
Technical Report

CMU/SEI-89-TR-034
ESD-TR-89-045

Durra: A Task-Level
Description Language
Reference Manual
(Version 2)

Mario R. Barbacci
Jeannette M. Wing

September 1989

Technical Report
CMU/SEI-89-TR-034

ESD-TR-89-045
September 1989

Durra: A Task-Level
Description Language

Reference Manual
(Version 2)

AB
Mario R. Barbacci

Jeannette M. Wing
Software for Heterogeneous Machines Project

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright

©

 1989 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.as-
set.com/sei.html / e-mail: webmaster@www.asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. B

Table of Contents

1. Introduction 1
1.1. Scenario 2
1.2. Terminology 3
1.3. Notes on Syntax 4
1.4. Keywords and Predefined Identifiers 6
1.5. Local and Global Names 6
1.6. Literal Values 7
1.7. Expressions 7
1.8. Compilation Units 8

2. Type Declarations 9

3. Task Descriptions 11

4. Task Selections 13

5. Interface Information 15
5.1. Port Declarations 15
5.2. Rules for Matching Selections with Descriptions 15

6. Behavioral Information 17
6.1. Function Part 17
6.2. Timing Part 18

6.2.1. Time Literals 18
6.2.2. Event Expressions and Time Windows 18
6.2.3. Timing Expressions 19
6.2.4. Restrictions on Time Values and Time Windows 21

6.3. Rules for Matching Selections with Descriptions 21

7. Attributes 23
7.1. Rules for Matching Selections with Descriptions 24

8. Structural Information 25
8.1. Process Declarations 25
8.2. Queue Declarations 25
8.3. Data Transformations 27
8.4. Port Bindings 30
8.5. Reconfigurations 30

References 33

CMU/SEI-89-TR-34 i

Appendix A. Formal Meaning of Timing Expressions 35
A.a. Assigning Meaning to Timing Specifications 35
A.b. Assigning Meaning to the Combined Specifications 36
A.c. Examples 39

Appendix B. Predefined Language Facilities 41
B.a. Predefined Functions 41
B.b. Predefined Attributes 42

B.b.1. Mode Attribute 42
B.b.2. Implementation Attribute 43
B.b.3. Processor Attribute 43
B.b.4. Source Attribute 44
B.b.5. Window Attribute 44
B.b.6. Display Attribute 44
B.b.7. Debug Attribute 45

B.c. Predefined Tasks 46
B.c.1. Broadcast Task 46
B.c.2. Merge Task 46
B.c.3. Deal Task 46
B.c.4. Examples 47

Index 49

ii CMU/SEI-89-TR-34

List of Figures

Figure 1: Mapping of Logical and Physical Components 5
Figure 2: A Template for Task Descriptions 11
Figure 3: A Template for Task Selections 13
Figure 4: Use of Global Attribute Names 24
Figure 5: Nested and Alternative Reconfiguration Statements 32
Figure 6: Merge Task 39
Figure 7: Divide Task 40

CMU/SEI-89-TR-34 iii

iv CMU/SEI-89-TR-34

List of Tables

Table A-1: Axioms About Operation Start and End Times 36
Table A-2: Assigning Meaning to Timing Specifications 37
Table A-3: Assigning Meaning to Combined Specifications 38

CMU/SEI-89-TR-34 v

Durra: A Task-Level Description Language Reference
Manual

Abstract: Durra is a language designed to support the development of large-
grained parallel programming applications. These applications are often
computation-intensive, or have real-time requirements that require efficient
concurrent execution of multiple tasks, devoted to specific pieces of the appli-
cation. During execution time the application tasks run on possibly separate
processors, and communicate with each other by sending messages of differ-
ent types across various communication links. The application developer is
responsible for prescribing a way to manage all of these resources. We call
this prescription a task-level application description. It describes the tasks to
be executed, the possible assignments of processes to processors, the data
paths between the processors, and the intermediate queues required to store
the data as they move from source to destination processes. Durra is a
task-level description language, a notation in which to write these application
descriptions.

This document is a revised version of the original reference manual [2]. It de-
scribes the syntax and semantics of the language and incorporates all the lan-
guage changes introduced as a result of our experiences writing task and ap-
plication descriptions in Durra. A companion document, Durra: A Task-Level
Description Language User’s Manual [7], describes how to use the compiler,
runtime environment, and support tools.

1. Introduction

Durra, also called ‘‘Indian millet’’ and ‘‘Guinea corn,’’ is a
type of grain sorghum with slender stalks, widely grown in
warm dry regions. Durra sounds like ‘‘durable’’ which isn’t
a bad connotation. Carnegie Institute personnel indicated
that corn is by far the largest in size of all grains. We re-
spectfully declined their suggestion for a name denoting
‘‘largest grain.’’

Many computation-intensive, real-time applications require efficient concurrent execution
of multiple tasks (independent programs) devoted to specific pieces of the application.
Typical tasks include sensor data collection, obstacle recognition, and global path plan-
ning in robotics and vehicular control applications. Since the speed and throughput re-
quired of each task may vary, these applications can best exploit a computing environ-
ment consisting of multiple special and general purpose processors that are logically,
though not necessarily physically, loosely connected. We call this environment a
heterogeneous machine.

CMU/SEI-89-TR-34 1

During execution time, processes, which are instances of tasks, run on possibly sepa-
rate processors, and communicate with each other by sending messages of different
types. Since the patterns of communication can vary over time, and the speed of the
individual processors can vary over a wide range, additional hardware resources, in the
form of switching networks and data buffers, are required in the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these
resources. We call this prescription a task-level application description. It describes the
tasks to be executed, the possible assignments of processes to processors, the data
paths between the processors, and the intermediate queues required to store the data
as they move from source to destination processes. A task-level description language is
a notation in which to write these application descriptions. The problem we are address-
ing is the design of a task-level description language.

We are using the term description language rather than programming language to em-
phasize that a task-level application description is not translated into object code of
some kind of executable machine language. Rather, it is to be understood as a descrip-
tion of the structure and behavior of a logical machine, that will be synthesized into
resource allocation and scheduling directives. These directives are to be interpreted by
a combination of software, firmware, and hardware in a heterogeneous machine.

Although our ultimate goal is to design and implement a task-level description language
that can be used for different machines and for varying applications, this implementation
was influenced by both a specific architecture, Nectar [1], and by a specific application,
the autonomous land vehicle (ALV), and more specifically, by the perception compo-
nents of the ALV [12]. We assumed a logical machine with a cross-bar switch, intelligent
buffers on the switch sockets, and a executive that can communicate with all processors,
buffers, and I/O devices. Actual experience with the implementation of the language and
runtime environment and building demonstration applications [4, 5, 6, 8, 13, 9] have
resulted in a number of changes to the language and these changes are reflected in the
revised version of this language reference manual.

1.1. Scenario

The following is a scenario from the user’s viewpoint of how the task-level language is
used to help develop an application to run on some target, heterogeneous machine. We
see three distinct phases in the process: (a) the creation of a library of tasks, (b) the
creation of an application description, and (c) the execution of the application.

Library creation activities
These happen early in the life of an application, when the primitive tasks are defined.

1. The developer breaks the application into specific tasks. Typical tasks are
sensor processing, feature recognition, map database management, and
route planning. Other tasks might be of a more general nature, such as
sorting, array operations, etc.

2 CMU/SEI-89-TR-34

2. The developer writes task implementations (i.e., programs). For a given
task, there may be possibly many implementations, differing in program-
ming language (e.g., C, Lisp, Ada), processor type (e.g., Motorola 68020,
DEC VAX), performance characteristics, or other attributes. The writing of
a task implementation is more or less independent of Durra and involves
the coding, debugging, and testing of programs in various languages ex-
ecuting on various machines.

3. The developer writes task descriptions and compiles them using the Durra
compiler. This is where Durra first enters the picture. Durra is used to
write specifications of each task implementation’s performance and func-
tionality, the types of data it produces or consumes, and the ports it uses
to communicate with other tasks. If a compilation is successful, the com-
piler enters the task description into the Durra library.

Description creation activities
These happen when the user decides to put together an application (say, an
autonomous land vehicle) using as building blocks tasks stored in the Durra library.

1. The user writes a task-level application description. Syntactically, a task-
level application description is a single task description and could be
stored in the library as a new task. This allows writing hierarchical task-
level application descriptions.

2. The user compiles the description. During compilation, the Durra compiler
retrieves from the library task descriptions matching the task selections
specified by the user and generates a set of resource allocation and
scheduling commands to be interpreted by the Durra excutive. These
commands constitute a Durra executive program.

Application execution activities

1. The executive interprets the resource allocation and scheduling com-
mands. See [6] for details about the runtime environment of Durra.

2. The heterogeneous system runs the processes on processors as dictated
by the executive program.

1.2. Terminology

Durra is used for describing process interaction at a logical, not physical, level, and thus
it can be used independently of any physical configuration of an actual heterogeneous
machine. We will use different terms to distinguish between the physical network (P) of
processors, memories, and switches implementing the heterogeneous machine, and the
logical network (L) of processes and data queues implementing the application (A). The
following are terms used in this manual.

buffer (P) A computer acting as input or output device, interfacing a processor
with the switch. As an optimization, buffers execute predefined
tasks and data transformations.

CMU/SEI-89-TR-34 3

implementation (A) Code written in some programming language for a specific proces-
sor that satisfies the performance, functional, and other require-
ments specified in a task description.

port (L) A logical input or output device of a process. Input ports remove
data from queues; output ports deposit data in queues.

process (L) A uniquely identifiable instance of a task, running on a processor of
the heterogeneous system. The same task may be instantiated any
number of times to obtain multiple processes executing the same
code.

processor (P) A computer in the heterogeneous system, not to be confused with
the executive processor or the buffers. Each processor in the heter-
ogeneous system has one or two buffers that act as interfaces be-
tween the processor and the switch. Processors send data to and
receive data from buffers as their means of communication with
other processors.

queue (L) A uniquely identifiable logical link between two processes, following
a FIFO discipline. Queues serve as intermediaries between input
and output ports.

executive (P, L) A computer serving as resource allocator and dispatcher in the het-
erogeneous system. It controls the switch, all processors, and all
buffers.

switch (P) An interconnection network used to tie together all processors in the
heterogeneous system. The switch routes data between the buffers
attached to the processors.

task (L, A) An abstraction of a set of implementations, each written for a class
of processors, implementing part of an application. Tasks are stored
in libraries.

The processes of the system are implemented by downloading and executing task im-
plementations, i.e., programs, onto processors of the right kind. The queues of the sys-
tem are implemented by allocating space in the corresponding buffers’ memories. This
is illustrated in Figure 1.

1.3. Notes on Syntax

To describe the syntax of Durra, we use standard Backus-Naur-Form (BNF), with the
following conventions.

1. Vertical bars (|) separate alternative productions. Braces ({}) indicate
optional components of a production.

2. Terminal symbols are enclosed in quotation marks (‘‘’’), but the quota-
tion marks do not belong to the terminal.

3. No distinction is made between upper and lower case letters in terminals
and non-terminals.

4. A non-terminal of the form xyz_List stands for a list of one or morecomma
xyz’s separated by commas, i.e., the character (,), not the string comma.

4 CMU/SEI-89-TR-34

Processors

Memory

Switch

Buffers Queues

Processor

Processes

Figure 1: Mapping of Logical and Physical Components

5. Comments start with a double hyphen (--). Any text between the double
hyphen and the end of the line is ignored.

6. Identifiers are sequences of letters, digits, and underscores (_). An iden-
tifier must begin with a letter and end with a letter or a digit. Consecutive
underscores in the middle of an identifier are not allowed.

7. Strings are sequences of ASCII printable characters, enclosed in double
quotation marks ("). A double quotation mark inside a string must be writ-
ten as two consecutive double quotation marks:

"A string with a double quotation mark, "", inside"

8. Integer and real numbers are always decimal, i.e., base 10. A real num-
ber can terminate with a period (.) without a fractional part.

CMU/SEI-89-TR-34 5

1.4. Keywords and Predefined Identifiers

Keywords and predefined identifiers are highlighted in normal text by writing them in
bold face, or inside quotation marks () respectively. The following words are keywords
in the language: after, and, array, atime, attribute, attributes, before, behavior,
bind, binds, dtime, during, end, ensures, exit, if, in, is, loop, not, of, or, out, port,
ports, process, processes, ptime, queue, queues, reconfiguration, record,
reconnect, reconnects, remove, repeat, requires, size, structure, task, then, timing,
to, type, union, when.

Several keywords exist in both singular and plural form and have the same meaning in
either form (process/processes, port/ports, queue/queues, bind/binds, and
attribute/attribute).

The following words are predefined identifiers in the language: ‘‘broadcast’’,
‘‘current_atime’’, ‘‘current_dtime’’, ‘‘current_ptime’’, ‘‘current_size’’, ‘‘deal’’, ‘‘debug’’,
‘‘delay’’, ‘‘dequeue’’, ‘‘enqueue’’, ‘‘implementation’’, ‘‘merge’’, ‘‘minus_time’’, ‘‘mode’’,
‘‘null’’, ‘‘plus_time’’, ‘‘processor’’, ‘‘signal’’, ‘‘source’’, ‘‘xdisplay’’, ‘‘xwindow’’.

1.5. Local and Global Names

In a task description the writer declares the names of task components such as ports,
atributes, queues, etc. These names are local and unique within a task. Outside a task,
its components are identified by a global name obtained by prefixing the name of a proc-
ess (instance of the task) to the name of the component. For example, ‘‘p1.out2’’ could
be the name of some output port declared inside process ‘‘p1.’’ If necessary, multiple
process names as prefixes can be used. For example, ‘‘p1.p2.name’’ is the global name
for some component ‘‘name’’ declared inside the process ‘‘p2’’ declared inside the proc-
ess ‘‘p1.’’

TypeName ::= Identifier

FieldName ::= Identifier

TaskName ::= Identifier

PortName ::= Identifier

GlobalPortName ::= {ProcessName_List ‘‘.’’} PortName |period
‘‘NULL’’

AttrName ::= Identifier

GlobalAttrName ::= {ProcessName_List ‘‘.’’} AttrNameperiod

QueueName ::= Identifier

GlobalQueueName ::= {ProcessName_List ‘‘.’’} QueueNameperiod

ProcessName ::= Identifier

GlobalProcessName ::= ProcessName_Listperiod

ProcessQueueName ::= GlobalProcessName |
GlobalQueueName

6 CMU/SEI-89-TR-34

1.6. Literal Values

Each of the non-terminals IntegerValue, RealValue, StringValue, and TimeValue stands
for (a) literals (constants) of the appropriate kind, or (b) names of attributes (Section 7)
whose values are literals of the appropriate kind, or (c) calls to predefined functions
returning values of the appropriate kind. The predefined functions are described in Ap-
pendix B.a.

IntegerValue ::= IntegerLiteral |
GlobalAttrName |
FunctionCall

RealValue ::= RealLiteral |
GlobalAttrName |
FunctionCall

StringValue ::= StringLiteral |
GlobalAttrName |
FunctionCall

TimeValue ::= TimeLiteral |
GlobalAttrName |
FunctionCall

Value ::= IntegerValue |
RealValue |
StringValue |
TimeValue

FunctionCall ::= FunctionName { FunctionParameters }

FunctionName ::= Identifier

FunctionParameters ::= ‘‘(’’ Value_List ‘‘)’’comma
-- The type and number of parameters is function dependent.

1.7. Expressions

Boolean expressions are used in the language to denote two kinds of conditions or
predicates: attribute values and reconfiguration conditions. Expressions used to specify
attribute values in a task selection (Sections 7 and 8.1) are evaluated at compile time
because their values are used by the Durra compiler to identify tasks from the library.
Expressions used to specify reconfiguration conditions in a task description (Section 8.5)
are evaluated at execution time.

CMU/SEI-89-TR-34 7

Expression ::= Disjunction

Disjunction ::= Conjunction |
Disjunction ‘‘OR’’ Conjunction

Conjunction ::= Primary |
Conjunction ‘‘AND’’ Primary

Primary ::= {‘‘NOT’’} Term

Term ::= Relation |
‘‘(’’ Disjunction ‘‘)’’

Relation ::= Value ‘‘=’’ Value | -- Equal
Value ‘‘/=’’ Value | -- Not equal
Value ‘‘>’’ Value | -- Greater
Value ‘‘>=’’ Value | -- Greater or equal
Value ‘‘<’’ Value | -- Less
Value ‘‘<=’’ Value -- Less or equal

1.8. Compilation Units

There are two kinds of compilation units (i.e., separately compilable units): type declara-
tions and task descriptions.

CompilationUnit ::= TypeDeclaration |
TaskDescription

Each compilation unit must be submitted to the Durra compiler as a single text file. If no
errors are detected, the unit is entered into the library.

8 CMU/SEI-89-TR-34

2. Type Declarations

Syntax:
TypeDeclaration ::= ‘‘TYPE’’ TypeName ‘‘IS’’ TypeStructure |

‘‘TYPE’’ TypeName ‘‘IS’’ UnionStructure

TypeStructure ::= ‘‘SIZE’’ ElementSize |
‘‘ARRAY’’ ‘‘OF’’ TypeName |
‘‘ARRAY’’ ArrayDimension ‘‘OF’’ TypeName |
‘‘RECORD’’ ‘‘(’’ Field_List ‘‘)’’comma

ArrayDimension ::= ‘‘(’’ IntegerValue_List ‘‘)’’space
-- Positive integers

ElementSize ::= IntegerValue |
-- Positive number of bits

IntegerValue ‘‘TO’’ IntegerValue
-- Non-negative size range

Field ::= FieldName : TypeName

UnionStructure ::= ‘‘UNION’’ ‘‘(’’ TypeName_List ‘‘)’’comma

Examples:
type packet is size 128 to 1024;

-- Packets are of variable length
type tails is array (5 10) of packet;

-- Tails are 5 by 10 arrays of packets
type mix is union (heads, tails);

-- Mix data could be heads or tails
type rec is record (header: integer, size: integer, data: packet);

-- Recs have two integers and one packet, in that order.

Meaning:
Type declarations are compilation units that define the structure of the data produced or
consumed by the tasks. A type declaration introduces a global name for a data type, or
a set of previously declared types, which can then be used in port declarations.

There are several kinds of type declarations. The simplest data type is a sequence of
bits of fixed or variable (but bound) length. More complex types are declared as multi-
dimensional arrays and records of simpler types. An array type declaration that omits
the dimensions represents an array of unknown dimensionality. A record type decla-
ration describes the structure of data objects by listing the field names and their types.
Finally, a type declaration can specify the union of a number of previously declared, i.e.,
named, types where data items moving through a process port could be one of any of
the member types.

CMU/SEI-89-TR-34 9

10 CMU/SEI-89-TR-34

3. Task Descriptions

Syntax:
TaskDescription ::= ‘‘TASK’’ TaskName

InterfacePart
{BehaviorPart}

{AttributeDescPart}
{StructurePart}

‘‘END’’ TaskName

Meaning:
Task descriptions are compilation units that define the properties of task implementa-
tions (i.e., user programs). Task descriptions are used as building blocks for task-level
application descriptions.

A task description is divided into four components: (1) interface information, (2) be-
havioral information, (3) attributes, and (4) structural information. All these components
will be described in later sections. Figure 2 shows a template for a task description,
where the port clause constitutes the interface information.

task task-name
port -- REQUIRED

port-declarations
-- A description of the input/output interface of the task

behavior -- OPTIONAL
function-predicates
timing-expressions
-- A description of the behavior of the task

attribute -- OPTIONAL
attribute-value-pairs
-- A description of additional properties of the task

structure -- OPTIONAL
process-declarations
queue-declarations
binding-declarations
reconfiguration-statements
-- A description of the internal structure of the task

end task-name;

Figure 2: A Template for Task Descriptions

CMU/SEI-89-TR-34 11

12 CMU/SEI-89-TR-34

4. Task Selections

Syntax:
TaskSelection ::= ‘‘TASK’’ TaskName

{InterfacePart}
{BehaviorPart}

{AttributeSelPart}
{‘‘END’’ TaskName}

Meaning:
Task selections are templates used to identify and retrieve task descriptions from the
library.

A given task, e.g., convolution, might have a number of different implementations that
differ along dimensions such as algorithm used, code version, performance, or proces-
sor type. In order to select among a number of alternative implementations, the user
provides a task selection as part of a process declaration, as described in Section 8.1.
This task selection lists the desirable features of a suitable implementation.

Syntactically, a task selection looks somewhat like a task description without the
structure part, and all other components except for the task name are optional. For
example, notice that in the syntax of a task declaration, the interface part (Section 5)
requires the declarations of the ports, whereas in a task selection, the declaration of the
ports is optional. Figure 3 shows a template for a task selection. For brevity, if only the
task name is given, the terminating ‘‘end task-name’’ is optional.

task task-name -- REQUIRED
port -- OPTIONAL

port-declarations
-- A signature that must match port directions and types of
-- that of a task description in the library.

behavior -- OPTIONAL
function-predicates
timing-expressions
-- A specification of the desired functional and timing
-- behavior of a task description in the library.

attribute -- OPTIONAL
attribute-expression
-- An expression of named, actual attribute values used to match
-- formal attribute values of a task description in the library.

end task-name -- optional if only the task name is specified

Figure 3: A Template for Task Selections

CMU/SEI-89-TR-34 13

14 CMU/SEI-89-TR-34

5. Interface Information

5.1. Port Declarations

Syntax:
InterfacePart ::= ‘‘PORT’’ PortDeclaration_List ‘‘;’’semicolon

PortDeclaration ::= PortName_List ‘‘:’’ ‘‘IN’’ TypeName |comma
PortName_List ‘‘:’’ ‘‘OUT’’ TypeNamecomma

Examples:
ports
in1: in heads;
out1, out2: out tails;

Meaning:
The interface portion of a task description or a task selection provides information about
the ports of the processes instantiated from the task. A port declaration specifies the
direction of the data movement and the type of data moving through the port.

5.2. Rules for Matching Selections with Descriptions

If a task selection provides a port declaration clause, the port declarations must be iden-
tical, i.e., names, directions, and types of the ports must be identical.

CMU/SEI-89-TR-34 15

16 CMU/SEI-89-TR-34

6. Behavioral Information

Syntax:
BehaviorPart ::= ‘‘BEHAVIOR’’

{ ‘‘REQUIRES’’ ‘‘"’’predicate‘‘"’’ ‘‘;’’ }
{ ‘‘ENSURES’’ ‘‘"’’predicate‘‘"’’ ‘‘;’’ }

{ ‘‘TIMING’’ TimingExpression ‘‘;’’ }

predicate ::= Larch Predicate

Meaning:
The behavior part of a task description specifies functional and timing information about
the task.

The functional information consists of a pre-condition (requires) on what is required to
be true of the data coming from the input ports, and a post-condition (ensures) on what
is guaranteed to be true of the data going to the output ports. The timing information
part consists of a timing expression (timing) describing the behavior of the task in terms
of the operations it performs on its input and output ports.

The formal meaning of the behavioral information is essentially based on first-order
logic. In what follows, we give only an informal introduction to the individual parts and
their combination. Appendix A provides the formal details.

6.1. Function Part

The functional information of a task description describes the behavior of the task in
terms of predicates about the data in the queues, before and after each execution cycle
of the task. The Larch Shared Language [10] is used as the assertion language in the
predicates of these clauses.

We use a similar approach as Larch’s for the specification of the functional behavior of a
task. That is, we view the task as a procedure whose input and output ‘‘parameters’’ are
defined by the ports of the task. If one were to view each cycle of a task as one execu-
tion of a procedure, the requires and ensures are exactly the pre- and post-conditions
on the functionality of that cycle. An omitted predicate is taken to be true.

These are not assertions about the queues connected to the ports. For instance, an
assertion could be made that a datum of some type was sent to an output port. It cannot
be asserted that the datum is in the associated output queue at the end of the task ex-
ecution, because it could have been removed by then.

It is up to the implementor of a task to verify that the functionality of the task satisfies the
requires and ensures predicates. A task description writer and user may assume that
the task implementor performed such verification either formally or informally.

CMU/SEI-89-TR-34 17

6.2. Timing Part

Processes remove data from their input queues and store data in their output queues
following a task-specific pattern provided by a timing expression. A timing expression
describes the behavior of the task in terms of the operations it performs on its input and
output ports; this is the behavior of the task seen from the outside.

6.2.1. Time Literals

Syntax:
TimeLiteral ::= Seconds {TimeBase} |

IndeterminateTime

Seconds ::= IntegerValue |
RealValue

TimeBase ::= ‘‘DTIME’’ | -- Time since start of day
‘‘ATIME’’ | -- Time since start of application
‘‘PTIME’’ | -- Time since start of process

IndeterminateTime ::= ‘‘*’’

Examples:
3615.5 atime -- An application relative time: 1 hour and 15.5 seconds

-- after the start of the application.

2.25 -- Two and a quarter seconds relative to some previous event

* -- An indeterminate point in time.

Meaning:
Time values are used to specify points in time. These can be either (1) absolute, in
which case they must be followed by the name of a time base (the start of the day, the
application, or the process); or (2) relative to some prior event in a timing expression, in
which case a time base is not allowed. All time values are measured in seconds.

An absolute time value using ‘‘DTIME’’ cannot exceed 86400, the number of seconds in
a day.

6.2.2. Event Expressions and Time Windows

Syntax:
Event ::= GlobalPortName {‘‘.’’QueueOperation} |

‘‘DELAY’’ TimeWindow

TimeWindow ::= ‘‘[’’ TimeValue ‘‘,’’ TimeValue ‘‘]’’

QueueOperation ::= ‘‘ENQUEUE’’ |
‘‘DEQUEUE’’

18 CMU/SEI-89-TR-34

Examples:
in1 -- An operation (Dequeue, by default) on the queue feeding in1.

in1.dequeue -- The same operation as above.

delay[10, 15] -- A delay interval lasting between 10 and 15 seconds.

delay[*, 10] -- A delay interval taking at most 10 seconds.

delay[10, *] -- A delay interval taking at least 10 seconds.

Meaning:
Queue operations performed by the processes constitute the basic events of a timing
expression. An event represents a queue operation on a queue attached to a specific
port, taking a variable amount of time to complete. A pseudo-operation, ‘‘delay’’, is used
to represent the time consumed by the process between (real) queue operations.

The name of the queue operation is optional. If the name is not given, a default queue
operation is assumed: ‘‘dequeue’’ for input ports, ‘‘enqueue’’ for output ports.

Intervals of time between queue operations are denoted by a ‘‘delay’’ operation whose
time window describes the minimum and maximum time consumed by the process in
between queue operations.

6.2.3. Timing Expressions

Syntax:
TimingExpression ::= {‘‘LOOP’’} SequentialEvent

SequentialEvent ::= ParallelEvent_Listspaces

ParallelEvent ::= BasicEvent_Listdouble_vertical_bar

BasicEvent ::= Event |
{Guard ‘‘=>’’} ‘‘(’’ SequentialEvent ‘‘)’’

Guard ::= ‘‘REPEAT’’ IntegerValue |
‘‘BEFORE’’ TimeValue | -- Absolute time
‘‘AFTER’’ TimeValue | -- Absolute time
‘‘DURING’’ TimeWindow | -- T is Absolute timemin
‘‘WHEN’’ Expression -- A Boolean expression

Examples:

CMU/SEI-89-TR-34 19

in1 || in2-- Two parallel input operations, starting simultaneously.

in1 delay[10,15] out1 -- Three sequential operations.

repeat 5 => (in1 delay[10,15] out1)
-- Same as above but as a cycle repeated five times.

before 64800 DTIME => (. . .)
-- A sequence constrained to start before 6 pm.

(18 hours or 18*3600 seconds after the start of the day)

after 64800 DTIME => (. . .)
-- A sequence constrained to start after 6 pm.

during [64800 DTIME, 7200] => (. . .)
-- A sequence constrained to start between 6 pm and 8 pm

T is 2 hours counted from the start of the time window.max

when (Current_Size(in1) > 0) and (Current_Size(in2) > 0) =>
((in1 || in2) out1);

-- A sequence that starts after both input queues have data.

loop when (Current_Size(in1) > 0) and (Current_Size(in2) > 0) =>
((in1 || in2) out1);

-- The same sequence as above but repeated indefinitely.

Meaning:
A timing expression is a regular expression describing the patterns of execution of
operations on the input and output ports of a task. The optional keyword loop can be
used to indicate that the pattern of operations is repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event
expression consists of one or more event expressions separated by a double vertical bar
|| to indicate that their executions overlap. Since the expressions might take different
amounts of time to complete, nothing can be said about their completion, other than a
parallel event expression terminates when the last event terminates.

A basic event expression is either a queue operation (including ‘‘delay’’) or a timing ex-
pression enclosed in parentheses. The latter form also allows for the specification of a
guard, an expression specifying the conditions under which a sequence of operations is
allowed to start or repeat its execution.

Guard Description

repeat This guard indicates repetitions of a timing expression. The number
of repetitions is a non-negative integer value.

before This guard is followed by an absolute time value representing the
latest start time allowed. If the time base is ‘‘PTIME’’ or ‘‘ATIME’’
and the deadline has elapsed, the task is terminated. If the time
base is ‘‘DTIME’’ and the deadline has elapsed, the task waits until
the end of the day (when the ‘‘time-of-day’’ resets to 0)

after This guard is followed by an absolute time value representing the
earliest start time allowed. If necessary, the sequence is blocked
until the deadline.

20 CMU/SEI-89-TR-34

during This guard is followed by a time window during which the sequence
is allowed to start. The first value is the earliest start time allowed
and must be an absolute time value; the second value is the latest
start times allowed and can be an absolute time value or a time
value relative to the former. If the time base of the latest start time is
‘‘PTIME’’ or ‘‘ATIME’’ and the deadline has elapsed, the task is ter-
minated.

when This guard describes what is required to be true of the state of the
system (e.g., time values and queues sizes) before the sequence is
allowed to start. It is a pre-condition for starting the sequence.

6.2.4. Restrictions on Time Values and Time Windows
Although the syntax allows both absolute and relative time values to appear in either of
the two boundaries in a time window, not all of the possible combinations make sense:

1. In the time window attached to ‘‘delay’’ operation, the time values must be
relative (i.e., no time basis allowed) and are interpreted relative to the start
of the operation.

2. In the time window of a during guard, the first time value (T) must bemin
absolute. The second time value (T) can be absolute or relative. In themax
latter case, the time value is relative to T .min

6.3. Rules for Matching Selections with Descriptions

The meaning of the behavioral information is a predicate, Μ (R, T) => Μ (E, T), where Rf f
is the requires predicate, E is the ensures predicate, T is the timing expression, and
Μ is the meaning function mapping a predicate and timing expression into a Booleanf
[3].

A task description matches a task selection if the predicate associated with the be-
havioral information of the task description implies that of the task selection. If no timing
expression appears, the predicate simplifies to R => E, and that of a task description
must imply that of the task selection.

CMU/SEI-89-TR-34 21

22 CMU/SEI-89-TR-34

7. Attributes

Syntax:
AttributeDescPart ::= ‘‘ATTRIBUTE’’ Attribute_List ‘‘;’’semicolon

Attribute ::= AttrName ‘‘=’’ AttrValue |
AttrName ‘‘=’’ ‘‘(’’ AttrValue_List ‘‘)’’comma

AttributeSelPart ::= ‘‘ATTRIBUTE’’ Expression‘‘;’’

Examples:
-- Attributes in a task declaration

attributes
author = "jmw";
color = ("red", "white", "blue");
implementation = "cowcatcher";
queue_size = 25 ;

--Attributes in task selections
attributes
processor = Sun;

attributes
author = "jmw" or author = "mrb";

attributes
(color = "red" or color = "blue") and not (author = Mr_Ed);

Meaning:
Attributes specify miscellaneous properties of a task. They are a means of indicating
pragmas or hints to the Durra compiler and the Durra executive. In a task description,
the developer of the task lists the possible values of a property; in a task specification,
the user of a task writes an expression listing the desired name/values of the task’s
property. All attribute values used in matching task selections with task descriptions
must be constants, computable before execution time, i.e., tasks and their implemen-
tations are static properties of an application.

Example attributes include: author, version number, programming language, file name,
and processor type. There may be as many attributes as desired.

The name of an attribute can appear in any context in which its value can appear. For
instance, if the user defines an attribute queue_size with an integer value, as in the
examples above, then queue_size can appear anywhere an integer value is expected.
This permits the user to define, for example, the size of message queues and use the
name to specify ‘‘families’’ of tasks, i.e., tasks that share the same value for some attri-
bute, as shown in Figure 4.

The syntax and semantics of the attribute values are attribute dependent. If the attribute
is not predefined in the language, the values are treated as uninterpreted numbers, time

CMU/SEI-89-TR-34 23

processes
Master_Process: task Master_Task

-- A task selection
attributes
Key_Name = some value;
... other attributes, maybe ...

end Master_Task;

p1: task foo
attributes
Key_Name = Master_Process.Key_Name;

-- Same attribute value as in Master_Process
end foo;

p2: task bar
attributes
Key_Name = Master_Process.Key_Name;

-- Same attribute value as in Master_Process
end bar;

Figure 4: Use of Global Attribute Names

values, or strings, as the case may be, and compatibility is based on value equality. If
the attribute is predefined in the language, compatibility is attribute dependent. See Ap-
pendix B.b for details about the predefined attributes.

7.1. Rules for Matching Selections with Descriptions

If a task selection includes an attribute expression (a predicate), a matching task de-
scription must provide values that satisfy the predicate, i.e., the expression yields true
when evaluated in the context of the values declared for the attribute. If a task descrip-
tion provides a list of values for an attribute, a matching task selection is satisfied if any
of these values satisfies the expression. For example, if a task description includes an
attribute ‘‘size’’ with values (1, 3, 5) then a task selection with an attribute expression of
the form ‘‘size > 4’’ is satisfied by the task description because the value ‘‘5’’ makes the
attribute expression true.

If a task selection includes an attribute expression (a predicate) that uses an attribute not
present in a task description or if a task description provides attributes not used in the
attribute expression of a task selection, these attributes are ignored for the purposes of
matching a library task.

24 CMU/SEI-89-TR-34

8. Structural Information

Syntax:
StructurePart ::= ‘‘STRUCTURE’’ StructureClause_Listspace

StructureClause ::= ‘‘PROCESS’’ ProcessDeclaration_List ‘‘;’’ |semicolon
‘‘QUEUE’’ QueueDeclaration_List ‘‘;’’ |semicolon
‘‘RECONNECT’’ QueueReconnection_List ‘‘;’’|semicolon
‘‘BIND’’ PortBinding_List ‘‘;’’ |semicolon
‘‘RECONFIGURATION’’ Reconfiguration_List ‘‘;’’semicolon

Meaning:
Process and queue declarations appear under the keyword structure in a task descrip-
tion. These declarations define a graph in which processes are the nodes, and queues
are the links. These graphs depict the internal structure of a compound task. The
structure part of a task description provides the means for developing hierarchical task
descriptions.

8.1. Process Declarations

Syntax:
ProcessDeclaration ::= ProcessName_List ‘‘:’’ TaskSelectioncomma

Examples:
p1: task finder;
p2: task finder ports foo: in, bar: out end finder;
p3, p4: task finder attributes author="mrb" end finder;

Meaning:
An instance of a task is bound to each process’s name. The name of a task is the
minimal part of a task selection. Local, actual names (e.g., ports foo and bar in the
example) can be introduced by providing a port declaration, provided that the types of
ports specified in the task declaration are identical to those provided in the task selec-
tion. If they are left out, the formal names used in the task description are used instead.

8.2. Queue Declarations

Syntax:

CMU/SEI-89-TR-34 25

QueueDeclaration ::= QueueName {QueueSize} ‘‘:’’ QueueDefinition

QueueReconnection ::= QueueName ‘‘:’’ QueueDefinition

QueueDefinition ::= GlobalPortName
‘‘>’’ Transformation ‘‘>’’

GlobalPortName

QueueSize ::= ‘‘[’’ IntegerValue ‘‘]’’

Examples:
queue q1: p1 > > p2 ;

-- Two ports connected through a new, unbounded queue.
-- The two ports must have the same type.

reconnect q1: p1 > > p2 ;
-- Two ports connected through a previously declared queue.

-- The two ports must have the same type.

queue q2[100]: p1 > xyz > p2 ;
-- Two ports connected through a bounded (size = 100) queue.

-- Data are transformed in the queue by a process xyz.

queue q3: p1 > > NULL ;
-- A queue with a ‘‘grounded’’ destination port.

Meaning:
A queue definition establishes a logical link between two ports that communicate by
passing data from the first port (source) to the second port (destination). A queue is not
permanently attached to the ports specified in the queue’s declaration and can be recon-
nected (i.e., attached to other ports via the reconnect statement) in the structure clause
of a reconfiguration statement (Section 8.5).

The (optional) queue bound in a queue declaration specifies the maximum number of
elements that will be stored in the queue at any one time. If a queue is reconnected, the
original, declared queue bound is retained. If a queue is full when a ‘‘enqueue’’ operation
is attempted, the process trying to store the data waits until the queue has space for the
new item. If the queue bound is not provided, a configuration-dependent, default queue
length is assumed, as described in [6, 7].

The predefined port name ‘‘NULL’’ can be used to declare or reconnect a queue to an
idle source or destination port. That is, to a ‘‘port’’ that will not produce or consume any
data. This feature is useful to plug unused task ports by connecting them to NULL ports.

When declaring or reconnecting a queue, the ports are checked for type compatibility.
Non-union types are compatible if they have the same name. Union types are com-
patible if the source set is a subset of the destination set. A non-union source type is
compatible with a union destination type if the source type name is a member of the
destination set.

26 CMU/SEI-89-TR-34

If the types are not compatible, the user must provide a data transformation operation
that will convert objects of one type into the other, as described below.

A reconnect statement can not specify a queue size or a transformation. These are
inherited from the original queue declaration.

8.3. Data Transformations

Data transformations are operations applied to data coming from a source port in order
to make them acceptable to a destination port. A data transformation is required if the
input and output port types are not compatible. Such transformations are needed if, for
instance, the types have the same structure but the data are in the wrong format, e.g.,
turning a square array on its side or converting between floating-point formats.

Transformations must be written as separate tasks and instantiated as processes. The
processes can then be used to build transformation expressions in the queue declara-
tion. Furthermore, since the data can be of a structured type, there can be transfor-
mations that apply to a whole datum (e.g., corner-turning an array) or to the subcom-
ponents (e.g., rounding and converting to integers the elements of an array of floating
point numbers).

Syntax:
Transformation ::= TransformOp_Listspace

TransformOp ::= ArrayTransform |
RecordTransform |
ScalarTransform

ArrayTransform ::= TransformName {‘‘(’’‘‘Transformation’’‘‘)’’}

RecordTransform ::= TransformName {‘‘(’’FieldTransform_List ‘‘)’’}space

FieldTransform ::= FieldName‘‘:’’ ‘‘(’’‘‘Transformation’’‘‘)’’

ScalarTransform ::= TransformName

TransformName ::= GlobalProcessName |
NULL

Examples:
Let’s assume we have implemented tasks that perform a few useful transformations
such as transposing an array and converting floating point numbers into integers. In
order to use these tasks, we need to instantiate them in the usual manner (assume that
no other information, e.g., attributes, is needed to select the tasks):

process transpose_process = task transpose;

process fix_process = task fix;

CMU/SEI-89-TR-34 27

Assuming that some source port produces arrays of some shape, with elements of type
float, and that a destination port consumes transposed versions of the same arrays. We
could apply the first transformation process as follows:

queue
q1: source_port_name > transpose_process > destination_port_name

The process transpose_process will be applied to each array after it is placed in the
queue and before it is delivered to the destination.

Now assume that the destination port consumes arrays whose shape is that of the trans-
posed version of the same input array but whose elements are of type fix. We could
apply both transformation processes as follows:

queue
q1: sport > transpose_process (fix_process) > dport

The process transpose_process will be applied to each array after it is placed in the
queue, and then process fix_process will be applied to each element of the trans-
formed array, before the result is delivered to the destination.

Sometimes it is necessary to apply a transformation to the elements of an array but with-
out changing the array itself. This can be achieved by specifying the null transformation
process NULL as the array transformation, followed by the desired element transfor-
mation process:

queue q1: sport > NULL (fix_process) > dport

If we need to apply more than one transformation to the elements of an array, this can
be specifed by listing a sequence of transformations:

queue q1: sport > t1 (t11 t12) > dport

After applying t1, each element is transformed by applying t11 and t12, in that order.

We can apply rather complicated sequences of transformations, as the following ex-
ample suggests:

queue q1: sport > t1 (t11 t12) t2 (t21 (t211 t212)) > dport

Transformation t1 produces objects of some array type, whose elements will be trans-
formed by t11 and t12. The result at this point is an array with the same structure as
that produced by t1 but whose elements are of whatever type t12 produces. Transfor-
mations can be nested as shown in the example. Transformation t2 produces some
array type whose elements (scalars or arrays) are transformed by t21 which produces
some array type whose elements are transformed by the sequence t211 and t212.

Record transformations follow a similar pattern, except that since not all ‘‘components’’
(i.e., fields) are of the same type, we need to specify, in addition to whole-record trans-
formations (if any), specific field transformations:

28 CMU/SEI-89-TR-34

queue q1: sport > t1 (head: (t11 t12) tail: (t2)) > dport

The example illustrates a queue connecting a source port to a destination port. The
source port generates data of some type suitable as input to a transformation process
t1. The output of t1 is some record type with fields head and tail which are trans-
formed independently of each other. The head field is transformed by the sequence
t11 and t12, while the tail field is transformed by t2. The records produced by t1
could have additional fields and these are not disturbed. The null transformation ‘‘NULL’’
could be used when it is necessary to transform one or more fields of a record but with-
out applying any transformation to the record as a whole:

queue q1: sport > NULL (head: (t1) tail: (t2)) > dport

Meaning:
A sequence of data transformation expressions is convenient short-hand for a series of
anonymous, transformationless queue declarations connecting the transformation proc-
esses.

A data transformation is a way to achieve compatibility between the data produced by
some source port and the data expected by some destination port. The definition of
compatibility between types depends on the types:

1. Non-union types are compatible if they have the same name.

2. Union types are compatible if the set of alternative type names in the
source type is a subset of the set of alternative type names in the destina-
tion type.

3. A non-union source type is compatible with a union destination type if the
source type name is a member of the set of alternative type names in the
destination type.

4. Array types produced by a chain of transformations are compatible with
the destination port type if the two array structures are identical: they have
the same shape, size, and element type.

5. Record types produced by a chain of transformations are compatible with
the destination port type if the two record structures are identical: they
have the same number of fields, in the same order, and of the same type.
It is not required that the field names be identical.

A data transformation operation also serves to specify operations that would be inappro-
priate or inefficient if written as part of one of the application’s tasks. For example, con-
sider an application that requires scanning an array in different directions (e.g., first by
rows, then by columns) and performing some operation on each element (e.g., comput-
ing the average of the neighbors). Rather than writing several versions of the task, one
for each traversal pattern, one could simply write one version of the task, and then in-
stantiate it as many times as necessary. Each process so instantiated could then take
its input arrays from queues that perform the appropriate transposition, as in ‘‘q1: p1 >
transpose > p2’’. Arrays produced by p1 are transposed while in the queue, before they
are delivered to p2.

CMU/SEI-89-TR-34 29

There are a two restrictions on the tasks that could be applied as data transformations.
First, each task must have exactly one input port and one output port. Second, the port
types must match all along the chain of transformations, such that data is ‘‘pipelined’’
through the sequence.

The same transformation process can be named in several transformation expressions.
The user should think of them as if each use is a different instantiation. Whether or not
there exists only one or more than one instantiation of the process is an implementation-
dependent optimization.

8.4. Port Bindings

Syntax:
PortBinding ::= ExternalPortName ‘‘=’’ InternalPortName

ExternalPortName ::= PortName

InternalPortName ::= GlobalPortName

Example:
binds
in1 = p_deal.in1;
out1 = p_merge.out1;

Meaning:
A port binding maps a port defined by an inner task to a port defined by an outer task.

8.5. Reconfigurations

Syntax:
Reconfiguration ::= ReconfigurationLabel ‘‘:’’

‘‘IF’’ Expression ‘‘THEN’’
ProcessQueueTermination

StructureClause_Listspace
{ReconfigurationExit}

‘‘END’’ ‘‘IF’’

ReconfigurationLabel ::= Identifier

ProcessQueueTermination ::= ‘‘REMOVE’’ ProcessQueueName_List ‘‘;’’comma

ReconfigurationExit ::= ‘‘EXIT’’ { ReconfigurationLabel }
‘‘WHEN’’ Expression‘‘;’’

30 CMU/SEI-89-TR-34

Examples:
reconfiguration

L_1: if condition_to_enter_this_configuration then
remove process_and_queue_names;
process ...; -- declare new processes
queue ...; -- declare new queues
reconects ...; -- reconnect old queues
exit L_1 when condition_to_exit_this_configuration;
end if;

Meaning:
A reconfiguration statement is a directive to the Durra executive. It is used to specify
changes in the current structure i.e., the process-queue graph of the application and the
conditions under which these changes take effect. Typically, a number of existing proc-
esses and queues are substituted by new processes and queues, which are then con-
nected to the remainder of the original graph. The reconfiguration condition is a Boolean
expression involving time values, queue sizes, signal values, and other information avail-
able to the executive at run time.

More than one reconfiguration statement can be specified in a structure clause. The
reconfiguration conditions are tested by the executive concurrently. If more than one of
these conditions becomes true at the same time, the executive selects one of the recon-
figuration statements and changes the structure of the application accordingly. This
choice of alternative configuration is non-deterministic.

It is useful to think of the possible configurations of an application as the nodes of a tree.
The root node corresponds to the initial structure of the application description. Each
alternative reconfiguration statement in the structure part of the application description
corresponds to the root of a subtree or alternative structure. Each of these, in turn, can
have one or more reconfiguration statements of its own, and so on. The tree is
traversed down when a reconfiguration condition is satisfied and traversed up when an
exit condition is satisfied.

Multiple (i.e., nested) reconfiguration levels can be exited at once by writing the label of
the outermost reconfiguration statement to be exited. The structure of the application
changes reverts to the form it had when that reconfiguration took place. If no label fol-
lows the exit keyword, the immediately enclosing label is assumed.

The condition following the when keyword acts as an assertion attached to the current
structure of the application. It can be used to terminate reconfigurations derived from it,
as shown in Figure 5. If condition_2 is ever satisfied, the structure of the application
changes back to the form it had when reconfiguration L_1 took place, regardless of what
reconfigurations (e.g., L_2a, L_2b, L_3) might have taken place later. In addition to
these implicit terminations, the inner reconfiguration statements can also have termina-
tion statements of their own.

CMU/SEI-89-TR-34 31

reconfiguration
L_1: if condition_1 then

remove;
process;
queue;
reconfiguration

L_2a: if then
.....;
end if;

L_2b: if then
.....;
reconfiguration

L_3: if then
.....;
end if;

end if;
exit when condition_2; -- Terminates L_2a, L_2b, L_3, etc.
end if;

Figure 5: Nested and Alternative Reconfiguration Statements

The exit statement condition, if present, might never be satisfied, in which case only a
parent configuration’s exit statement can terminate the current reconfiguration.

32 CMU/SEI-89-TR-34

References

[1] E.A. Arnould, F.J. Bitz, E.C. Cooper, H.T. Kung, R.D. Samson, and P.A.
Steenkiste.
The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers.
In Proceedings of the Third International Conference on Architectural Support for

Programming Languages and Operating Systems. ACM, April, 1989.

[2] M.R. Barbacci and J.M. Wing.
Durra: A Task-Level Description Language.
Technical Report CMU/SEI-86-TR-3 (DTIC: ADA178975), Software Engineering

Institute, Carnegie Mellon University, December, 1986.

[3] M.R. Barbacci and J.M. Wing.
Specifying Functional and Timing Behavior for Real-time Applications.
Lecture Notes in Computer Science. Volume 259, Part 2.Proceedings of the

Conference on Parallel Architectures and Languages Europe (PARLE).
Springer-Verlag, 1987, pages 124-140.

[4] M.R. Barbacci, C.B. Weinstock, and J.M. Wing.
Programming at the Processor-Memory-Switch Level.
In Proceedings of the 10th International Conference on Software Engineering.

Singapore, April, 1988.

[5] M.R. Barbacci.
MasterTask: The Durra Task Emulator.
Technical Report CMU/SEI-88-TR-20 (DTIC: ADA199429), Software Engineering

Institute, Carnegie Mellon University, July, 1988.

[6] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock.
The Durra Runtime Environment.
Technical Report CMU/SEI-88-TR-18 (DTIC: ADA199480), Software Engineering

Institute, Carnegie Mellon University, July, 1988.

[7] M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock.
Durra: A Task-Level Description Language User’s Manual.
Technical Report CMU/SEI-89-TR-33, Software Engineering Institute, Carnegie

Mellon University, September, 1989.

[8] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, S.L. Baur, D.C. Bixler, M.T.
Heins.
Command, Control, Communications, and Intelligence Node: A Durra Applica-

tion Example.
Technical Report CMU/SEI-89-TR-9 (DTIC: ADA206575), Software Engineering

Institute, Carnegie Mellon University, February, 1989.

[9] M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, and J.M. Wing.
Developing Applications for Heterogeneous Machine Networks: The Durra Envi-

ronment.
Computing Systems 2(1), March, 1989.

CMU/SEI-89-TR-34 33

[10] J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

[11] F. Jahanian and A.K. Mok.
Safety Analysis of Timing Properties in Real-Time Systems.
Transactions on Software Engineering 12(9):890-904, September, 1986.

[12] S.A. Shafer, A. Stenz, C.E. Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proceedings of the International Conference on Robotics and Automation,

pages 2002-2011. IEEE Computer Society Press, San Francisco, California,
April, 1986.

[13] C.B. Weinstock.
Performance and Reliability Enhancement of the Durra Runtime Environment.
Technical Report CMU/SEI-89-TR-8 (DTIC: ADA207445), Software Engineering

Institute, Carnegie Mellon University, February, 1989.

34 CMU/SEI-89-TR-34

Appendix A: Formal Meaning of Timing Expressions

We use Jahanian and Mok’s Real-Time Logic (RTL) [11] to give meaning to our timing
expressions. Furthermore, we use their logic to give meaning to the combination of our
functional and timing specifications. We use four of their notational conventions:

Syntax Meaning

↑A The start of an operation (‘‘action’’ in RTL’s terminology).

↓A The end of an operation.
th@(E, i) The time of the i occurrence of event E, where events in our con-

text are the start of an operation or the end of an operation. @ is an
occurrence function that captures the notion of real-time.

P(t1, t2) The interval of time during which the predicate P holds. P holds be-
fore or at t1, from t1 to t2, and at or after t2. If t1 and t2 are iden-
tical, then P holds at an interval around t1. For brevity, we will use
P(t) when t1=t2 (i.e., ‘‘P holds around time t’’).

A.a. Assigning Meaning to Timing Specifications

In this section we describe the meaning of our timing specifications in terms of RTL
logic. In the following discussion, we assume E, E1, and E2 are arbitrary timing expres-
sions; A, A1, and A2 are operations; t1 and t2 are times (absolute or relative); a1 and a2
are absolute times; r1 and r2 are relative times; and W is a predicate of a when guard.

To simplify the exposition, we introduce a simple rewrite rule: Any timing expression of
the form ‘‘repeat n => E’’ can be rewritten as a sequence of n occurrences of the un-
guarded expression E (‘‘E E E ... E’’). Thus, the only guards we need to consider are
before, after, during, and when. Table A-1 gives the axioms that describe the start and
end times of operations and composition of operations.

We assign a meaning to timing expressions by introducing a function, Μ (Table A-2.a),tb
which maps timing expressions to Boolean values:

Μ : Timing Expression → Boolean.tb

In the definition of Μ we use an auxiliary function, Μ (Table A-2.b), which mapstb to
timing expressions to operations:

Μ : Timing Expression → Operation.to

Μ is needed because ‘‘start time’’ and ‘‘end time’’ are meaningful only for queue opera-to
tions.

As an example of how to interpret the formalism intuitively, consider the entries for the
during guard in Table A-2.a. This guard specifies a time window during which the oper-
ation is allowed to start. The first time value of the window is the earliest start time

CMU/SEI-89-TR-34 35

1. For any queue operation A, and for some implementation defined time window
[T1,T2], the following axiom expresses the (default) duration of the operation:

∀ i [T1 ≤ @(↓A,i) - @(↑A,i) ≤ T2]

2. For any queue operation A[t1,t2], with a duration defined by the time window [t1,t2],
the following axiom expresses the duration of the operation:

∀ i [t1 ≤ @(↓A,i) - @(↑A,i) ≤ t2]

3. For any sequence of queue operations, A = A1 ... An, the following axiom relates the
start and end times of the composition to the start and end times of the individual opera-
tions:

∀ i [@(↑A, i) = @(↑A1, i) ∧ @(↓A, i) = @(↓An, i)]

4. For any parallel queue operations, A = A1 || ...|| An, the following axiom relates the
start and end times of the composition to the start and end times of the individual opera-
tions:

∀ i [@(↑A, i) = min(@(↑A1, i), ..., @(↑An, i)) ∧ @(↓A, i) = max(@(↓A1, i), ..., @(↓An, i))]

5. Cycles in a repeating task do not overlap. The following two axioms express that an
input operation cannot finish after the last output operation finishes, and that an output
operation cannot start before the earliest input operation starts:

∀ i [max(@(↓out ,i),@(↓out ,i),...,@(↓out ,i)) > max(@(↓in ,i),@(↓in ,i),...,@(↓in ,i))]1 2 J 1 2 K
∀ i [min(@(↑out ,i),@(↑out ,i),...,@(↑out ,i)) > min(@(↑in ,i),@(↑in ,i),...,@(↑in ,i))]1 2 J 1 2 K

where J and K are the number of output and input queues, respectively.

Table A-1: Axioms About Operation Start and End Times

allowed and must be an absolute time value. The second time value is the latest start
time allowed and can be an absolute time value or a time value relative to the former.
The meaning of the guarded expression is the conjunction of the meaning of the expres-
sion proper and a predicate stating the restriction on starting times.

A.b. Assigning Meaning to the Combined Specifications

Given a task description of the form:

36 CMU/SEI-89-TR-34

Timing Expression Μ (Timing Expression)tb
E = Μ (E) =tb

(E1) Μ (E1)tb
E1 ... En Μ ((E1 E2) ...En)tb
E1 ||...|| En ∧ Μ (Ei || Ej) for all i ≠ jtb
E1 E2 Μ (E1) ∧ Μ (E2) ∧tb tb

∀ i [@(↓Μ (E1), i) ≤ @(↑Μ (E2), i)]to to
E1 || E2 Μ (E1) ∧ Μ (E2) ∧tb tb

∀ i [@(↑Μ (E1), i) < @(↓Μ (E2), i) ∧to to
@(↑Μ (E2), i) < @(↓Μ (E1), i)]to to

when W => E1 Μ (E1) ∧ ∀ i [W(@(↑Μ (E1), i))]tb to
before a1 => E1 Μ (E1) ∧ ∀ i [@(↑Μ (E1), i) ≤ a1]tb to
after a1 => E1 Μ (E1) ∧ ∀ i [@(↑Μ (E1), i) ≥ a1]tb to
during [a1, a2] => E1 Μ (E1) ∧ ∀ i [a1 ≤ @(↑Μ (E1), i) ≤ a2]tb to
during [a1, r2] => E1 Μ (E1) ∧ ∀ i [a1 ≤ @(↑Μ (E1), i) ≤ a1 + r2]tb to
A[r1, r2] ∀ i [@(↑A, i) + r1 ≤ @(↓A, i) ≤ @(↑A, i) + r2]
A[*, r1] ∀ i [@(↓A, i) ≤ @(↑A, i) + r1]
A[r1, *] ∀ i [@(↑A, i) + r1 ≤ @(↓A, i)]
A true

a. Μ -- Mapping from Timing Expressions to Booleanstb

Timing Expression Μ (Timing Expression)to
E = Μ (E) =to

loop E1 Μ (E1)to
E1 ... En Μ (E1) ... Μ (En)to to
E1 ||... || En Μ (E1) || ... || Μ (En)to to
guard => E1 Μ (E1) for all guards: when, before, during, afterto
A [t1, t2] A
A A

b. Μ -- Mapping From Timing Expressions to Operationsto

Table A-2: Assigning Meaning to Timing Specifications

task taskname
.
behavior

requires Req ;
ensures Ens ;
timing E ;

.
end taskname ;

we give meaning to the predicates of the functional specification as related to time (i.e.,

CMU/SEI-89-TR-34 37

at what times are these predicates to hold?) via a function Μ (Table A-3) which mapsf
from behavioral specifications to Boolean values:

Μ : Predicate × Timing Expression → Booleanf

Pred. Expr. Μ (Predicate, Timing Expression)f
Req E Μ (Req, E) = ∀ i [Req(@(↑Μ (E), i)) ∧ Μ (E)]f to tb
Ens E Μ (Ens, E) = ∀ i [Ens(@(↓Μ (E), i)) ∧ Μ (E) ∧ Consistent(Ens, E)]f to tb

Table A-3: Assigning Meaning to Combined Specifications

The predicate Consistent(Ens, E) used in the definition of Μ checks to see if thef
ensures Ens predicate is meaningful with respect to the timing expression
E. Consistent is defined by using two auxiliary predicates, Uses and Depends.

We define Uses:

Uses: element × input queue × output queue × Predicate → Boolean

such that for all input queues q , output queues q , elements in the output queues x:in out

Uses(x, q , q , Ens) =in out
true, if q appearsIn x ∧ Ens => isIn(q , x);in out
false, otherwise.

UsesSet(x, q , Ens) =out
{q | Uses(x, q , q , Ens) } for all x such that isIn(q , x)in in out out

where ‘‘a appearsIn b’’ is a syntactic relation that checks if the text a occurs in the text b.
Intuitively, Uses checks to see if the computation of x, the element enqueued on q ,out
can be proven from the Ens to use any of the elements from q .in

We define Depends:

Depends: element × input queue × output queue × Timing Expression → Boolean

such that for all input queues q , output queues q , elements in the output queues x,in out
th i-1and for all 1 ≤ i ≤ length(q) where i (q) is first(rest (q)):out out out

thDepends(i (q), q , q , E) =out in out
true, if E=E1 q E2 or E=E1 q || E2 or E=E1 || q E2 andout out out

q appearsIn E1 and q appearsIn E1 i-1 times;in out
false, otherwise.

DependsSet(x, q , E) =out
{q | Depends(x, q , q , E) } for all x such that isIn(q , x)in in out out

Intuitively, Depends says that output elements can depend on only elements that were
previously, or concurrently input.

We now define Consistent:

38 CMU/SEI-89-TR-34

Consistent: Predicate × Timing Expression → Boolean

as follows:

Consistent(Ens, E)=
∀ x, ∀ q [isIn(q , x) => (UsesSet(x, q , Ens) ⊆ DependsSet(x, q , E))]out out out out

Intuitively, we check that each element x in each output queue depends on only ele-
ments that have been dequeued from input queues strictly before or concurrently with
the enqueueing of x.

A.c. Examples

In the absence of a timing expression, we can perform standard first-order reasoning on
a functional specification. For example, if the multiply task’s ensures predicate had the
additional conjunct, first(out1) = first(in1), then by equational reasoning (substitutionpost
of equals by equals), we see that the ensures predicate is satisfiable only if first(in1) *
first(in2) = first(in1).

In the absence of a functional specification, we can use the axioms and rules of RTL
plus our extensions listed in Section A.a to determine inconsistent timing expressions.
For example, if the expression is in1 out1 in2, we can apply axiom 5 of Section A.a to
show that, for each task cycle, the end of the last input operation (in2) cannot follow the
end of the last output operation (out1), thus invalidating the timing expression.

More interestingly, however, is to show how a combined specification can be proven
inconsistent, where in fact, each separately is consistent and meaningful. For example,
consider a task that merges data coming from two input into one output queue, as
shown in Figure 6.

task merge
ports

in1, in2: in item;
out1: out item;

behavior
ensures out1 =insert(insert(out1,first(in1)),first(in2));post
timing loop (in2 out1 in1 out1);

end merge;

Figure 6: Merge Task

The ensures clause specifies that the output queue’s items be ordered such that the
item from in1 is before that from in2, but the timing expression specifies that if the item
from in1 is output on the queue out1, it must be the second, not first, item in the queue
(here we assume that the output queue is initially empty.) This inconsistency can be
formally proven:

CMU/SEI-89-TR-34 39

UsesSet(first(out1), out1, Ens) = {in1}
DependsSet(first(out1), out1, E) = {in2}

Since the UsesSet is not a subset of the DependsSet for first(out1), Consistent(Ens, E)
is false.

The example in Figure 7 illustrates why subsetting and not equality is used in the defini-
tion of Consistent. It also shows the use of the Ensures predicate and the need for
equational reasoning about elements in a queue (see the second conjunct in the Uses
predicate).

task divide
ports

a, b: in real;
q, r: out real;

behavior
ensures first(q) * first(a) + first(r) = first(b)post post
timing loop (a q b r);

end merge;

Figure 7: Divide Task

The ensures clause in the Divide task specifies that the quotient of b divided by a is in q
and the remainder in r; however, the timing expression says that the computation of the
quotient need depend on only what is in a, and not what is in b. This inconsistency can
be formally proven since:

UsesSet(first(q), q, Ens) = {a, b}
DependsSet(first(q), q, E) = {a}

More specifically, to show UsesSet(first(q), q, Ens) = {a, b} we first note that:

Uses(quotient(first(a), first(b)), a, q, Ens) = true
Uses(quotient(first(a), first(b)), b, q, Ens) = true

since a and b both ‘‘appear in’’ the first argument (assume quotient is a trait operator for
real numbers.)

Using equational reasoning on the Ens, we can show

first(q) = quotient(first(a), first(b))

By substitution, we get

Uses(first(q), a, q, Ens) ∧ Uses(first(q), b, q, Ens)

yielding:

UsesSet(first(q), q, Ens) = {a, b}

40 CMU/SEI-89-TR-34

Appendix B: Predefined Language Facilities

In this appendix we define the functions, attributes, and tasks that are built-in into the
language and are implemented by the Durra compiler or the Durra executive.

B.a. Predefined Functions

The following functions are predefined in the language: ‘‘current_dtime’’,
‘‘current_atime’’, ‘‘current_ptime’’, ‘‘minus_time’’, ‘‘plus_time’’, ‘‘current_size’’, and
‘‘signal’’.

Some functions compute the time elapsed from the beginning of the day, the start of the
application, or the start of a process. Other functions perform computations with time
values. Finally, there is one function that returns the number of elements stored in a
queue. These functions, together with time and numeric literals, constitute the terms
used to build expressions in timing guards and reconfiguration conditions.

Syntax:
FunctionCall ::= FunctionName { FunctionParameters }

FunctionName ::= ‘‘CURRENT_DTIME’’ |
‘‘CURRENT_ATIME’’ |
‘‘CURRENT_PTIME’’ |
‘‘MINUS_TIME’’ |
‘‘PLUS_TIME’’ |
‘‘CURRENT_SIZE’’|
‘‘SIGNAL’’

FunctionParameters ::= ‘‘(’’ Value_List ‘‘)’’comma
-- The type and number of parameters is function dependent.

Examples:
Plus_Time(Current_DTime DTIME, 9000)

-- 2.5 hours later (i.e., 9,000 seconds from the current time)
Current_Size(Master_Process.Data_Port)

-- the size of a queue feeding a port

Meaning:
The functions with names like ‘‘current_?time’’ return the number of seconds (a real
value) from the start of the day, the start of the application, or the start of a process, as
suggested by their names.

The function call ‘‘current_ptime(task_or_process_name)’’ returns the elapsed time (in
seconds) since the start of the current task (i.e. the task in whose description this func-
tion is used), or the start of a process instantiated inside the current task.

The function call ‘‘minus_time(some_time_value, seconds)’’ returns the time value ob-

CMU/SEI-89-TR-34 41

tained by subtracting a number of seconds (a real or integer value) from some time
value.

The function call ‘‘plus_time(some_time_value, seconds)’’ returns the time value ob-
tained by adding a number of seconds (a real or integer value) to TimeValue.

It should be obvious that ‘‘current_ptime(any_name)’’ can never return a value larger
than ‘‘current_atime’’. That is,

Current_PTime(any_name) <= Current_ATime
is always true, and the result of

Minus_Time(Current_ATime ATIME, Current_PTime(any_name))
is constant and known (by the Durra executive) at the time any_name starts. It is the
delay between the start of the application and the start of the process.

The function call ‘‘current_size(port_name)’’ returns the current number of elements
stored in the queue associated with a given port.

The function call ‘‘signal(process_name, integer_value)’’ returns true if the last signal
raised by a process had a given value and returns false if no signals have been raised
so far by the process, or if the last signal raised had a different value. The ‘‘signal’’
function can only appear as part of a conditional expression in a reconfiguration state-
ment.

Signal values are integer numbers that have no prespecified meaning in the language. It
is up to the application and task developers to adopt the appropriate conventions. See
[6] for details about signal raising and other means of communication between the appli-
cation processes and the executive.

Calls to these functions can appear anywhere a value of the same kind as the return
value can appear. That is, a call to a function returning an integer, a real, a string, or a
time value can appear instead of an integer, a real, a string, or a time value, respec-
tively.

B.b. Predefined Attributes

The following attributes are predefined in the language: ‘‘mode’’, ‘‘implementation’’,
‘‘processor’’, ‘‘source’’, ‘‘xwindow’’, ‘‘xdisplay’’, and ‘‘debug’’.

B.b.1. Mode Attribute

42 CMU/SEI-89-TR-34

Syntax:
ModeAttr ::= ‘‘MODE’’ ‘‘=’’ Identifier

Examples:
mode = Round_Robin;

Meaning:
The values of the ‘‘mode’’ attribute are identifiers denoting the operation performed by
one of the predefined tasks: ‘‘broadcast’’, ‘‘merge’’, and ‘‘deal’’. Possible values are de-
scribed in Section B.c.

The identifiers used as values for the ‘‘mode’’ attribute are just a convenient shorthand to
select what are expected to be frequently used tasks.

B.b.2. Implementation Attribute

Syntax:
ImplementationAttr ::= ‘‘IMPLEMENTATION’’ ‘‘=’’ StringValue

Examples:
implementation = "demo";

Meaning:
The value of the implementation attribute is the name of the file containing the actual
object code. The format of a file name may vary with the host operating system.

B.b.3. Processor Attribute

Syntax:
ProcessorAttr ::= ‘‘PROCESSOR’’ ‘‘=’’ Identifier

Examples:
processor = ibm1401;
processor = sun;
processor = sun1;

Meaning:
The configuration of the heterogeneous machine specifies the different values for the
‘‘processor’’ attribute, including names of classes of processors as well as names of indi-
vidual processors, as illustrated above. This information is maintained in a
‘‘configuration file’’ accessed by the runtime environment. See the Durra User’s Manual
[7] for additional details.

CMU/SEI-89-TR-34 43

The value of the ‘‘processor’’ attribute can vary in specificity by using a processor class
name or an individual processor name. For example, SUN means any SUN processor;
SUN1 means a specific SUN processor. If the user specifies the name of a class of
processors as the value of the ‘‘processor’’ attribute, any member of the class can be
used to execute the task.

B.b.4. Source Attribute

Syntax:
SourceAttr ::= ‘‘SOURCE’’ ‘‘=’’ StringValue

Examples:
source = "this is a string";

Meaning:
The value of the ‘‘source’’ attribute specifies an initial parameter to be passed to the task
implementation when it is started by the Durra executive. The actual means of passing
this parameter is implementation dependent (e.g., command line, environment variable,
predetermined file location). The parameter can be used by the task implementation for
any purpose (or can be ignored).

B.b.5. Window Attribute

Syntax:
WindowAttr ::= ‘‘XWINDOW’’ ‘‘=’’ StringValue

Examples:
xwindow = "-geometry 80x24+200+200";

Meaning:
The value of the ‘‘xwindow’’ attribute specifies the properties of a terminal emulator un-
der the X Window screen management system. The values of the attributes are used by
the Durra executive to start a terminal emulator under which the task implementation will
execute. These attributes are useful when the task implementation is an interactive pro-
gram. Otherwise, the input and output streams of all the task implementations running
on a given processor might be scrambled together.

B.b.6. Display Attribute

44 CMU/SEI-89-TR-34

Syntax:
DisplayAttr ::= ‘‘XDISPLAY’’ ‘‘=’’ Identifier

Examples:
xdisplay = SUN_1

Meaning:
The configuration of the heterogeneous machine specifies the different values for the
‘‘xdisplay’’ attribute, including names of classes of processors as well as names of indi-
vidual processors, as illustrated above. This information is maintained in a
‘‘configuration file’’ accessed by the runtime environment. See the Durra User’s Manual
[7] for additional details.

The value of the ‘‘xdisplay’’ attribute specifies the name of a display for a terminal
emulator under the X Window screen management system. The value of the attribute is
used by the Durra executive to start a terminal emulator under which the task implemen-
tation will execute. This attribute is useful when, for instance, one would like all inter-
active tasks to display their output at a given console, regardless of which processor the
task is running on. The default is the display associated with the processor on which the
executive is running.

B.b.7. Debug Attribute

Syntax:
DebugAttr ::= ‘‘DEBUG’’ ‘‘=’’ StringValue

Examples:
debug = "a.db -p /usr/projects/hetsim/tasklib/current/.vax";

Meaning:
The value of the debug attribute is the command line that would be used to execute a
task under control of the appropriate source-level debugger. The format of the com-
mand line depends on the language, debugger, and host operating system.

For example, in the Unix implementation, if the debug attribute is present, the Durra
executive starts the debugger by ‘‘executing’’ the command obtained by concatenating
the debug attribute value with the implementation attribute value, as in:

a.db -p /usr/projects/hetsim/tasklib/current/.vax demo

Since a separate terminal interface is required for each debugger activated, this feature
is only available when the environment supports the X Window Manager. The effect is
that, instead of starting the task directly, the runtime environment starts an ‘‘xterm’’ ter-
minal emulator and runs the specified debugger in it, giving it the task name as an argu-
ment.

CMU/SEI-89-TR-34 45

B.c. Predefined Tasks

The following tasks are predefined in the language: ‘‘broadcast’’, ‘‘merge’’, and ‘‘deal’’.

B.c.1. Broadcast Task
The task ‘‘broadcast’’ has one input port and as many output ports as needed. Input
data are replicated and sent to all the output ports.

task broadcast
ports port-declarations;

end broadcast;

B.c.2. Merge Task
The task ‘‘merge’’ has one output port and as many input ports as needed. The type of
the output port is the union of all the input types. Input data items are merged and sent
to the output port.

task merge
ports port-declarations;
attributes mode = identifier;

end merge;

A merge discipline must be provided as a value to the ‘‘mode’’ attribute in a ‘‘merge’’
task selection, as described in Section B.b.1. Possible values include ‘‘fifo’’ (ordered by
time of arrival to the merge process) and ‘‘round_robin’’ (one datum from each consecu-
tive input port and repeating). Because of transmission delays, the order of arrival of the
data might differ from the order in which the data were sent out. A FIFO merge process
uses time of arrival, not time of creation, to order the data.

B.c.3. Deal Task
The task ‘‘deal’’ has one input port and as many output ports as needed. The type of the
input port is the union of all the output types. Input data items are sent to one output
port.

task deal
ports port-declarations;
attributes mode = identifier;

end deal;

A deal discipline must be provided as a value to the ‘‘mode’’ attribute in a ‘‘deal’’ task
selection, as described in Section B.b.1. Possible values include ‘‘fifo’’ (output to the first
port with a waiting consumer, with a random choice if there is more than one waiting
consumer), ‘‘round_robin’’ (output to each port in order and repeating), and ‘‘by_type’’
(output to the appropriate port, depending on the type of the data.) In the latter case
there must be exactly one output port for each possible type accepted by the input port.
This is the only kind of ‘‘deal’’ process in which multiple output types are allowed. Other
kinds of ‘‘deal’’ processes require compatible output types in all the output ports.

46 CMU/SEI-89-TR-34

B.c.4. Examples
Task descriptions for the predefined tasks are not stored in the library. The Durra
compiler uses the task selection part of the process declaration as the task description.
In other words, predefined tasks are ‘‘created’’ on demand, to satisfy a specific process
declaration. The following examples illustrate process declarations that are instances of
predefined tasks.

process pb: task broadcast
ports

in1: in packet;
out1, out2: out packet;

end broadcast;

This process declaration selects a 2-output ‘‘broadcast’’ task.

process pm: task merge
ports

in1, in2: in packet;
out1: out packet;

attributes
mode = round_robin;

end merge;

This process declaration selects a 2-input ‘‘merge’’ task that handles items of type
packet in round-robin fashion.

process pd: task deal
ports

in1: in packet;
out1, out2: out packet;

attributes
mode = round_robin;

end deal;

This process declaration selects a 2-output ‘‘deal’’ task that handles items of type packet
in round-robin fashion.

CMU/SEI-89-TR-34 47

48 CMU/SEI-89-TR-34

Index

" 17 BehaviorPart 11, 13, 17
Bind 6, 25

(7, 8, 9, 19, 23, 27, 41 Broadcast 6, 43, 46, 47
Buffer 3

) 7, 8, 9, 19, 23, 27, 41 Buffers 4

* 18 Comment 5
CompilationUnit 8

, 18 Configuration file 43, 45
Conjunction 8

. 6, 18 Consistent 38, 39, 40
Current_atime 6, 41

/= 8 Current_dtime 6, 41
Current_ptime 6, 41

: 15, 25, 26, 27, 30 Current_size 6, 41, 42

; 15, 17, 23, 25, 30 Deal 6, 43, 46, 47
Debug 6, 42, 45

< 8 DebugAttr 45
<= 8 Delay 6, 18, 19, 20, 21

Depends 38
= 8, 23, 30 DependsSet 38, 39, 40
=> 19 Dequeue 6, 18, 19

Disjunction 8
> 8, 26 DisplayAttr 45
>= 8 Dtime 6, 18, 20

During 6, 19, 21
[18, 26 Durra compiler 3, 7, 8, 23, 41, 47

Durra excutive 3
] 18, 26 Durra executive 23, 31, 41, 42, 44, 45

Durra library 3
" 5, 17
{ 4 ElementSize 9
| 4 End 6, 11, 13, 30
|| 20 Enqueue 6, 18, 19, 26
} 4 Ensures 6, 17

Event 18, 19
After 6, 19, 20 Executive 4
And 6, 8 Exit 6, 30, 31
Array 6, 9 Expression 8, 19, 23, 30
ArrayDimension 9 ExternalPortName 30
ArrayTransform 27
Atime 6, 18, 20, 21 Field 9
Attribute 6, 23 FieldName 6, 9, 27
AttributeDescPart 11, 23 FieldTransform 27
AttributeSelPart 13, 23 FunctionCall 7, 41
AttrName 6, 23 FunctionName 7, 41
AttrValue 23 FunctionParameters 7, 41

BasicEvent 19 GlobalAttrName 6, 7
Before 6, 19, 20 GlobalPortName 6, 18, 26, 30
Behavior 6, 17 GlobalProcessName 6, 27

CMU/SEI-89-TR-34 49

GlobalQueueName 6 Real 5
Guard 19 RealLiteral 7

RealValue 7, 18
Identifier 5, 6, 7, 30, 43, 45 Reconfiguration 6, 25, 30
If 6, 30 ReconfigurationExit 30
Implementation 4, 6, 42, 43 ReconfigurationLabel 30
ImplementationAttr 43 Reconnect 6, 25
In 6, 15 Record 6, 9
IndeterminateTime 18 RecordTransform 27
Integer 5 Relation 8
IntegerLiteral 7 Remove 6, 30
IntegerValue 7, 9, 18, 19, 26 Repeat 6, 19, 20
InterfacePart 11, 13, 15 Requires 6, 17
InternalPortName 30
Is 6, 9 ScalarTransform 27

Seconds 18
Loop 6, 19, 20 SequentialEvent 19

Signal 6, 41, 42
Merge 6, 43, 46, 47 Size 6, 9
Minus_time 6, 41 Source 6, 42, 44
Mode 6, 42, 43, 46 SourceAttr 44
ModeAttr 43 String 5

StringLiteral 7
Not 6, 8 StringValue 7, 43, 44, 45
Null 6, 26, 27, 28, 29 Structure 6, 13, 25

StructureClause 25, 30
Of 6, 9 StructurePart 11, 25
Or 6, 8 Switch 4
Out 6, 15

Task 4, 6, 11, 13
ParallelEvent 19 TaskDescription 8, 11
Plus_time 6, 41, 42 TaskName 6, 11, 13
Port 4, 6, 11, 15 TaskSelection 13, 25
PortBinding 25, 30 Term 8
PortDeclaration 15 Then 6, 30
PortName 6, 15, 30 TimeBase 18
Predicate 17 TimeLiteral 7, 18
Primary 8 TimeValue 7, 18, 19
Process 4, 6, 25 TimeWindow 18, 19
ProcessDeclaration 25 Timing 6, 17
ProcessName 6, 25 TimingExpression 17, 19
Processor 4, 6, 42, 43, 44 To 6, 9
ProcessorAttr 43 Transformation 26, 27
ProcessQueueName 6, 30 TransformName 27
ProcessQueueTermination 30 TransformOp 27
Ptime 6, 18, 20, 21 Type 6, 9

TypeDeclaration 8, 9
Queue 4, 6, 25 TypeName 6, 9, 15
QueueDeclaration 25, 26 TypeStructure 9
QueueDefinition 26
QueueName 6, 26 Union 6, 9
QueueOperation 18 UnionStructure 9
QueueReconnection 25, 26 Uses 38, 40
QueueSize 26 UsesSet 38, 39, 40

50 CMU/SEI-89-TR-34

Value 7, 8, 41

When 6, 19, 21, 30, 31
WindowAttr 44

Xdisplay 6, 42, 45
Xterm 45
Xwindow 6, 42, 44

CMU/SEI-89-TR-34 51

52 CMU/SEI-89-TR-34

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Type Declarations
	3. Task Descriptions
	4. Task Selections
	5. Interface Information
	6. Behavioral Information
	7. Attributes
	8. Structural Information
	References
	Appendix A: Formal Meaning of Timing Expressions
	Appendix B: Predefined Language Facilities
	Index

