting specifications to productive use 63

A full-fledged family of specification languages would contain languages for
structural specification, system specification, functional specification, performance
specification, reliability specification, etc. Several of these might include variants
for different programming languages - although we expect a large degree of
commonality among such variants.

Both the desire to consider various types of constraints separately, and the need
to find some way to structure the presentation of large specifications suggest that
‘putting specifications together’ is a key issue for specification languages [3, 16]. It
is important that the meaning of combinations be well-defined. It is also essential
that the consequences of combinations be understandable to those who work with
them.

We are presently engaged in the design and testing of a family of behavioral
specification languages, which will be described in a future paper. Each member
of our family has a component derived from a programming language, and another
component common to them all. We call the former the interface languages, and
the latter the shared language.

Each of our interface languages deals with what can be observed about the
behavior of programs written in its programming language. Its simplicity or com-
plexity is a direct consequence of the simplicity or complexity of the observable
state and state transformations of the programming language. The shared language
is more closely akin to traditional mathematics, and allows us to specify abstractions
useful for stating constraints in a language-independent way. Its role is similar to
that of abstract models in some other styles of specification.

It is our hope that most of the effort involved in writing a specification can be
invested in the shared language component. The part written in an interface
language should deal only with programming language dependent issues, e.g., calling
sequences and exceptions. The invention and description of key abstractions should
be done in the shared language. One reason for separating the two language
components is that we expect common abstractions to be useful in specifying
interfaces in many different languages. Some of them will be developed for particular
applications; a few central ones will be useful in many applications. We plan to
accumulate a library of reusable shared-language specification components and to
include mechanisms in our shared language for customizing them.

4.2. Some experience with two existing software tools

We have experimented with the use of two very different tools, PIE [6] and
Affirm [14], in constructing modest sized algebraic specifications.

PIE was designed as a Personal Information Environment. It is a very general
database management system that includes facilities for creating, updating, query-
ing, and browsing very flexible databases. It provides convenient facilities for
multi-person sharing, multiple versions, and multiple views of the data. It can also
be used to create a meta database of information about another database, allowmg
its use to be tailored to particular applications.

B

64 J. Guttag, J. Horning, J. Wing

We used PIE to create a meta database of information about the structure and
presentation of algebraic specifications and to create a database containing the
specifications of some 30 abstract data types relevant to a system we were trying
to specify. It was convenient to ‘navigate’ in the specification space, moving from
the occurrence of a function or type in a specification to its own specification. It
was also easy to display various ‘projections’ of the specification. The system
automatically ensured various forms of syntactic consistency. We used it enough
to become convinced of its potential as a tool for organizing specifications, develop-
ing them in the face of changing requirements or understandings, and for reading
specifications.

Affirm was built as a program verification system. It provided only the most
primitive facilities for structuring and perusing large amounts of information. It
did, however, allow us to deal with the semantics of the specifications we wrote.
Unlike many other verification systems, it emphasized the interaction between
specification and verification. Using Affirm we wrote many algebraic specifications,
checked them for logical consistency, checked them for various properties related
to completeness, and proved theorems that followed from them.

Neither tool was completely satisfactory. Specifications in Affirm became masses
of unstructured sets of equations. These were very hard to read and maintain,
particularly when they had been constructed by someone else. Using PIE, on the
other hand, we were able to put a great deal of structure into our specifications.
Unfortunately, our PIE database treated the nodes of this structure as little more

~ than strings of characters, and we greatly missed the semantic checking and theorem

proving facilities that Affirm provided. We were not able to perform these tasks
accurately without machine aid. We concluded that, at least for modest sized
specifications, it is probably easier to maintain a manual substitute for PIE’s
structural information than it is to perform the equivalent of Affirm’s checking
manually.

4.3. Some software tools that we want

Just as the use of computers has radically revised conceptions of the amount of
computation it is feasible to do, it is enlarging our perception of the amount of
complexity it is feasible for a person to bring under intellectual control. A primary
benefit of using a specification language that is formal is the ability to reason
mechanically both about the well-formedness of specifications and about properties
of specificands. We believe that the utility of any good specification language would
be greatly enhanced by each of the following tools: '

Syntax and ‘type’ checker. Experience indicates that most specifications (like
most programs) contain ‘errors’ when they are written. Often these are typos or
other careless mistakes, but sometimes they reflect serious conceptual problems.
Fortunately, a surprisingly large number of the deeper problems have superficial
symptoms, e.g., type errors. A tool that detected these symptoms early in the

Putting specifications to productive use 65

specification process would be very helpful, in much the same way as a compiler’s
syntax and type checkers.

Semantic checkers. Mechanical theorem proving has progressed greatly in the
last few years. If a specification language is designed with theorem proving in mind,
a surprising amount of useful semantic checking can be done. Specification languages
should be designed to encourage specifiers to inject a considerable amount of
checkable semantic redundancy into their specifications. It is true that many interest-
ing properties, e.g., consistency, are undecidable. Nevertheless, there are often
useful and decidable sufficient conditions that guarantee the presence of a property,
or necessary conditions that can warn of its absence. In addition to routinely
performing checks relevant to the specification language, the theorem prover should
be conveniently accessible to those who wish to prove or disprove conjectures
about the specificands denoted by a specification.

Library. When faced with a new problem to specify, veteran specifiers rely on
their past experience, borrowing ideas and components from previously written
specifications. One of the great problems of neophyte specifiers is that they don’t
have such a repertoire to build on. A library of specifications that can be tailored
to particular users and applications should prove helpful, if it can be organized so
that relevant entries can be identified and retrieved with less effort than would be
required to recreate them. Database management and information retrieval tech-
niques may be relevant.

Editor. An editor that is tailored for specifications can help to write specifications
[25]. It can supply templates for specifications, automatically generate redundant
information about a specification or set of specifications, keep track of missing
information (e.g., the type signature of a function name) and inconsistencies that
must be fixed to make the specification well-formed. Careful design will be required
to make these interactions efficient and pleasant.

Viewer. To help read specifications, a viewer, in conjunction with the library and
retrieval tools, should let the reader see selected information about a particular
specification or set of specifications. Results of various projections, combinations,
expansions, and other transformations (both syntactic and semantic) on
specifications should be displayable. The theorem prover should be available to
test hypotheses.

5. Prospects

It is currently impractical to write complete formal specifications of all the
important aspects of most useful software systems, just as it is generally impractical
to construct complete formal proofs of system ‘correctness’. Some have taken this
as an indication of the impracticality of formal approaches to programming. We
disagree. Many of the problems we have discussed plague attempts to create precise
specifications in informal languages: often they are conjoined with greater verbosity

66 J. Guttag, J. Horning, J. Wing

‘and less mechanically checkable redundancy. There are some parts of the program
development process where various formal techniques are likely to be useful in the
near future, and others where they are not.

Basic research is not the bottleneck in the area of local specification. With a
modest investment in the development of some software support tools to help in
the construction and analysis of local specifications and a somewhat larger invest-
ment in the education of system designers and implementers, it should be practical
for professional programmers to write and use local specifications in the near future.

The practical application of formal system specification languages seems farther
in the future. Experience with semi-formal approaches, as in the A-7 project [8],
has illustrated both some of the potentials and some of the problems in this area.
One problem is size. We need to get better at putting specifications together, at
deriving the consequences of such combinations, at analyzing partially complete
specifications, and at managing large amounts of formal information. A second
problem is that, to be most useful, a system specification must be understood both
by software designers and by clients who understand the intended application. It
is likely that the early successes will be in areas where formalizing a few application-
oriented concepts will suffice to describe many systems, or where the costs of
imprecise specifications are considered unacceptable.

Structural specifications have been in productive use for some time. Various
programming languages incorporate formal structural specification sublanguages.
The construction of tools to take advantage of such specifications is an active area
of research [18]. ~

An organizational specification combines structural and local specifications. Our
success in constructing them has been largely a function of our ability to design
our software as a composition of logically self-contained modules with simple
specifications. These specifications can be used to guide system construction. We
would like to use them to evaluate the design of a system prior to starting an
implementation, but we must still find practical ways to do this. However, their
greatest importance may lie in precisely recording and communicating key design
decisions.

In conclusion: Never let a problem with formalizing all relevant constraints on
a program discourage you from stating as many as you can formally. The fewer
that are left informal, the fewer the opportunities for misunderstanding or
imprecision. Once a ‘difficult’ constraint has been separated from the others, it may
be easier to see how it can be formalized in isolation.

Acknowledgment
Our views on the utility of formal specifications have been shaped over a long

period by discussions with colleagues too numerous to list. IFIP Working Group
2.3 (Programming Methodology) and the informal DARPA working group on

Putting specifications to productive use 67

Quality Software for Complex Tasks have both been very influential. Many of these
ideas were crystallized by a workshop in Aarhus, Denmark [1]. Rod Burstall,
Edsger Dijkstra, Bill McKeeman, Susan Owicki, David Parnas, Bob Ritchie, Mary
Shaw, Wlad Turski, and two anonymous referees all contributed specific suggestions
concerning various drafts of these notes.

This work was supported in part by the Office of Naval Research contract with
DARPA funding #N00014-75-C-0661.

References

[1] Proc. International Workshop on Program Specification, Aarhus (Springer, Berlin, 1981).

[2] The Programming Language Reference Manual, Lecture Notes in Computer Science 106 (Springer,
Berlin, 1981).

[3] R.M. Burstall and J.A. Goguen, Putting theories together to make specifications, Proc. 5th
International Joint Conference on Artificial Intelligence, Cambridge, MA (1977) 1045-1058.

[4] E.W. Dijkstra, Notes on structured programming, in: O.-J. Dahl, E.W. Dijkstra and C.A.R. Hoare,
Structured Programming (Academic Press, London, 1972) 1-81.

[5] J.A. Goguen, J.W. Thatcher and E.G. Wagner, Initial algebra approach to the specification,
correctness, and implementation of abstract data types, in: R.T. Yeh, Ed., Current Trends in
Programming Methodology, Vol. IV, Data Structuring (Prentice-Hall, Englewood Cliffs, NJ, 1978).

[6] I.P. Goldstein and D.G. Bobrow, A layered approach to software design, Technical Report
CSL-80-5, Xerox Palo Alto Research Center (1980).

[7]1 J.V. Guttag and J.J. Horning, Formal specification as a design tool, Proc. ACM Conference on
Principles of Programming Languages, Las Vegas, NV (1980) 251-261.

[8] K.L. Heninger, Specifying software requirements for complex systems: New techniques and their
application, Proc. IEEE Conference on Specifications of Reliable Software, Boston, MA (1979) 1-13.

[9] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (8) (1978) 666-677.

[10] M.A. Jackson, Principles of Program Design (Academic Press, London, 1975).
[11] C.B. Jones, Software Development: A Rigorous Approach (Prentice-Hall, Englewood Cliffs, NJ,
1980).
[12] D. Kapur, Towards a theory for abstract data types, Technical Report 237, MIT Laboratory for
Computer Science, Cambridge, MA (1980).
[13] J.G. Mitchell, W. Maybury and R. Sweet, Mesa language manual, Technical Report CSL-79-3,
) Xerox Palo Alto Research Center (1979).
[14] D.R. Musser, Abstract data type specification in the Affirm system, IEEE Trans. Software Engrg
6 (1) (1980) 24-32.
[15] G.J. Myers, Reliable Software Through Composite Design (Petrocelh/Charter, New York, 1975).
[16] R. Nakajima, M. Honda and H. Nakahara, Hierarchical program specification and verification—A
many-sorted logical approach, Acta Informat. 14 (1980) 135-155. '
[17] D.L. Parnas, On the criteria to be used in decomposing systems into modules, Comm. ACM 15
(12) (1972) 1053-1058.
(18] E. Schmidt, Controlling large software development in a distributed environment, Ph.D. Thesis,
U.C. Berkeley (1982) forthcoming.
[19] D. Scott, Toward a mathematical semantics for computer languages, in: J. Fox, Ed., Proc. Sym-
posium on Computers and Automata (Polytechnic Institute of Brooklyn Press, New York, 1971).
[20] B. Sufrin, Formal specification of a display-oriented text editor, Sci. Comput. Programming 1 (3)
(1982) 157-202.
[21] W.M. Turski, Design of large programs, IInf UW Reports Nr 97, Institute of Informatics, University
of Warsaw (1980).
[22] P. Wegner, The Vienna definition language, Comput. Surveys 4 (1) (1972) 5-63.

68 J. Guttag, J. Horning, J. Wing

[23] J.M. Wing, Bridging algebraic specifications and their implementations via interfaces, Ph.D. Thesis
Proposal, MIT Laboratory for Computer Science, Cambridge, MA (1982).

[24] N. Wirth, Program development by stepwise refinement, Comm. ACM 14 (4) (1971) 221-227.

[25] J.L. Zachary, A syntax-directed specification editor, S.M. Thesis, MIT (1982) forthcoming.

[26] S.N. Zilles, Abstract specifications for data types, Technical Report 119, MIT Computation
Structures Group (1974).

