
Hints to Speci�ers

Jeannette M� Wing

May ��� ����

CMU�CS�������r

School of Computer Science
Carnegie Mellon University
Pittsburgh� PA �����

This paper is derived from the paper �Teaching Mathematics to Software Engineers�� which

will appear in the Proceedings of the Fourth International Conference on Algebraic Methodology

and Software Technology ���� The AMAST paper is the basis of an invited talk for AMAST�s

Education Day� July �� ����� in Montreal� Canada�

Abstract

I present a list of hints for writing speci�cations� I address high�level issues like learning to abstract
and low�level issues like getting the details of logical expressions right� This paper should be of
interest not only to students of formal methods but also to their teachers�

This research is sponsored by the Wright Laboratory� Aeronautical Systems Center� Air Force Materiel Com�
mand� USAF� and the Advanced Research Projects Agency �ARPA� under grant number F��������������	
 Views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing o�cial policies or endorsements� either expressed or implied� of Wright Laboratory or the United States
Government

Keywords� formal methods� formal speci�cation� software engineering� education� discrete
mathematics� mathematical logic� algebraic speci�cations� Z� Larch

�� Motivation

Over the years I have been accumulating hints that I give students in response to common problems
and recurrent questions that arise as they try their hand at writing speci�cations� I often remind
myself of these hints when I write speci�cations too� I�ve broadly categorized them along the
following dimensions	

� Figuring out why you are going through this speci�cation e
ort �Section ��� What do you
hope to get out of using formalism

� Figuring out what of the system you want to specify �Section ���

� Figuring out how to specify �Section ��� The most important hurdle to overcome is learning
to abstract� I also give speci�c suggestions on how to make incremental progress when writing
a speci�cation�

� Figuring out what to write down �Section ��� Learn and abide by a formal method�s set of
conventions but do not feel unduly constrained by them� Also� we all make logical errors
sometimes� I point out some common troublespots in getting the details of a speci�cation
right�

My hints are targeted for the novice speci�er� but experts� such as teachers of formal methods�
may also �nd them useful�

I will illustrate my points with examples� usually in Z or Larch� Many actually make more than
one point�

�� Why Specify�

You should �rst ask yourself this question� �Why specify� You might choose to specify because you
want additional documentation of your system�s interfaces� you want a more abstract description
of your system design� or you want to perform some formal analysis of your system� What you
write should be determined by what it is you want to do with your speci�cation�

You should then ask yourself �Why formally specify� Your answer determines what is to be
formalized� what formal method to use� and what bene�ts you expect from a formal speci�cation
not attainable from an informal one� When I have asked this question of system builders� here are
the kinds of responses I have heard	

� Showing that a property holds globally of the entire system�

� I want to characterize the �correctness condition� I can promise the user of my system�

� I want to show this property is really a system invariant�

� I want to show my system meets some high�level design criteria�

� Error handling

� I want to specify what happens if an error occurs�

�

� I want to specify the right thing happens if an error occurs�

� I want to make sure this error never occurs�

� Completeness

� I want to make sure that I�ve covered all the cases� including error cases� for this protocol�

� I�d like to know that this language I�ve designed is computationally complete�

� Specifying interfaces�

� I�d like to de�ne a hierarchy of C�� classes�

� I�d like a more formal description of this system�s user interface�

� Getting a handle on complexity�

� The design is getting too complicated� I can�t �t it all in my head� I need a way to
think about it in smaller pieces�

� Change control�

� Every time I change one piece of code I need to know what other pieces are a
ected� I�d
like to know where else to look without looking at all modules� without looking at all
the source code�

Judicious use of formalism can help address all these problems to varying levels of detail and
rigor�

�� What to Specify�

Formal methods are not to the point where an entire large� software system can be completely
speci�ed� You may be able to specify one aspect of it� e�g�� its functionality or its real�time behavior�
you may be able to specify many aspects of a part of it� e�g�� specifying both functionality and
real�time behavior of its safety�critical part� In practice� you may only care to specify one aspect
of a part of a system anyway�

In writing a speci�cation� you should decide whether it is describing required or permitted be�
havior� Must or may Since a speci�cation can be viewed as an abstraction of many possible�
legitimate implementations� you might most naturally associate a speci�cation with describing
permitted behavior� An implementation may have any of the behaviors permitted by the speci��
cation� but the implementor is not required to realize all� For example� a nondeterministic choose
operation speci�ed for sets will have a deterministic implementation� However� the expression
�software system requirements� suggests that a customer may in fact require certain behavior� For
example� in specifying an abstract data type�s interface� the assumption is that all� not some proper
subset� of the operations listed must be implemented�

Once it is clear what you want from the speci�cation process� you can turn to determining
exactly what should be formalized�

�

In increasing order of level of detail� you might want to formalize a global correctness condition
for the system� one or more system invariants� the observable behavior of a system� or properties
of entities in a system�

Correctness Conditions

You usually have some informal notion of a global correctness condition that you expect your
system to maintain� It might be something as standard as serializability� cache coherence� or
deadlock freedom� Or� it might be very speci�c to the protocol or system at hand� If it is standard�
then very likely someone else has developed a formal model for characterizing a system and a logic
within which the correctness condition can be formally stated and proved� E�g�� serializability has
been thoroughly studied by the database community from all angles� theoretical to practical� If
your correctness condition can be cast in terms of a well�known theory� it pays to reuse that work
and not invent from scratch�

If it is not standard then an informal statement of the correctness condition should drive the
formalization of the system model and expression of the correctness condition� For example� in
work by Mummert et al� ����� the authors started with this informal statement of cache coherence
for a distributed �le system	

If a client believes that a cached �le is valid then the server that is the authority
on that �le had better believe that the �le is valid�

They developed a system model �a state machine model� and logic �based on the logic of
authentication ���� that enabled them to turn the informal statement into the following formal
statement	

For all clients C � servers S � and objects d for which S is the repository�
if C believes valid�dC � then S believes valid�dC ��

where clients� servers� objects� repository� believes and valid are formally de�ned concepts� The
point is that the formal statement does not read too di
erently from the informal one�

Keep in mind this rule�of�thumb when formalizing from an informal statement	 Let the things
you want to describe formally drive the description of the formal model� There is a tendency to
let the formal method drive the description of the formal model� you end up specifying what you
can easily specify using that method� That is �ne as far as it goes� but if there are things you
cannot say or that are awkward to express using that method� you should not feel bound by the
method� Invent your own syntax �to be de�ned later�� add auxiliary de�nitions� or search for a
complementary method�

The process of constructing a formal model of a system and formally characterizing the intended
correctness condition can lead to surprises� More than once I have seen Ph�D� students start
formalizing the systems that they were building and then have to back o
 from their expected and
desired correctness condition� They end up realizing that it was too strong� not always guaranteed
�e�g�� not guaranteed for some failure case or for a �fast�path� case�� or only locally true �holds
for a system component but not the entire system�� Correctness conditions for distributed systems
are likely to be weaker than expected or desired because of the presence of failures �nodes or

�

links crashing� and transmission delays� the time to recover from failures and the time to transmit
messages introduce �windows of vulnerability� during which the correctness condition cannot be
guaranteed�

Invariants

The most common way to characterize certain kinds of correctness conditions is as a state
invariant� An invariant is a property that does not change as the system goes from state to state�
Remember also	

� An invariant is just a predicate� Given an appropriate assertion language� it is usually not a
big deal to express an invariant formally�

� �True� is an invariant of any system� It�s the weakest invariant and hence not a very useful
one� you probably want to say something more interesting about your system� If �true� ends
up being your strongest invariant� revisit your system design�

� An invariant can serve multiple purposes� It is usually used to pare down a state space to
the states of interest� For example� it can be used to characterize the set of reachable states
or the set of acceptable�legal ��good�� states� �These two sets are not always the same� For
example� you might want the set of acceptable states to be a subset of the set of reachable
ones�� Representation invariants are used to de�ne the domain of an abstraction function�
used when showing that one system �implements� another �����

� Di
erent formal methods treat invariants di
erently� �See Implicit versus Explicit in Section
��� for an elaboration of this point�� Make sure you understand invariants in the context of
the formal method you are using�

� Hard questioning of system invariants can lead to radically new designs�

To illustrate the last point� consider this example from the garbage collection community� One
class of copying garbage collection algorithms relies on dividing the heap into two semi�spaces�
to�space and from�space� in one phase of these algorithms� objects are copied from from�space to
to�space ���� Traditional copying garbage collection algorithms obey a �to�space invariant�	 The
user accesses objects only in to�space� Nettles and O�Toole observed that breaking this invariant
and maintaining an alternative �from�space invariant� �the user accesses objects only in from�
space� leads to simpler designs that are much easier to implement� analyze� and measure ����� This
observation led to a brand new class of garbage collection algorithms�

Observable Behavior

State invariants are a good way to characterize desired system properties� Formalizing state
transitions will allow you to prove that they are maintained� When you specify state transitions�
what you are specifying is the behavior of the system as it interacts with its environment� i�e�� the
system�s observable behavior�

It might seem obvious that what you want to specify is the observable behavior of a system�
but sometimes when you are buried in the details of the task of specifying� you forget the bigger
picture� Suppose you take a state machine approach to modeling your system� Here is a general
approach to specifying observable behavior	

�

�� Identify the level of abstraction �see Section ���� at which you are specifying the system�
This level determines the interface boundary that you are specifying� it determines what is
or is not observable� For example� a bus error at the hardware level is not expected to be
an observable event in the execution of an text formatter like Word� but core dumped is
certainly an observable event when using a text editor like emacs�

�� Characterize the observable entities in a state at that given level of abstraction� These entities
are sometimes called a system�s state variables or objects� This step forces you to identify the
relevant abstract types of your system �See the section on Properties of State Entities below��

�� Characterize a set of initial states� and if appropriate� a set of �nal states�

�� Identify the operations that can access or modify the observable entities� These de�ne your
state transitions�

�� For each operation� characterize its observable e
ect on the observable state entities� For
example� use Z schemas� Larch interfaces� or VDM pre�post�conditions�

Observable behavior should include any change in state that is observable to the user� If you
are specifying an operation� then the kinds of observable state changes include changes in value
to state entities� observable changes in the store �new entities that appear and old entities that
disappear�� results returned by the operation� and signaled exceptions or errors�

Another way to think about observable behavior is to think about observable equivalence ���� ����
Ask �Can I distinguish between these two things� where �things� might be states� individual
entities in a state� traces of a process� or behavior sets of a process� depending on what you are
specifying� If the answer is �yes�� then there must be way to tell them apart �perhaps by using
unique names or perhaps by de�ning an equal operation�� if �no�� then there must not be any way
for the observer to tell them apart�

Properties of State Entities

The most important property to express of any entity in a system is its type� This statement
is true regardless of the �ne distinctions between the di
erent type systems that di
erent formal
methods and speci�cation �and programming� languages have� Since for a speci�cation we are not
concerned about compile�time or run�time costs of checking types� there is never a cost incurred in
documenting in a speci�cation an entity�s type�

Since a type can be viewed as an abbreviation for a little theory� declaring an entity�s type is a
succinct way of associating a possibly in�nite set of properties with the entity in one or two words�
A truly powerful abstraction device�

For entities that are �structured� objects �e�g�� an object that is a collection of other objects��
when determining its type� the kinds of distinguishing properties include	

� Ordering� Are elements ordered or unordered If ordering matters� is the order partial or
total Are elements removed FIFO� LIFO� or by priority

� Duplicates� Are duplicates allowed

�

� Boundedness� Is the object bounded in size or unbounded Can the bound change or it is
�xed at creation time

� Associative access� Are elements retrieved by an index or key Is the type of the index
built�in �e�g�� as for sequences and arrays� or user�de�nable �e�g�� as for symbol tables and
hash tables�

� Shape� Is the structure of the object linear� hierarchical� acyclic� n�dimensional� or arbitrarily
complex �e�g�� graphs� forests�

For entities that are relations� the kinds of distinguishing properties include whether the relation
is a function �many�to�one�� partial� �nite� de�ned for only a �nite domain� surjective� injective�
bijective� and any �meaningful� combination of these�

Finally� algebraic properties help characterize any relational entity or any function or relation
de�ned on a structured entity� The standard algebraic properties include	 idempotency� re�exivity�
symmetry� transitivity� commutativity� associativity� distributivity� existence of an identity element�
and existence of an inverse relation or function� Algebras are well�known mathematical models for
abstract data types and for processes ��� ��� ��� For example� this algebraic equation characterizes
the idempotency of inserting the same element into a set multiple times	

insert�insert�s� e�� e� � insert�s� e�

and this characterizes insert�s commutativity property	

insert�insert�s� e��� e�� � insert�insert�s� e��� e��

It also makes sense to ask about whether algebraic properties hold for operations on processes� For
example� for CSP processes� parallel composition is both commutative and associative	

P k Q � Q k P
P k �Q k R� � �P k Q� k R

�� How to Specify�

Given that you understand why you are specifying and what it is you want to specify� in what ways
should you try to think about the system so that you can begin to specify and then make progress
in writing your speci�cation The fundamental techniques are abstraction and decomposition� In
specifying large� complex systems� abstraction is useful for focusing your attention to one level of
detail at a time� decomposition� for one small piece of the system �at a given abstraction level� at
a time� Both enable local reasoning�

���� Learn to Abstract� Try Not to Think Like a Programmer

The skill that people �nd the most di�cult to acquire is the ability to abstract� One aspect of
learning to abstract is being able to think at a level higher than programmers are used to�

�

Try to think de�nitionally not operationally�

A student said the following to me when trying to explain his system design	

If you do this and then that and then this and then that� you end up in a good state�
But if you do this and then that and then this� you end up in a bad state�

When specifying concurrent systems� rather than thinking of what characterizes all good states�
people often think about whether a particular sequence of operations leads to a good or bad state�
Taking this operational approach means ending up trying to enumerate all possible interleavings�
this enumeration process quickly gets out of control� which is typically when a student will come
knocking at my door for help� This problem is related to understanding invariants �see Invariants
in Section ��� Invariably� the very �rst thing I need to teach students when I work with them
one�on�one is what an invariant is�

Try not to think computationally��

When writing speci�cations� abstraction is intellectually liberating because you are not bound
to think in terms of computers and their computations�

The following predicate

s � s�
� hei

might appear in the post�condition of the speci�cation of a remove operation on sequences� Here�
s stands for the sequence�s initial value� s�� its �nal value� e � the element removed and returned�
You most naturally might read ��� as assignment �especially if you are a C programmer� and not
as a predicate symbol used here to relate values of objects in two di
erent states� You may need
to stare at such predicates for a while before realizing the assertional nature �and power� of logic�

Try constructing theories� not just models�

Building models is an abstraction process� but de�ning a theory takes a di
erent kind of ab�
straction skill� When you construct a model of a system in terms of mathematical structures like
sets� sequences� and relations� you get all properties of sets and relations �for free�� This has
the advantage that you do not have to spell them out every time you specify a system� but the
disadvantage that some of those properties are irrelevant to your system� Thus� in a model�based
constructive approach� you also need to provide a way to say which properties about the standard
mathematical structures may be irrelevant� �You might strip away of properties by using invari�
ants�� For example� you might specify a stack in terms of a sequence� where the top of the stack
corresponds to one end of the sequence� Then� you need not only to state which end of the sequence
serves as the top of the stack� but also to eliminate some sequence properties� e�g�� being able to
index into a sequence or concatenate two sequences� because they have no relevance for stacks�

By contrast� in a theory�based approach you state explicitly exactly what properties you want
your system to have� Any model that satis�es that theory is deemed to be acceptable� For example�
the essence of stacks is captured by the well�known equations	

�Another way of saying the same thing as above

�

pop�push�s�e�� � s
top�push�s�e�� � e

Sequences� or any other data structure� do not enter the picture at all�

Like many� you may �nd methods like Z and VDM appealing because they encourage a model�
based rather than theory�based approach to speci�cation� You can build up good intuition about
your system if you have a model in hand� However� to practice learning how to abstract� try writing
algebraic or axiomatic assertions about the model�

���� How To Proceed� Incrementally

At any given level of abstraction� we ignore some detail about the system below� You might feel
anxious to specify everything for fear of being �incomplete�� Learning to abstract means learning
when it is okay to leave something unspeci�ed� This aspect of the abstraction process also allows
incremental speci�cation� In general� it is better to specify something partially than not at all�

Here are four common and important examples of incremental abstraction techniques	 ��� �rst
assume something is true of the input argument and capture this assumption in a pre�condition�
then weaken the pre�condition� ��� �rst handle the normal case� then the failure case� ��� �rst
ignore the fact that ordering �or no duplicates� etc�� matters� then strengthen the post�condition�
��� �rst assume the operation is atomic� then break it into smaller atomic steps� Let�s look in turn
at each of these examples in their generality and in more detail�

Use pre�conditions�

Putting your �programmer�s� cap on� think of pre�conditions in the context of procedure call�
A pre�condition serves two purposes	 an obligation on the caller to establish before calling the
procedure and an assumption the implementor can make when coding the procedure�

More generally� pre�conditions are a way of specifying assumptions about the environment of a
system component� Such assumptions can and should be spelled out and written down explicitly�
By doing so� you can specify and reason about a piece of the system without having to think about
the entire system all at once� Thus pre�conditions assist in partial speci�cation� incremental design�
and local reasoning�all attractive means of dealing with the complexity of large software systems�

One technical di�culty that trips some people is what a speci�cation means if a pre�condition
is not met� In many speci�cation techniques �like Z and Larch�� when an operation�s pre�condition
is not met� the interpretation is �all bets are o
�� The interpretation is that the pre�condition is
a disclaimer�� In other words� the operation is free to do anything� including not terminate� if the
pre�condition does not hold� The technical justi�cation is that when an operation is speci�ed using
pre� and post�conditions� the logical interpretation of the speci�cation is an implication	

pre � post

�Thanks to Daniel Jackson for this term

�

When the pre�condition is �false� then the implication is vacuously true� so any behavior should
be allowed�

Some formal methods �like InaJo ���� and I�O automata ����� use the term �pre�condition� but
mean something entirely di
erent� The pre�condition is interpreted as a guard� no state transition
should occur if the guard is not met� Here the interpretation is conjunction	

pre � post

The di
erence is that under the disclaimer interpretation� for any state s in which the pre�condition
does not hold� the state pair� hs� s�i� for any state s �� would be in the state transition relation� under
the guard interpretation� no such state pair would be in the relation��

There are other possible interpretations	 For example� if the pre�condition is not met� it could
mean that the state transition always goes to a special �error� state and termination is guaranteed�
or it could mean the state transition leads to either an �error� state or non�termination� The point
is that you must understand in the notation you are using what it means when a pre�condition is
met or not met�

Finally� in the presence of concurrency� you need to specify both kinds of conditions for an
operation	 a pre�condition �as a disclaimer� and a guard� The pre�condition is evaluated in the state
in which the operation is called� the guard� in the state in which the operation begins executing�
Because of concurrency� a scheduler may delay the start of the execution of an operation to some
time after the call of the operation� since there is time between the state in which the operation
is called and the state in which it starts executing� an intervening operation �executed by some
other process� may change the system�s state� Thus� a predicate that holds in the state when the
operation is called may no longer hold in the state when the operation begins to execute� The
point is to realize that in the presence of concurrency� there is a new kind of condition to specify� �

Specify errors�exceptions�failures�

It is as important to specify erroneous or exceptional behavior as it is to specify normal behavior�
If an operation can lead to an undesired state� you should specify the conditions under which this
state is reachable� If you are lucky� the speci�cation language has some notational convenience
�e�g�� Larch�s signals clause� or prescribed technique �e�g�� Z�s schema calculus� to remind you to
describe error conditions� otherwise� handling errors may have to be disguised in terms of input or
output arguments that serve as error �ags�

There is a close correlation between pre�conditions and handling errors� Z speci�ers draw this
connection by abiding by this convention using schema disjunction	

TotalOp � NormalOp � ErrorOp

�There is further confusion in understanding pre�conditions in Z because even though you might write explicitly in
your schema the conjunction� xpre � post� where xpre is the �explicit pre�condition� the meaning is the implication�
pre � post� where pre is the calculated pre�condition and usually not identical to xpre ���

�Larch calls the guard a when�condition to distinguish it from the standard pre�condition written in a requires

clause

�

where NormalOp is the speci�cation �schema� of the Op operation under normal conditions� and
ErrorOp is the speci�cation of Op under the condition in which the pre�condition �which must be
calculated ���� from NormalOp� does not hold� Thus� TotalOp gives the speci�cation of Op under
all possible conditions�

Larch speci�ers� on the other hand� draw the connection by weakening the pre�condition� e�g��
de�ning it to be equivalent to �true�� and correspondingly strengthening the post�condition� Thus�

Op � op��
requires P
ensures Q

turns into	

Op � op�� signals �error�
requires true
ensures if P then Q else signal error

For interfaces to distributed systems� you cannot ignore the possibility of failure due to network
partitions or crashed nodes� You could abstract from the di
erent kinds of failures by introducing
a generic �failure� exception that stands for errors arising from the distributed nature of your
system�

The two main points to remember are ��� in support of incremental speci�cation� specify the
normal case and then handle the error cases� but ��� do not forget to handle the error cases�

Use nondeterminism�

Introducing nondeterminism is an e
ective abstraction technique� Nondeterminism permits
design freedom and avoids implementation bias�

Nondeterminism may show up in many ways� It may be inherent to the behavior of an operation
or object� Consider the choose operation on sets	

choose � op �s	 set� returns �e	 elem�
requires s �� �
ensures e � s

The post�condition says that the element returned is a member of the set argument� it does not
specify exactly which element is returned�

You can express nondeterminism by explicit use of disjunction in a post�condition	

tra�c light � op�� returns �c	 color�
ensures c � red � c � amber � c � green

If the type color ranges over red� amber� green� and blue� the use of negation allows you to express
the same property more succinctly	

tra�c light � op�� returns �c	 color�
ensures c �� blue

You can express nondeterminism by explicit use of an existential quanti�er� which is the more

��

general case of disjunction	

positively random � op �� returns �i 	 int�
ensures � x 	 int � i �j x j

From a state machine model viewpoint �for instance when discussing deterministic and nonde�
terministic �nite state automata�� nondeterminism should not be confused with choice� Suppose �

is a state transition relation�

� 	 State �Action � �State

Then an example of choice is	

��s� a�� � ftg
��s� a�� � fug

which says from state s you can either do the action a� �and go to the next state t�� or do the
action a� �and go to the next state u�� However� an example of nondeterminism is	

��s� a�� � ft �ug

which says from state s you can do action a� and go to either state t or u �

Some formal methods for concurrent systems introduce their own notions of nondetermin�
ism�choice� for example� CSP has two operators� one for internal choice �u� made by the machine
and the other for external choice ��� made by the environment�� CCS has yet a di
erent way to
model nondeterminism�

The two main points are that ��� nondeterminism is a useful and important way to abstract�
but ��� be careful to understand any given method�s way of modeling nondeterminism�choice to
use it properly�

Use Atomic Operations

For any system it is important to identify what the atomic operations are� An atomic operation
is one whose execution is indivisible� only the states before and after its execution are observable�
At any level of abstraction an atomic operation may be implemented in terms of sequences of
lower�level atomic operations �e�g�� a write operation to a �le on disk might be implemented in
terms of a sequence of write operations to individual disk blocks�� Even assignment can be broken
down into sequences of loads and stores to�from memory and registers�

It is usually assumed that each procedure of a sequential program is executed atomically� this
assumption is rarely stated explicitly�

For a concurrent system� it is critical to state explicitly what operations are atomic� The
atomicity of an operation� Op� guarantees that no other operation can interfere with Op�s execution
and that you can abstract away from any intermediate �lower�level� state that it might actually
pass through�

�Hoare calls the former �nondeterministic or and the latter �general choice

��

�� What to Write�

With your pen poised over a blank sheet of paper or �ngers over your keyboard� you now face the
problem of what to write down� If you are using a speci�c formal method like Z� VDM� or Larch�
you must know the syntax and semantics of its speci�cation language� It is not enough to know
what the syntactic features are� you need to understand what each means�

It is important to understand the di
erence between syntax and semantics� For example� a
typical algebraic speci�cation language has grammatical rules for formulating syntactically legal
terms out of function and variable symbols� Each syntactically legal term denotes a value in some
underlying algebraic model� For example� the term insert�insert��� e��� e�� is a syntactic entity
that denotes the set value fe�� e�g� which is a semantic entity� For a standard model of sets� the
syntactically di
erent term insert�insert��� e��� e�� denotes the same semantic set value�

Associated with any formal method is its assertion language� usually based on some variation
of �rst�order predicate logic� With assertions you nail down precisely your system�s behavior� It is
in your assertions where the smallest change in syntax can have a dramatic change in semantics�
Getting the details of your assertions right is typically when you discover most of the conceptual
misunderstandings of your system�s design�

���� General Rules	of	Thumb

What distinguishes a formal method from mathematics is its methodological aspects� A speci��
cation written in the style of a given formal method is usually not just an unstructured set of
formulae� Syntactic features make it easier to read the speci�cation �e�g�� the lines in a Z schema��
remind the speci�er what to write �e�g�� the modi
es clause in Larch�� and aid in structuring a
large speci�cation into smaller� more modular pieces �e�g�� Z schemas� Larch traits��

Implicit vs� Explicit

Most formal methods have well�de�ned speci�cation languages so the choice of what you explic�
itly write down is guided by the grammar and constructs of the language�

However� there is a danger of forgetting the power of the unsaid� What is not explicitly stated
in a speci�cation often has a meaning� A naive speci�er is likely to be unaware of these implicit
consequences� thereby be in danger of writing nonsense� Here are three examples�

The �rst example is the frame issue� If you are specifying the behavior of one piece of the
system in one speci�cation module� you should say what e
ects that piece has on the rest of the
system� In some formal methods �e�g�� InaJo�� you are forced to say explicitly what other pieces of
the system do not change �NC ���	

NC ���x�� � � � � xn�

This is sometimes impractical if n is large� or worse� if you do not or cannot know what the
x�� � � � � xn are in advance�

��

In some methods �e�g�� Larch�� you say only what may �but is not required to� change� anything
not listed explicitly is required not to change	

modi
es y�� � � � � ym

This says y� � � � ym may change but the rest of the system stays the same�

A subtler point about the Larch modi
es clause is that there is signi�cance to the omission of
the clause� The absence of a modi
es clause says that no objects may change� Thus� if you write
a post�condition that asserts some change in value to an input argument or global� the assertion
would be inconsistent with an omitted modi
es clause�

Z�s and ! operators on schemas are similar to InaJo�s NC construct� they allow you to make
statements local to individual operations about whether they change certain state variables or not�
Use of these schema operators on say the schemas� Si � leaves implicit the invariant properties of
the system captured in Si � These properties can be made explicit by �unrolling� the schemas Si �

This feature of Z is related to my second example of implicit vs� explicit speci�cation� which
has to do with invariants� In some formal methods like Z� state invariants are stated explicitly�
They are a critical part of the speci�cation� i�e�� the �property� component of a Z schema� and
used to help calculate operation pre�conditions� In others like Larch� they are implicit and must
be proved� usually using some kind of inductive proof rule� Finally� in others like the ���� version
of VDM ���� they are redundant� They are stated explicitly and contribute to the checklist of proof
obligations generated for each operation�

Finally� the third example has to do with implicit quanti�cation� In many algebraic speci�cation
languages the i equations in this list

e�
���
ei

are implicitly conjoined and quanti�ed as follows	

� f� � � �� fn � � x� � � �� xm � e� � � � � � ei

where f� � � � fn are the function symbols and x� � � � xm are the variables that appear in e� � � � ei �

This kind of implicit quanti�cation has subtle consequences� Consider the following �incorrect�
equational speci�cation of an operation that determines whether one set is a subset of another	

s� 	 s� � �e � s� � e � s��

What you really mean is	

s� 	 s� � � e ��e � s� � e � s��

��

but in most algebraic speci�cation languages� writing a quanti�er in the equation is syntactically
illegal� the tipo
 to the error is the occurrence of the free variable e on the righthand side of the
�rst equation�

Auxiliary De�nitions

Do not be afraid to use auxiliary de�nitions	

� To shorten individual speci�cation statements� For example� when argument lists to functions
get too long �say� greater than four�� then it probably means the function being de�ned is
�doing too much��

� To �chunkify� and enable reuse of concepts� When a long expression �say� involving more
than two logical operators and three function symbols� appears multiple �say� more than two�
times� then it probably means that chunk of information can be given a name and the name
reused accordingly�

� To postpone specifying certain details� When you �nd yourself going into too much depth
while specifying one component of the system in neglect of specifying the rest of the system�
then introduce a placeholder term to be de�ned later�

Notation

If your primary purpose in specifying is the tangible end�product� i�e�� the speci�cation� and
you have chosen a particular formal method to use� stick to its notation� Presumably you chose
this formal method for its brand of expressiveness or for its known applicability to your problem
domain� A carefully designed speci�cation language should have just the right number and kinds
of syntactic constructs to let you express all of what you want to say� The constructs provided
by the language let you highlight those aspects of the system that are important to record� e�g��
side e
ects in a Larch modi
es clause� At the same time� they also force you to express yourself
in a stylized way using a restricted vocabulary� So� once in a while the notation may force you
to express something more awkwardly or more verbosely than you wish� however� either situation
may actually be a sign to rethink your abstractions and decompositions�

If you are primarily interested in gaining a deeper understanding of your system through the
use of formalism and the formal speci�cation you write is a means toward your end� then do not
feel overly constrained by notation� You might happen� not necessarily out of choice� to be using a
formal method not speci�cally designed for your problem domain� If there is a concept you want to
express and you cannot express it easily in the given notation� invent some convenient syntax� say
what you want� and defer giving it a formal meaning till later� Don�t let notation get in the way
of your making progress in writing your speci�cation� On the other hand� don�t forget to de�ne
your inventions� It may be at odds with the rest of the semantics� �If you�re lucky� however� you
will have thought of a new speci�cation language idiom that is more generally useful than for just
your problem at hand��

Since no one method is suitable for specifying all aspects of a system or all kinds of systems� you
might choose to resort to the only practical strategy known today	 to mix methods� and hence� to
use a mix of notations� For example� you might use Z to specify the static properties of your system
�state space�� and CSP� its dynamic behavior �sequences of state transitions�� Mixing methods�

��

x x’

f

g

A A

y y’

Figure �	 A Commuting Diagram

however� is dangerous	 If you use di
erent notations from di
erent methods� then because they are
based on di
erent semantics �e�g�� state machines and process algebras�� you are less likely to detect
that you have speci�ed something that is actually semantically inconsistent� Combining di
erent
formal methods is a subject of current research �e�g�� see ��� ��� �����

Proofs

Most likely you will not be proving theorems about your system from your speci�cations� but
if you are� the �rst di�cult aspect about doing proofs is knowing how formal to be� For realistic
systems or large examples� it�s impractical to do a completely formal proof� in the strictest sense of
�formal� as used in mathematical logic� What you should strive for when writing out an informal
proof is to justify each proof step that in principle could be formalized�

Given that you are doing only informal proofs� the second di�cult aspect is knowing when you
can skip steps� Some steps are �obvious� but others are not� Also� what may seem �obvious� often
re�ects a hole in your argument�

It is possible to do large formal proofs using machine aids like proof checkers and theorem
provers� There is of course a tradeo
 between the e
ort needed to learn to use one of these tools
and its input language and underlying logic and the bene�t gained by doing the more formal proof�
If what you are trying to prove is critical� it may pay to invest the time and energy� moreover� this
cost need be paid only once� the �rst time� If you plan to do more than one �critical� proof� it may
be worth your while� Finally� using machine aids keeps you honest because they do not let you
skip steps�

Choosing the degree of formality and how much proof detail to give takes experience and prac�
tice� gained by both reading other people�s proofs and constructing your own� A background in
mathematics usually helps�

There are common proof techniques that you should have in your arsenal	 proof by induction�
case analysis� proof by contradiction� and equational reasoning �substituting equals for equals��
You should be familiar with natural deduction though you probably would use it for only small�
local proofs�

Finally� the familiar commuting diagram from mathematics plays a central role in proofs of
correctness for software systems� For example� an interpretation for Fig� � in the context of state
machines is to suppose that f is an action of a concrete machine on the concrete state x � If
hx � f � x �i is a state transition of the concrete machine� then there exists an abstract action g such
that hA�x�� g �A�x ��i is a state transition of the abstract machine�

��

In the context of abstract data types� the interpretation is that given that x is a concrete repre�
sentation for y � the concrete function f implements the abstract function g under the abstraction
function A� That is�

A�f �x�� � g�A�x��

More elaborate diagrams� for example� that allow sequences of actions rather than single actions
generalize this basic idea� The �CLInc Stack� case study ��� of proving the correctness of the
implementation of a small programming language down to the hardware level relies fundamentally
on a stack of commuting diagrams�

���� The Details

I now turn to the nitty gritty of speci�cation	 getting the technical details right�

Logical Errors

Common logical errors that I have seen speci�ers �including myself� make involve implication
and quanti�cation�

Implication� Remember that false implies anything so that

false � � � �

is vacuously true� and that anything implies true so that

� � �� true

reduces to true�

Quanti�ers� Problem spots include nested quanti�ers� ordering of quanti�ers �especially modal
operators for a temporal logic�� and combining quanti�ers and implication �e�g�� what happens
to a formula when bringing a quanti�er outside an implication�� Another confusion arises when
qualifying a quanti�ed variable with set membership� �� That is�

� x � T �P�x �

translates to

� x � x � T � P�x�

but

� x � T �P�x �

��

translates to

� x � x � T � P�x �

If you have a complicated predicate with a lot of embedded quanti�ers� you may �nd it helpful
to break the predicate into pieces� where each piece is in prenex normal form and has only one or
two quanti�ers�

Properties of sets� functions� and relations

When specifying objects such as sets� bags� and sequences that are collections of objects you
may be prone to making the following common errors�

Saying

x � s�

in the post�condition of an insert operation on sets is not enough� It does not say that elements in
the set that were originally in s are still there�

Suppose you are specifying the behavior of a remove operation� which extracts and returns an
element� x � from a set� s	 Saying

s � � s
 fxg

in the post�condition is too weak� You need to say

s � � s
 fxg � x � s

since in the �rst case x may not be a member of s and the post�condition could hold by returning
an arbitrary value� in that case� the set would also not change in value� probably not the intended
behavior for a remove operation�

Saying

s
 s� � fxg

is also not strong enough� Here you need to add that s� is a proper subset of s 	

s
 s� � fxg � s � � s

since the �rst case allows s� to have extra elements�

Some speci�cation languages allow functional notation to be used for relations that are not
functions� If you try to do ordinary mathematical �and speci�cally algebraic� reasoning with
formulae written using that notation� you are headed for trouble� For example� suppose choose is
a relation that is not a function� it returns some element from a set� Saying something like

��

f �choose�s�� � g�choose�s��

in the post�condition of an operation is weaker than saying

� x � x � choose�s� � f �x� � g�x�

since in the �rst case the di
erent occurrences of choose could return di
erent values� Of course if
choose is a function� then it is guaranteed to return the same value�

Recursive de�nitions� commonly found in algebraic speci�cations� may at �rst look puzzling�
For example� in specifying the delete operation for sets

delete�insert�s� e��� e�� � if e� � e� then delete�s� e��
else insert�delete�s� e��� e��

a common error is to forget to reapply delete recursively if e� and e� are equal or to forget to
�reinsert� e� if they are not� Without reapplying the delete you get a bag� not a set� and without
reinserting the e� you lose an element from the set�

�� Summary

The process of writing speci�cations borrows from and is similar to the processes of writing prose�
writing programs� and writing mathematics� You need to worry about the big picture �e�g�� the
overall structure� organization� and meaning of concepts� as well as the �ne details �e�g�� punctua�
tion� spelling� and special symbols�� There are rules that you must always obey and rules that you
may break once in a while� There are stylistic conventions to learn and follow� As with writing
prose� programs� and mathematics� writing speci�cations well takes practice and patience�

There are many books on how to write good prose �e�g�� ����� and even some on how to write
good programs �e�g�� ����� This paper is my attempt� and perhaps the �rst such attempt in the
formal methods community� to cull out some common rules�of�thumb for writing speci�cations�
Maybe these hints can serve eventually as a basis for a set of organized guidelines for speci�ers�

Acknowledgments

My views on writing speci�cations have been greatly in�uenced by John Guttag and Jim Horning�
originating from our joint paper written in ���� ���� More recently� David Garlan and Daniel
Jackson have helped identify common speci�cation stumbling blocks that we see our students
frequently face in our teaching of the Models� Methods� and Analysis courses for the Carnegie
Mellon MSE program� I thank David and Daniel also for their useful feedback on an earlier draft
of this paper�

I thank Jim Horning� Leslie Lamport� David Parnas� and Leo Marcus for their critical remarks
on the AMAST��� version of this paper� Jim� as usual� helped polish my writing� They all helped

��

clarify my comments on nondeterminism and the Larch modi
es clause� They also convinced me
that the AMAST��� paper�s original title was terribly misleading�

Finally� I thank all the students with whom I have worked over the years for their interest and
patience in trying their hand at formal speci�cation�

References

��� DIS ����� Information systems processing"open systems interconnection"lotos� Technical
report� International Standards Organization� �����

��� H� G� Baker� List Processing in Real Time on a Serial Computer� Communications of the
ACM� �����	���"���� �����

��� J� Bentley� Programming Pearls� Addison�Wesley� �����

��� W�R� Bevier� W�A� Hunt� Jr�� J S� Moore� and W�D� Young� An approach to systems veri��
cation� Journal of Automated Reasoning� �	���"���� �����

��� M� Burrows� M� Abadi� and R� Needham� A logic of authentication� ACM Transactions on
Computer Systems� ����	��"��� February �����

��� D� Garlan� Preconditions for understanding� In Proceedings of the Sixth Int�l Conf� on Software
Speci�cation and Design� pages ���"���� October �����

��� J�V� Guttag� J�J� Horning� and J�M� Wing� Some remarks on putting formal speci�cations to
productive use� Science of Computer Programming� ����	��"��� October �����

��� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall International� �����

��� C�B� Jones� Software Development	 A Rigorous Approach� Prentice�Hall International� �����

���� C�B� Jones� Systematic Software Development Using VDM� Chapter ��� Prentice�Hall Inter�
national� �����

���� B� Liskov and J� Guttag� Abstraction and Speci�cation in Program Development� McGraw�
Hill�MIT Press� �����

���� N� Lynch and M� Tuttle� Hierarchical correctness proofs for distributed algorithms� Technical
report� MIT Laboratory for Computer Science� Cambridge� MA� April �����

���� A�J�R�G� Milner� A Calculus of Communicating Systems� volume �� of Lecture Notes in
Computer Science� Springer�Verlag� �����

���� L� Mummert� J�M� Wing� and M� Satyanarayanan� Using belief to reason about cache coher�
ence� In Proceedings of the Symposium on Principles of Distributed Computing� pages ��"���
August ����� Also CMU�CS�������� May �����

���� Scott M� Nettles and James W� O�Toole� Real�Time Replication Garbage Collection� In
SIGPLAN Symposium on Programming Language Design and Implementation� ACM� June
�����

��

���� M� Nielsen� K� Havelund� K�R� Wagner� and C� George� The RAISE language� method and
tools� Formal Aspects of Computing� �	��"���� �����

���� John Scheid and Steven Holtsberg� Ina Jo speci�cation language reference manual� Technical
Report TM������������� Paramax Systems Corporation� A Unisys Company� June �����

���� J�M� Spivey� Introducing Z	 a Speci�cation Language and its Formal Semantics� Cambridge
University Press� �����

���� W� Strunk and E�B�White� The Elements of Style� The Macmillan Company� ����� second
edition�

���� P� Zave and M� Jackson� Conjunction as composition� ACM Trans� on Soft� Engineering and
Methodology� ����	���"���� October �����

��

